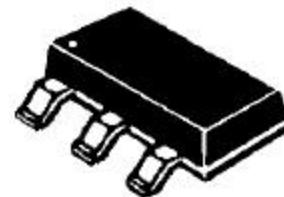


4 LINE UNIDIRECTIONAL TVSarray™

PRODUCT PREVIEW


DESCRIPTION

This 6 pin 4 line unidirectional array is designed for use in applications where protection is required at the board level from voltage transients caused by electrostatic discharge (ESD) as defined by IEC 61000-4-2, electrical fast transients (EFT) per IEC 61000-4-4 and effects of secondary lighting.

These arrays are used to protect 4 discrete lines utilizing pins (1,3,4,6) with a common anode (pins 2,5) configuration. The SMS03 thru SMS24 product provides board level protection from static electricity and other induced voltage surges that can damage sensitive circuitry.

These Transient Voltage Suppressor (TVS) diode arrays protect 3.0/3.3 volt components such as DRAM's SRAM's CMOS, HCMOS, HSIC, and low voltage interfaces up to 24 volts. Because of the physical size, weight and protection capabilities, this product is ideal for use in but not limited to miniaturized electronic equipment such as hand held instruments, computers, computer peripherals and cell phones.

TVS array™ SERIES

APPLICATIONS

- EIA-RS232 data rates 19.6kbs
- EIA-RS422 data rates 10Mbs
- EIA-RS423 data rates 100kbs

IMPORTANT: For the most current data, consult *MICROSEMI*'s website: <http://www.microsemi.com>

FEATURES

- Protects 3.0/3.3 up through 24 volt components
- Protects 4 unidirectional lines
- Provides electrically isolated protection
- SOT 23-6L Packaging

PACKAGING

- Tape & Reel per EIA Standard 481
- 3,000 pieces per 7 inch reel

MAXIMUM RATINGS

- Operating Temperature: -55°C to +150°C
- Storage Temperature: -55°C to +150°C
- Peak Pulse power 200 watts (8/20 μ s Figure 1)
- SOT 23-6L Packaging

MECHANICAL

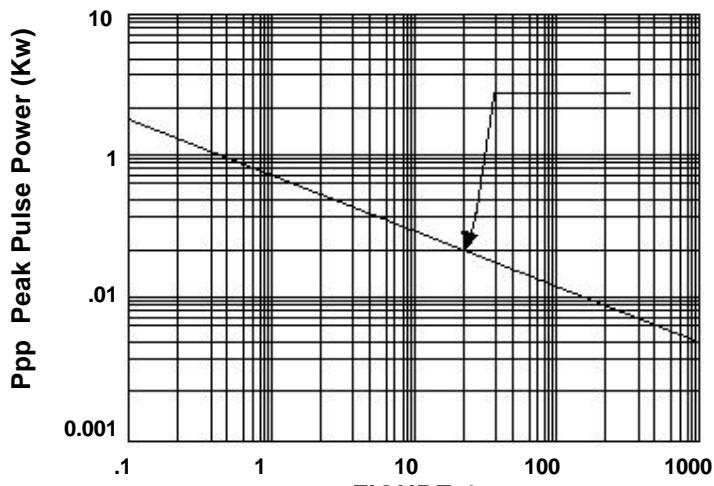
- Molded SOT23-6L Surface Mount
- Weight .014 grams (approximate)
- Body Marked with device number
- Part is symmetrical therefore pin one can be defined as either one of the four corner pins (for clarification see schematic on page 2)

ELECTRICAL CHARACTERISTICS PER LINE @ 25°C Unless otherwise specified

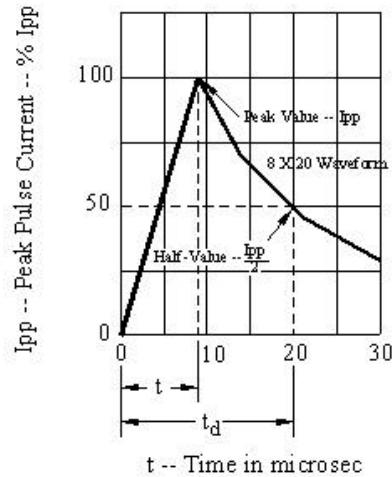
PART NUMBER	DEVICE MARKING	STAND OFF VOLTAGE V_{WM}	BREAKDOWN VOLTAGE V_{BR} @ 1 mA	CLAMPING VOLTAGE V_c @ 1 Amp (FIGURE 2)	CLAMPING VOLTAGE V_c @ 5 Amp (FIGURE 2)	STANDBY CURRENT I_d @ V_{WM}	CAPACITANCE (f = 1 MHz) @ 0V C	TEMPERATURE COEFFICIENT OF V_{BR} α_{VBR}
		VOLTS	VOLTS	VOLTS	VOLTS	μ A	pF	mV/°C
SMS03	S3	3.3	4	7.5	11.5	100	200	-3
SMS05	S5	5.0	6.0	11	14.5	10	150	3
SMS12	S12	12.0	13.3	21	27	1	70	10
SMS15	S15	15.0	16.7	26	33	1	60	13
SMS24	S24	24.0	26.7	45	56*	1	35	30

* CLAMPING VOLTAGE @ 3.6 Amps

Note: Transient Voltage Suppressor (TVS) product is normally selected based on its stand off voltage V_{WM} . Product selected voltage should be equal to or greater than the continuous peak operating voltage of the circuit to be protected.


4 LINE UNIDIRECTIONAL TVSarray™

PRODUCT PREVIEW


SYMBOLS & DEFINITIONS

Symbol	DEFINITION
V_{WM}	Rated stand off voltage: Maximum dc voltage that can be applied over the operating temperature range. V_{WM} must be selected to be equal or be greater than the operating voltage of the line to be protected
V_{BR}	Minimum Breakdown Voltage: The minimum voltage the device will exhibit at a specified current
V_C	Clamping Voltage: Maximum clamping voltage across the TVS device when subjected to a given peak pulse current at a pulse time of 20 μ s.
I_D	Standby Current: Leakage current at V_{WM} .
C	Capacitance: Capacitance of the TVS as defined @ 0 volts at a frequency of 1 MHz and stated in Pico Farads.

GRAPHS

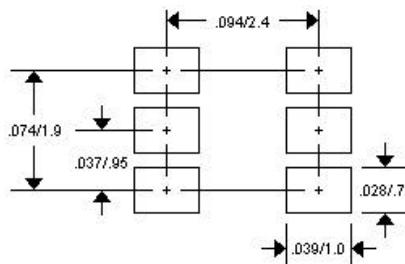


FIGURE 1
Peak Pulse Power Vs Pulse Time $t = \mu$ sec

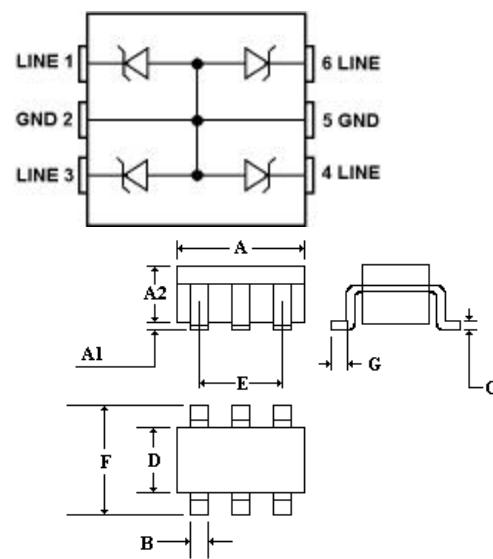


FIGURE 2
Pulse Wave Form

PACKAGING AND SCHEMATIC

DIM	DIMENSIONS MILLIMETERS			DIMENSIONS INCHES		
	MIN	NOM	MAX	MIN	NOM	MAX
A	2.70	2.90	3.10	.106	.114	.127
A1	0.00		0.10	.000		.004
A2	1.00	1.10	1.30	.039	.043	.051
B	0.35	0.40	0.50	.014	.016	.020
C	0.10	0.15	0.25	.004	.006	.010
D	1.50	1.60	1.80	.059	.063	.071
E	1.70	1.90	2.10	.067	.075	.083
F	2.60	2.80	3.00	.102	.110	.118
G	0.20			.008		

