

STRUCTURE	Silicon Monolithic integrated Circuit
PRODUCTS	I/O interface LSI for the DVD recorder for PAL
TYPE	BH7624KS2
PACKAGE	Figure-1 SQFP-T52 (Plastic Mold)
BLOCK DIAGRAM	Figure-2

Feature

- 1) VCC 5V Single
- 2) I2C BUS control (Input become high impedance at the time of power source off)
- 3) BD3825FS control function built-in.
- 4) Three general purpose parallel control termination built-in
- 5) Standby mode
- 6) CVBS/Y 5 inputs, 5 B Clamp circuits, Mute is possible.
 - 1 output 0/2dB AMP + Buffer
 - 2 outputs 6/8dB AMP + 75Ω driver
 - 1 output 0/6dB AMP + 75Ω driver (R common use is encompassed.)
- 7) C
 - 2 inputs, 2 BIAS circuits, Mute is possible.
 - 2 outputs 6/8dB AMP + 75Ω driver
 - 3 outputs Buffer + 8 order LPF (Record)
- 8) As for the mute circuit, each SW independent actuation and all the SW simultaneous actuation are possible.
- 9) Playback 4 order LPF 6 circuits built-in, Record 8 order LPF 3 circuits built-in
- 10) Fast blanking circuit built in
- 11) Function SW Input, 2 circuits built -in

Absolute maximum ratings (Ta = 25°C)

Item	Symbol	Rating	Unit
Power supply voltage	V	7 . 0	V
Power dissipation	Pd	※ 1 1 3 0 0	mW
Operating temperature range	Topr	- 2 5 ~ + 6 5	°C
Storage temperature range	Tstg	- 5 5 ~ + 1 2 5	°C

※ 1 When absolute temperature exceeds Ta=25°C, the rated value is reduced at the unit of 13mW/°C.

Operation range (Ta = 25°C)

Item	Symbol	Rating	Unit
Supply Voltage	Vcc1,Vcc2,VDD	4 . 7 5 ~ 5 . 2 5	V

※ This product is not designed for protection against radioactive rays.

※ VCC1, VCC2 VDD are to use a same power source.

※ Wrong action is likely to be triggered when the Enter of this integrated circuit or an output terminal is connected to the signal line of the other power source, the surface connection terminal, and so on in the state that a power source isn't supplied by this integrated circuit. Do caution, a countermeasure fully.

Application example

The application circuit is recommended for use. Make sure to confirm the adequacy of the characteristics.

When using the circuit with changes to the external circuit constants, make sure to leave an adequate margin for the external components including static and transitional characteristics as well as dispersion of the IC.

Note that ROHM cannot provide adequate confirmation of patents.

The product described in this specification is designed to be used with ordinary electronic equipment or devices (such as audio-visual equipment, office-automation equipment, communications devices, electrical appliances, and electronic toys). Should you intend to use this product with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

ROHM assumes no responsibility for use of any circuits described herein, no license under any patent or other right, and makes no representations that the circuits are free from patent infringement.

■ Electrical Characteristics (Unless otherwise specified, $V_{cc}=5.0V$, $T_a=25^\circ C$)

Item	Symbol	Limit			Unit	Conditions
		MIN.	TYP.	MAX.		
<All circuits>						
VCC Circuit current	I_{CC}	85	130	175	mA	Load 75Ω resistor
VDD Circuit current	I_{DD}	4.6	7.2	9.8	mA	
VCC Circuit current at standby	I_{CCST}	10	15	20	mA	Load 75Ω resistor
VDD Circuit current at standby	I_{DDST}	3.5	5.5	7.5	mA	
<SW part>						
L1,AUX CVBS/Y→For VPS,PDC 0dB Voltage Gain	G_{VPS0}	-0.7	-0.2	0.3	dB	$Vin=1Vpp$, $f=100kHz$
L1,AUX CVBS/Y→For VPS,PDC 6dB Voltage Gain	G_{VPS6}	5.7	6.2	6.7	dB	$Vin=1Vpp$, $f=100kHz$
ENC CVBS,ENC Y → to INPUT AD 0dB Voltage	G_{AD0}	-0.8	-0.3	0.2	dB	$Vin=1Vpp$, $f=100kHz$
ENC CVBS,ENC Y → to INPUT AD 2dB Voltage Gain	G_{AD2}	1.4	1.9	2.4	dB	$Vin=800mVpp$, $f=100kHz$
ENC CVBS,ENC Y → to L1&AUX 6dB Voltage Gain	G_{L1AUX6}	5.5	6.0	6.5	dB	$Vin=1Vpp$, $f=100kHz$
ENC CVBS,ENC Y → to L1&AUX 8dB Voltage Gain	G_{L1AUX8}	7.7	8.2	8.7	dB	$Vin=800mVpp$, $f=100kHz$
L1 C → to AUX 6dB Voltage Gain	G_{AUX6-1}	5.7	6.2	6.7	dB	$Vin=450mVpp$, $f=100kHz$
ENC C → to AUX 6dB Voltage Gain	G_{AUX6-2}	5.5	6.0	6.5	dB	$Vin=450mVpp$, $f=100kHz$
ENC C → to AUX 8dB Voltage Gain	G_{AUX8}	7.7	8.2	8.7	dB	$Vin=360mVpp$, $f=100kHz$
ENC C, ENC R, G, B → to L1 6dB Voltage Gain	$G_{L16-/G_{L18-2}}$	5.5	6.0	6.5	dB	$Vin=450mVpp$, $f=100kHz$
ENC C, ENC R,G,B → to L1 8dB Voltage Gain	$G_{L18-/G_{L18-2}}$	7.7	8.2	8.7	dB	$Vin=360mVpp$, $f=100kHz$
G, B Maximum output level for VPS, PDC 0dB/6dB	V_g/V_R	2.8	3.2	—	V	$Vin: THD=1.0\%$, $f=100kHz$
	V_{VPS0}	2.8	3.2	—	V	$Vin: THD=1.0\%$, $f=100kHz$
CVBS/Y OUT to INPUT AD Frequency characteristics 0dB	F_{AD0}	-1.0	0	1.0	dB	$Vin=1Vpp$, $f=100k/7MHz$
CVBS/Y OUT to INPUT AD Frequency characteristics 2dB	F_{AD2}	-1.0	0	1.0	dB	$Vin=800mVpp$, $f=100k/7MHz$
CVBS/Y OUT to L1, to AUX Frequency characteristics 6dB	F_{CVL6}/F_{CV-Avg}	-1.0	0	1.0	dB	$Vin=1Vpp$, $f=100k/7MHz$
CVBS/Y OUT to L1, to AUX Frequency characteristics 8dB	F_{CVL8}/F_{CV-Avg}	-1.0	0	1.0	dB	$Vin=800mVpp$, $f=100k/7MHz$
C OUT to AUX Frequency characteristics 6dB	F_{C-A6}	-1.0	0	1.0	dB	$Vin=450mVpp$, $f=100k/7MHz$
C OUT to AUX Frequency characteristics 8dB	F_{C-A8}	-1.0	0	1.0	dB	$Vin=360mVpp$, $f=100k/7MHz$
R/C OUT, G OUT, B OUT Frequency characteristics 6dB	$F_{RC-OUT}/F_{G-OUT}/F_{B-OUT}$	-1.0	0	1.0	dB	$Vin=700mV$, $f=100k/7MHz$
R/C OUT, G OUT, B OUT Frequency characteristics 8dB	$F_{RC-OUT}/F_{G-OUT}/F_{B-OUT}$	-1.0	0	1.0	dB	$Vin=560mVpp$, $f=100k/7MHz$
R, G, B Frequency Characteristics	$F_R/F_G/F_B$	-1.0	0	1.0	dB	$Vin=700mVpp$, $f=100k/7MHz$
CVBS/Y OUT LPF, C-R/C-G-B OUT LPF ON Frequency characteristics 1	$F_{CV-LPF1}/F_{CR-LPF1}$	-1.5	-0.5	0.5	dB	$Vin=1.0Vpp$, $f=100k/6.75MHz$
CVBS/Y OUT LPF, C-R/C-G-B OUT LPF ON Frequency characteristics 2	$F_{CV-LPF2}/F_{CR-LPF2}$	—	-38	-27	dB	$Vin=1.0Vpp$, $f=100k/27MHz$
R-G-B LPF ON Frequency characteristics1	F_{RGB1}	-3	0	1	dB	$Vin=700mVpp$, $f=100kHz/6MHz$
R-G-B LPF ON Frequency characteristics2	F_{RGB2}	—	-15	-1.5	dB	$Vin=700mVpp$, $(f=100kHz/14.3MHz)$
MUTE attenuation	M	—	-60	-55	dB	$Vin=1.0Vpp$, $f=4.43MHz$
SW1~8,SW10 SW Cross talk	$C_{SW1~8,SW10}$	—	-60	-55	dB	$Vin=1.0Vpp$, $f=4.43MHz$ AMP6dB
CVBS/Y OUT Channel cross talk	C_{CVBS}	—	-60	-55	dB	$Vin=1.0Vpp$, $f=4.43MHz$ AMP0.6dB
C-R/C-G-B OUT Channel cross talk	$C_{CR/C_{GB}}$	—	-60	-55	dB	$Vin=1.0Vpp$, $f=4.43MHz$ AMP6dB
R-G-B Channel cross talk	C_{RGB}	—	-60	-55	dB	$Vin=1.0Vpp$, $f=4.43MHz$
BIAS Input impedance	R_{BIAS}	14	20	26	kΩ	
BIAS Input impedance AUX R/C terminal	R_{RC}	100	150	200	kΩ	
<Scart connector part>						
FB threshold	V_{FB}	0.4	0.7	0.9	V	
L1 FB OUT Output voltage H	V_{FB-H1}	3.6	4	4.4	V	$R_L=150\Omega$
L1 FB OUT Output voltage L	V_{FB-L0}	0	—	0.7	V	$R_L=150\Omega$
FSW Output Voltage H	V_{FSW-H1}	VCC - 0.5	VCC - 0.1	VCC	V	No load
FSW Output voltage L	$V_{FSW-LOW}$	0	—	0.7	V	No load
<SCL, SDA, ADR>						
Input voltage H	V_{ADR-H1}	2.0	—	VCC	V	
Input voltage L	$V_{ADR-LOW}$	0	—	1.0	V	
Input voltage <SCL, SDA>	$V_{IIC-BIAS}$	0	-1	-10	μA	
Input impedance <ADR>	R_{ADR}	65	100	135	kΩ	Pull down resister
INT Output voltage H	V_{INT-H1}	Vcc - 0.5	Vcc - 0.1	Vcc	V	Pull up 100kΩ
INT Output voltage L	$V_{INT-LOW}$	0	0.3	0.5	V	$I_{load}=1mA$
ALL MUTE threshold	V_{MUTE}	1.0	1.5	2.0	V	The span that input is possible 0~Vcc
FS1, FS2 Input threshold H	V_{FS-H}	2.5	2.75	3	V	Maximum input voltage VCC (VCC±5%)
FS1, FS2 Input threshold L	V_{FS-L}	0.83	1.08	1.33	V	Minimum input voltage 0V (VCC±5%)
FSL1,FSAUX Output voltage H	V_{OFSH}	4.0	0.95×Vcc	VCC	V	$R_L=200k\Omega$
FSL1,FSAUX Output voltage M	V_{OFSM}	2.0	2.5	3.0	V	$R_L=200k\Omega$
FSL1,FSAUX Output voltage L	V_{OFSL}	0	0.1	0.75	V	$R_L=200k\Omega$

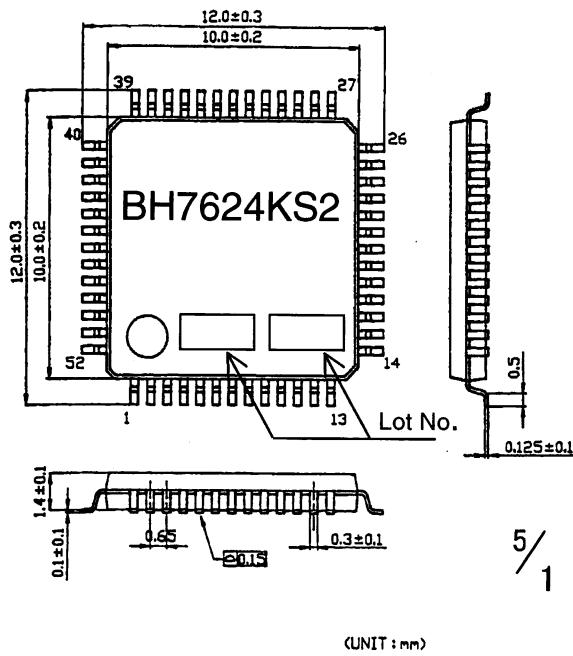
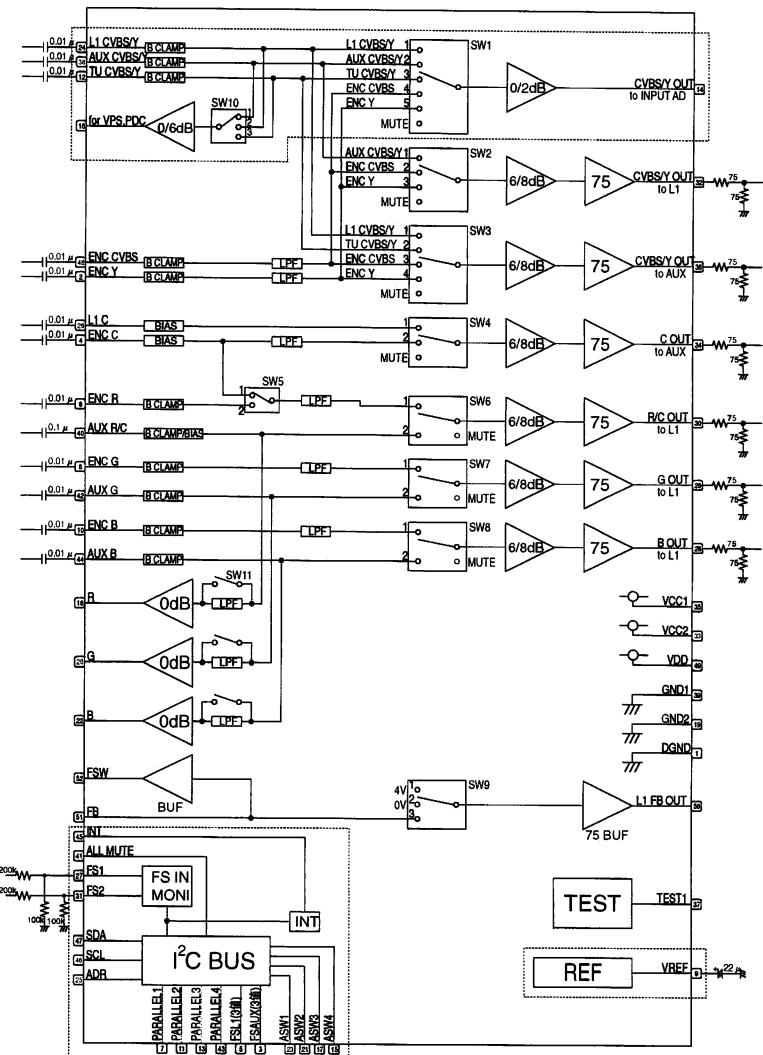



Figure-1 PACKAGE
(S Q F P - T 5 2)

Caution: It is the block actuated in the line at the time of the standby.

Figure2 BLOCK Diagram

■ PIN Assignment

PIN NO.	PIN NAME	PIN NO.	PIN NAME	PIN NO.	PIN NAME	PIN NO.	PIN NAME
1	DGND	14	CVBS/Y OUT to INPUT AD	27	FS1	40	AUX R
2	ENC Y	15	ASW4	28	B OUT to L1	41	ALL MUTE
3	FS AUX	16	for VPS PDC	29	G OUT to L1	42	AUX G
4	ENC C	17	ASW3	30	R/C OUT to L1	43	PARALLEL4
5	FSL1	18	R	31	FS2	44	AUX B
6	ENC R	19	GND2	32	CVBS/Y OUT to L1	45	INT
7	PARALLEL1	20	G	33	VCC2	46	SCL
8	ENC G	21	ASW2	34	C OUT to L1	47	SDA
9	VREF	22	B	35	VCC1	48	ENC CVBS
10	ENC B	23	ASW1	36	CVBS/Y OUT to AUX	49	VDD
11	PARALLEL2	24	L1 CVBS/Y	37	TEST1	50	L1 FB OUT
12	TU CVBS/Y	25	ADR	38	AUX CVBS/Y	51	FB
13	PARALLEL3	26	L1 CVBS/Y	39	GND1	52	FSW

■ Cautions on use

- (1) Numbers and data in entries are representative design values and are not guaranteed values of the items.
- (2) Although we are confident in recommending the sample application circuits, carefully their characteristics further when using them. When modifying externally attached component constants before use, determine them so that they have sufficient margins by taking into account variations in externally attached components and the Rohm LSI, not only for static characteristics but also including transient characteristics.
- (3) Absolute maximum ratings
If applied voltage, operating temperature range, or other absolute maximum ratings are exceeded, the LSI may be damaged. Do not apply voltages or temperatures that exceed the absolute maximum ratings. If you think of a case in which absolute maximum ratings are exceeded, enforce fuses or other physical safety measures and investigate how not to apply the conditions under which absolute maximum ratings are exceeded to the LSI.
- (4) GND potential
Make the GND pin voltage such that it is lowest voltage even when operating below it. Actually confirm that the voltage of each pin does not become a lower voltage than the GND pin, including transient phenomena.
- (5) Thermal design
Perform thermal design in which there are adequate margins by taking into account the allowable power dissipation in actual states of use. Within the limits of operating temperature (-25°C ~ +75°C), although basic circuit functional operation is guaranteed. Please take into consideration enough for a hindsight. In the case of a set design, please circulation of the air of IC circumference secured according to installation a fan and PCB layout, and please sufficient measure against heat dissipation.
- (6) Shorts between pins and misinstallation
When mounting the LSI on a board, pay adequate attention to orientation and placement discrepancies of the LSI. If it is misinstalled and the power is turned on, the LSI may be damaged. It also may be damaged if it is shorted by a foreign substance coming between pins of the LSI or between a pin and a power supply or a pin and a GND.
- (7) Operation in strong magnetic fields
Adequately evaluate use in a strong magnetic field, since there is a possibility of malfunction.
- (8) Supply voltage of operation
Although basic circuit function is guaranteed within the limits of supply voltage (4.5V ~ 5.5V) of operation. Please be sure element and each parameter, when this device use.
- (9) Operating temperature range
- (10) Please layout the first resistor of 3.75Ω driver output nearest IC.
- (11) Please layout the coupling capacitor nearest IC and each pin.
- (12) I²C-BUS is compatible with fast mode of Version 2.0, not compatible with Hs mode.

Appendix

Notes

- No technical content pages of this document may be reproduced in any form or transmitted by any means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the product described in this document are for reference only. Upon actual use, therefore, please request that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or otherwise dispose of the same, no express or implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).

Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

About Export Control Order in Japan

Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control Order in Japan.

In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause) on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.

Thank you for your accessing to ROHM product informations.
More detail product informations and catalogs are available,
please contact your nearest sales office.

Please contact our sales offices for details ;

U.S.A / San Diego	TEL : +1(858)625-3630	FAX : +1(858)625-3670
Atlanta	TEL : +1(770)754-5972	FAX : +1(770)754-0691
Dallas	TEL : +1(972)312-8818	FAX : +1(972)312-0330
Germany / Dusseldorf	TEL : +49(2154)9210	FAX : +49(2154)921400
United Kingdom / London	TEL : +44(1)908-282-666	FAX : +44(1)908-282-528
France / Paris	TEL : +33(0)1 56 97 30 60	FAX : +33(0) 1 56 97 30 80
China / Hong Kong	TEL : +852(2)740-6262	FAX : +852(2)375-8971
Shanghai	TEL : +86(21)6279-2727	FAX : +86(21)6247-2066
Dilian	TEL : +86(411)8230-8549	FAX : +86(411)8230-8537
Beijing	TEL : +86(10)8525-2483	FAX : +86(10)8525-2489
Taiwan / Taipei	TEL : +866(2)2500-6956	FAX : +866(2)2503-2869
Korea / Seoul	TEL : +82(2)8182-700	FAX : +82(2)8182-715
Singapore	TEL : +65-6332-2322	FAX : +65-6332-5662
Malaysia / Kuala Lumpur	TEL : +60(3)7958-8355	FAX : +60(3)7958-8377
Philippines / Manila	TEL : +63(2)807-6872	FAX : +63(2)809-1422
Thailand / Bangkok	TEL : +66(2)254-4890	FAX : +66(2)256-6334

Japan /
(Internal Sales)

Tokyo	2-1-1, Yaesu, Chuo-ku, Tokyo 104-0082 TEL : +81(3)5203-0321	FAX : +81(3)5203-0300
Yokohama	2-4-8, Shin Yokohama, Kohoku-ku, Yokohama, Kanagawa 222-8575 TEL : +81(45)476-2131	FAX : +81(45)476-2128
Nagoya	Dainagayo Building 9F 3-28-12, Meieki, Nakamura-ku, Nagoya,Aichi 450-0002 TEL : +81(52)581-8521	FAX : +81(52)561-2173
Kyoto	579-32 Higashi Shiokouji-cho, Karasuma Nishi-iru, Shiokujidori, Shimogyo-ku, Kyoto 600-8216 TEL : +81(75)311-2121	FAX : +81(75)314-6559

(Contact address for overseas customers in Japan)

Yokohama	TEL : +81(45)476-9270	FAX : +81(045)476-9271
----------	-----------------------	------------------------