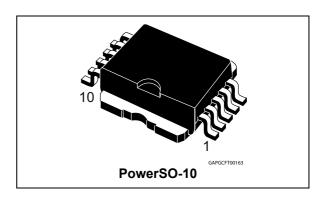


VBG15NB22T5SP-E


Ignition coil driver

Туре	V _{cl}	I _{cl}	V _{CEsat}	
VBG15NB22T5SP-E	250 V ⁽¹⁾	21 A ⁽¹⁾	1.7 V ⁽¹⁾	

1. Typical value

Features

- ECOPACK®: lead free and RoHS compliant
- Automotive Grade: compliance with AEC guidelines
- Low threshold voltage
- Low on-voltage drop
- Coil current limit internally set
- High voltage clamping feature
- ESD protection
- Timing function externally set with
- Soft switch-off

Description

The VBG15NB22T5SP-E is an ignition coil driver made by using the latest high voltage Powermesh™ technology based on patented strip lay-out.

The device is particularly suitable in high performance car ignition, where coil current limitation and precise voltage clamping are required with no external component. ESD is an additional inherent features.

Table 1. Device summary

Package	Order code		
	Tube	Tape and reel	
PowerSO-10	VBG15NB22T5SP-E	VBG15NB22T5TR-E	

Contents VBG15NB22T5SP-E

Contents

1 Blo	ock diagram and pins connection5
2 Ele	ectrical specifications 6
2.1	Absolute maximum ratings 6
2.2	Thermal data 6
2.3	Functional characteristics 6
2.4	Electrical characteristics
2.5	Timer block function
3 Pa	ckage and packing information
3.1	ECOPACK [®] 12
3.2	PowerSO-10 mechanical data12
3.3	PowerSO-10 packing information
4 Re	vision history

VBG15NB22T5SP-E List of tables

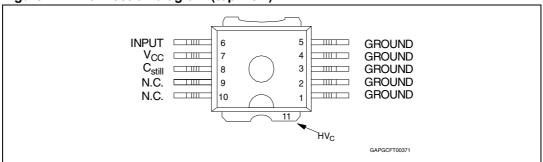
List of tables

Table 1.	Device summary
Table 2.	Absolute maximum ratings
Table 3.	Thermal data6
Table 4.	Functional characteristics
Table 5.	Electrical characteristics
Table 6.	Electrical transient requirements on V _{CC} pin (part 1/3)9
Table 7.	Electrical transient requirements on V _{CC} pin (part 2/3)9
Table 8.	Electrical transient requirements on V _{CC} pin (part 3/3)
Table 9.	PowerSO-10 mechanical data
Table 10.	Document revision history

List of figures VBG15NB22T5SP-E

List of figures

Figure 1.	Block diagram	. 5
Figure 2.	Connection diagram (top view)	
Figure 3.	Typical application circuit	
Figure 4.	t _{still} definition	. 8
Figure 5.	t _{still} specification	
Figure 6.	ISO pulses test circuit	
Figure 7.	Typical waveforms	11
Figure 8.	Timer block schematic	11
Figure 9.	PowerSO-10 package dimensions	12
Figure 10.	PowerSO-10 suggested PAD layout	14
Figure 11.	PowerSO-10 tube shipment (no suffix)	14
Figure 12	PowerSO-10 tape and reel shipment (suffix "13TR")	14


4/16 Doc ID 018832 Rev 1

1 Block diagram and pins connection

Figure 1. Block diagram

Figure 2. Connection diagram (top view)

2 Electrical specifications

2.1 Absolute maximum ratings

Stressing the device above the rating listed in the *Table 2: Absolute maximum ratings* may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE program and other relevant quality documents.

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CES}	Collector-Emitter voltage	Clamped	V
V _{IN}	Input voltage	-16 to 18	V
V _{CC}	Maximum supply voltage	24	V
I _C	Collector current (continuous)	Internally limited	Α
P _{tot}	Total dissipation at T _{case} = 25 °C	125	W
V _{ESD}	Electrostatic discharge (R = 1.5 K Ω ; C = 100 pF)	2000	٧
Tj	Operating junction temperature	-40 to 175	°C
T _{stg}	Storage temperature	-40 to 175	°C
V _{CC-GND}	Pulsed V_{CC} to ground voltage ($t_p = 50 \mu s; V_{CC} - GND$)	40	V
V _{CC-HVc}	Pulsed V_{CC} to HV_C voltage ($t_p = 50 \mu s; V_{CC} - HV_C$)	40	V

2.2 Thermal data

Table 3. Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case (MAX)	1	°C/W
R _{thj-amb}	Thermal resistance junction-ambient (MAX)	50	°C/W

2.3 Functional characteristics

Table 4. Functional characteristics

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
Eas	Avalanche energy	T _j = 150 °C			250	mJ
V _{CC}	DC supply voltage		5.2		24	V

2.4 Electrical characteristics

 T_{j} = 25 °C; V_{CC} = 14 V; L = 1 mH; R_{L} = 100 m Ω unless otherwise specified.

Table 5. Electrical characteristics

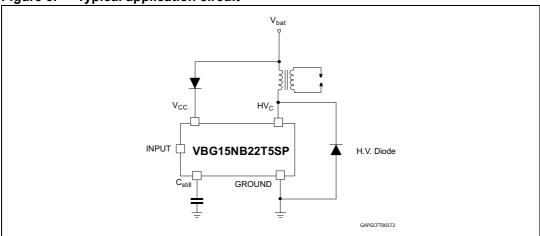
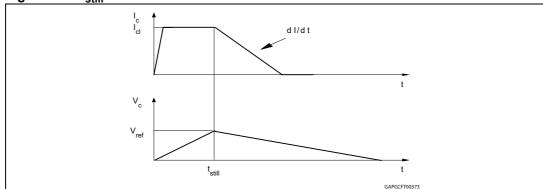

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
OFF						
V _{cl}	Clamp voltage	I_{C} = 15 A; V_{IN} = 0 V; T_{j} = -40 to 150 °C	225	250	275	٧
I _S	Supply current (V _{CC})	$V_{bat} = 16 \text{ V}; V_{IN} = 0 \text{ V};$ $T_j = -40 \text{ to } 150 ^{\circ}\text{C} \text{ (see } Figure 3)$			10	mA
1	Collector-emitter leakage	V _{CE} = 175 V; V _{IN} = 0 V; V _{CC} = 0 V			40	μA
I _{CES}	current	$V_{CE} = 175 \text{ V}; V_{IN} = 0 \text{ V};$ $T_j = 150 \text{ °C}; V_{CC} = 0 \text{ V}$			200	μA
ON ⁽¹⁾						
V _{CE(sat)}	Collector-emitter saturation voltage	V _{IN} = 3 V; I _C = 15 A; -40 °C < T _j < 150 °C			2.5	٧
V _{CE(sat)}	Collector-emitter saturation voltage	$V_{IN} = 3V$; $I_C = 10A$; -40 °C < T_j < 150 °C; $V_{bat} = 6 V$ (See figure 1)			2.2	V
		$I_{IN} = 5 \text{ mA}; -40 \text{ °C} < T_j < 150 \text{ °C}$	3			V
V_{IN}	Input voltage	I _{IN} = 10 mA; -40 °C < T _j < 150 °C			4.2	٧
V _{IN(on)}	Input voltage on	-40 °C < T _j < 150 °C	3			V
$V_{IN(off)}$	Input voltage off	-40 °C < T _j < 150 °C			1.5	V
Dynamic						
C _{OES}	Output capacitance	V _{CE} = 25 V; f = 1 MHz		125		pF
Switchin	g on					
t _{d(on)}	Turn-on delay time	From inputainments V		2.7		μs
E _{on}	Turn-on switching losses	From input signal to $V_{CE(sat)} = 3 \text{ V}$		180		μJ
Switchin	g off					
t _{d(off)}	Off voltage delay time	I _C = 15 A; V _{CE} = 100 V;	5		15	μs
E _{off} ⁽²⁾	Turn-off switching losses	T _{case} = 25 °C		7.5		mJ
t _{d(off)}	Off voltage delay time	I _C = 15A; V _{CE} = 100 V: T _{case} = 125 °C			15	μs
E _{off} ⁽²⁾	Turn-off switching losses			10		mJ
t _r	Voltage rise time	From $V_{CE} = 50 \text{ V}$ to $V_{CE} = 150 \text{ V}$			3	μs
Protection	on					
I _{cl}	Coil current limit	V _{IN} = 3 V; 10 V < V _{CC} < 24 V	17		25	Α

Table 5. Electrical characteristics (continued)


Symbol	Parameter Test conditions			Тур	Max	Unit
Timing fu	unction					
t _{still}	Capacitor charging time	C _{still} = 100 nF; 100 < T _j < 175 °C	(3)(see Figure 3, Figure 4, Figure 5)		ms	
dl _c /dt	Turn-off current slope	C _{still} = 100 nF	0.1		2	A/ms

- 1. Pulsed: pulse duration = 300 μ s; duty cycle = 1.5 %
- 2. Losses include also the tail (Jedec Standardization)
- 3. The function is guaranteed by design to be operative in full temperature range.

Figure 3. Typical application circuit

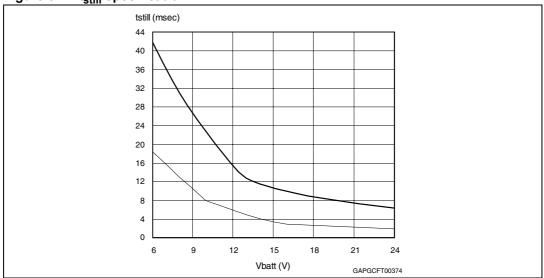


Figure 5. t_{still} specification

Table 6. Electrical transient requirements on V_{CC} pin⁽¹⁾ (part 1/3)

ISO T/R 7637/1		Test levels						
Test pulse	I	II	III	IV	Delay and impedance			
1	-25V	-50V	-75V	-100V	2ms, 10Ω			
2	25V	50V	75V	100V	0.2ms, 10Ω			
3a	-25V	-50V	-100V	-150V	0.1μs, 50Ω			
3b	25V	50V	75V	100V	0.1μs, 50Ω			
4	-4V	-5V	-6V	-7V	100ms, 0.01Ω			
5	26.5V	46.5V	66.5V	86.5V	400ms, 2Ω			

^{1.} See *Figure 6*, V_{bat} = 12 V.

Table 7. Electrical transient requirements on V_{CC} pin (part 2/3)

ISO T/R 7637/1	Test level results						
Test pulse	1	II	III	IV	Delay and impedance		
1	С	С	Е	Е	2ms, 10Ω		
2	С	E	E	E	0.2ms, 10Ω		
3a	С	С	С	С	0.1μs, 50Ω		
3b	С	С	С	С	0.1μs, 50Ω		
4	С	E	С	С	100ms, 0.01Ω		
5	С	С	E	E	400ms, 2Ω		

Table 8. Electrical transient requirements on V_{CC} pin (part 3/3)

Class	Contents		
С	All functions of the device performed as designed after exposure to disturbance.		
E	One or more functions of the device did not perform as designed after exposure to disturbance and cannot be returned to proper operation without replacing the device.		

Figure 6. ISO pulses test circuit

2.5 Timer block function

The VBG15NB22T5SP-E has a timer block built-in (see *Figure 8*), in order to have a soft switch-off of the device. When an input signal is provided to the device (see *Figure 7*, case a), the external capacitor starts its charging through the Switch1 (with a slope depending on V_{CC}) and goes on until it reaches the V_{ref} voltage (see *Figure 7*, case b). As soon as it happens, the voltage comparator gives an enable signal (see *Figure 7*, case c) that develops different functions:

- It opens Switch1 and closes Switch2, so that the external capacitor discharges.
- It provides power to the transconductance inverting amplifier, the input of which is theexternal capacitor voltage.

It means that while V_C decreases, Itimer (see *Figure 7*, case d) increases proportionally. The increasing drop voltage on R_O , due to I_{timer} , has to be compensated by a reducing drop voltage on R_{SENSE} , so to maintain the A input voltage equal to the B one. Since the R_{SENSE} drop depends on the coil current, it means that a soft decreasing of it occurs (see *Figure 7*, case e).

Figure 7. Typical waveforms

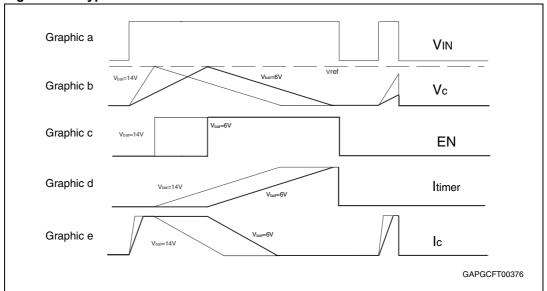
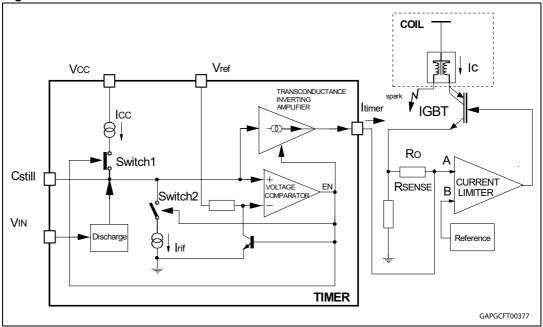



Figure 8. Timer block schematic

3 Package and packing information

ECOPACK® 3.1

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

PowerSO-10 mechanical data 3.2

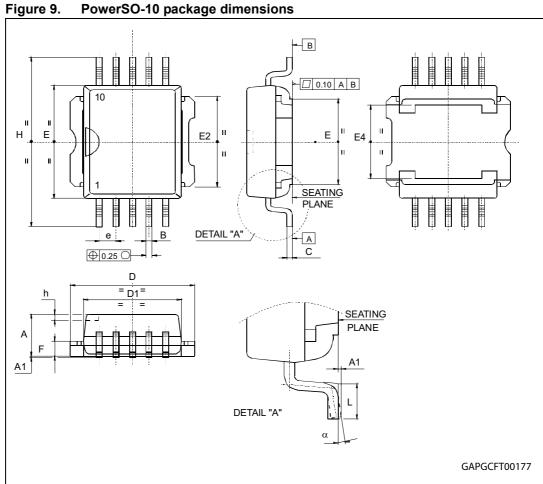


Table 9. PowerSO-10 mechanical data

Dim.	mm.			inch		
	Min.	Тур	Max.	Min.	Тур.	Max.
Α	3.35		3.65	0.132		0.144
A ⁽¹⁾	3.4		3.6	0.134		0.142
A1	0.00		0.10	0.000		0.004
В	0.40		0.60	0.016		0.024
B ⁽¹⁾	0.37		0.53	0.014		0.021
С	0.35		0.55	0.013		0.022
C ⁽¹⁾	0.23		0.32	0.009		0.0126
D	9.40		9.60	0.370		0.378
D1	7.40		7.60	0.291		0.300
Е	9.30		9.50	0.366		0.374
E2	7.20		7.60	0.283		0.299
E2 ⁽¹⁾	7.30		7.50	0.287		0.295
E4	5.90		6.10	0.232		0.240
E4 ⁽¹⁾	5.90		6.30	0.232		0.248
е		1.27			0.050	
F	1.25		1.35	0.049		0.053
F ⁽¹⁾	1.20		1.40	0.047		0.055
Н	13.80		14.40	0.543		0.567
H ⁽¹⁾	13.85		14.35	0.545		0.565
h		0.50			0.002	
L	1.20		1.80	0.047		0.070
L ⁽¹⁾	0.80		1.10	0.031		0.043
α	0°		8°	0°		8°
α ⁽¹⁾	2°		8°	2°		8°

^{1.} Muar only POA P013P.

3.3 PowerSO-10 packing information

Figure 10. PowerSO-10 suggested PAD layout

Figure 11. PowerSO-10 tube shipment (no suffix)

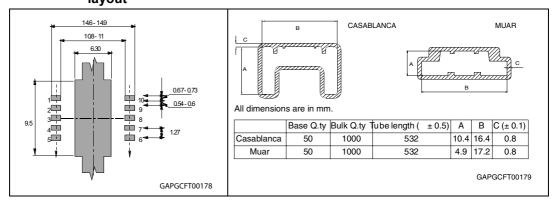
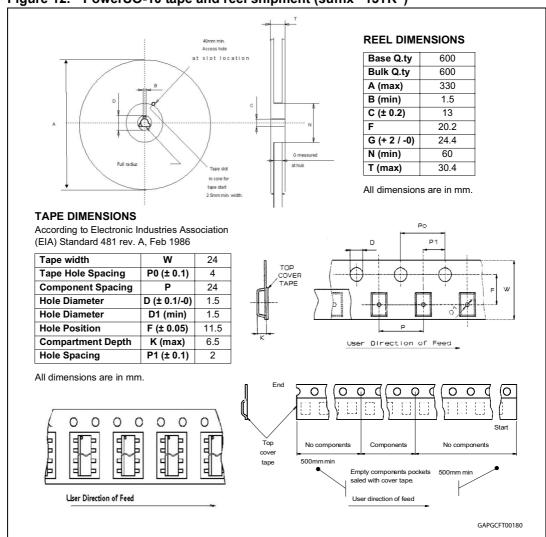



Figure 12. PowerSO-10 tape and reel shipment (suffix "13TR")

VBG15NB22T5SP-E Revision history

4 Revision history

Table 10. Document revision history

Date	Revision	Changes
20-May-2011	1	Initial release.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2011 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

16/16 Doc ID 018832 Rev 1

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics: VBG15NB22T5SP