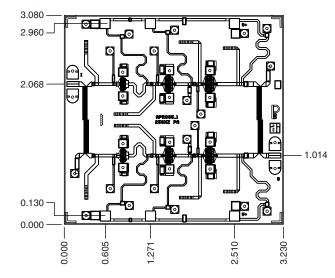
23.5–26.5 GHz GaAs MMIC Power Amplifier

AA026P2-00


Features

- Single Bias Supply Operation (6 V)
- 17 dB Typical Small Signal Gain
- 24 dBm Typical P_{1 dB} Output Power at 26.5 GHz
- 100% On-Wafer RF and DC Testing
- 100% Visual Inspection to MIL-STD MT 2010

Description

Skyworks' three-stage balanced K band GaAs MMIC power amplifier has a typical $P_{1\,dB}$ of 24 dBm and a typical P_{SAT} of 26 dBm at 26.5 GHz. The chip uses Skyworks' proven 0.25 μ m MESFET technology, and is based upon MBE layers and electron beam lithography for the highest uniformity and repeatability. The FETs employ surface passivation to ensure a rugged, reliable part with through-substrate via holes and gold-based backside metallization to facilitate a conductive epoxy die attach process. All chips are screened for small signal S-parameters and power characteristics prior to shipment for guaranteed performance. A broad range of applications exist in both the commercial and military areas where high power and gain are required.

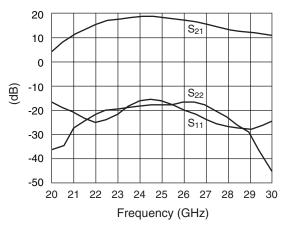
Chip Outline

Dimensions indicated in mm. All DC (V) pads are $0.1 \times 0.1 \text{ mm}$ and RF In, Out pads are 0.07 mm wide. Chip thickness = 0.1 mm.

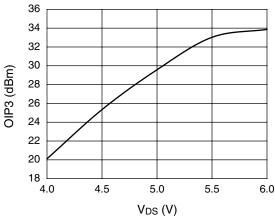
Absolute Maximum Ratings

Characteristic	Value		
Operating Temperature (T _C)	-55°C to +90°C		
Storage Temperature (T _{ST})	-65°C to +150°C		
Bias Voltage (V _D)	7 V _{DC}		
Power In (P _{IN})	22 dBm		
Junction Temperature (T _J)	175°C		

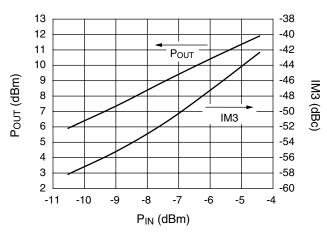
Electrical Specifications at 25°C (V_{DS} = 6 V)

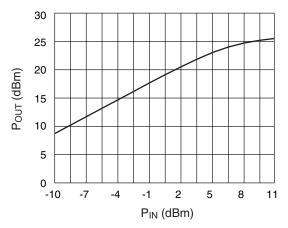

Parameter	Condition	Symbol	Min.	Typ. ³	Max.	Unit
Drain Current (at Saturation)		I _{DS}		520	700	mA
Small Signal Gain	F = 23.5–26.5 GHz	G	15	17		dB
Input Return Loss	F = 23.5–26.5 GHz	RLI		-17	-10	dB
Output Return Loss	F = 23.5–26.5 GHz	RLO		-20	-10	dB
Output Power at 1 dB Gain Compression	F = 26.5 GHz	P _{1 dB}	23	24		dBm
Saturated Output Power	F = 26.5 GHz	P _{SAT}	24	26		dBm
Two-Tone Output Third-Order Intercept ¹	F = 26.5 GHz	OIP3		33.5		dBm
Gain at Saturation	F = 26.5 GHz	G _{SAT}		14		dB
Thermal Resistance ²		ΘJC		17		°C/W

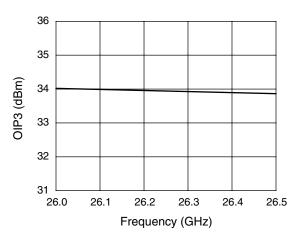
^{1.} Not measured on a 100% basis.


Calculated value based on measurement of discrete FET.

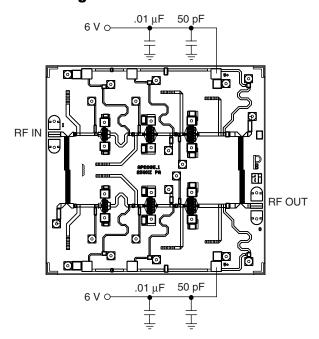
Typical represents the median parameter value across the specified frequency range for the median chip.


Typical Performance Data

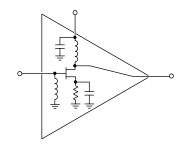

Typical Small Signal Performance S-Parameters (V_{DS} = 6 V)


Two-Tone Output Third-Order Intercept @ 26.5 GHz

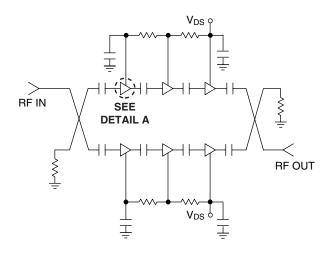
Output Power and Relative Third-Order Intermodulation Products F = 26.5 GHz, V_{DS} = 6 V



Output Characteristics as a Function of Input Drive Level (F = 26.5 GHz, V_{DS} = 6 V)


Two-Tone Output Third-Order Intercept @ V_{DS} = 6 V

Bias Arrangement



For biasing on, adjust V_{DS} from zero to the desired value (6 V recommended). For biasing off, reverse the biasing on procedure.

Circuit Schematic

Detail A

