

DAC8164/65 Evaluation Module

This user's guide describes the characteristics, operation, and the use of the DAC8164/65 evaluation module. It covers all pertinent areas involved to properly use this EVM board along with the devices that it supports. The physical printed-circuit board layout, schematic diagram, and circuit descriptions are included.

Contents

1	EVM Overview	2
1.1	Features.....	2
1.2	Power Requirements	2
1.3	EVM Basic Functions.....	3
2	PCB Design.....	4
2.1	PCB Layout.....	4
2.2	Bill of Materials	8
3	EVM Operation.....	9
3.1	Factory Default Setting.....	9
3.2	Host Processor Interface	10
3.3	EVM Stacking	10
3.4	Output Operational Amplifier.....	11
3.5	Jumper Setting.....	13
3.6	Schematic	15
4	Information	16
4.1	Related Documentation from Texas Instruments	16
4.2	Questions About This or Other Data Converter EVMs?	16

List of Figures

1	DAC8164/65EVM Block Diagram.....	4
2	Top Silkscreen	5
3	Layer 1 (Top Signal Plane)	5
4	Layer 2 (Ground Plane)	6
5	Layer 3 (Power Plane)	6
6	Layer 4 (Bottom Signal Plane)	7
7	Bottom Silkscreen	7
8	Drill Drawing	8
9	DAC8164/65EVM Default Jumper Configuration	10
10	DAC8164/65EVM Output Operational Amplifier Jumper Configuration for Stacking.....	11

List of Tables

1	Parts List	8
2	Factory Default Jumper Setting	9
3	DAC Output Channel Mapping	11
4	Unity Gain Output Jumper Settings.....	12
5	Gain of Two Output Jumper Settings.....	12
6	Bipolar Output Operation Jumper Settings	12

7	Capacitive Load Drive Output Jumper Settings	13
8	Jumper Setting Function	13

1 EVM Overview

This section gives a general overview of the DAC8164/65 evaluation module (EVM) and describes some of the factors that must be considered in using this module.

1.1 Features

This EVM features the DAC8164 or the DAC8165 digital-to-analog converters (DAC). The DAC8164/65EVM is a simple evaluation module designed as a quick and easy way to evaluate the functionality and performance of the 14-bit, high-resolution, quad-channel, and serial input DAC with a built-in 2.5-V internal reference that is enabled by default. This EVM features a serial interface to communicate with any host microprocessor or TI DSP-based system.

Although the DAC was designed for single-supply operation, a bipolar output range is also possible by properly configuring the output operational amplifier, U2, circuit. This is discussed in detail in section 3.2.3. In addition, the external operational amplifier is also installed as an option to provide output signal conditioning or boost capacitive load drive and for other output mode requirement desired. The external output operational amplifier only supports one DAC output at a time.

A +5-V precision voltage reference is provided via U3 as well as a provision to apply user's choice of reference supply via TP2 and TP3 test points. These reference supplies are optional voltage references provided externally in case it is necessary to evaluate the DAC8164/65 with external reference circuits. The external +5-V reference source for V_{REFH} can be selected via JMP8 jumper configuration.

The EVM also has a provision for possibly experimenting with different circuit loads on the reference of the DAC8164/65. These are available through R25 and C14.

1.2 Power Requirements

The following sections describe the power requirements of this EVM.

1.2.1 Supply Voltage

The DC power supply requirement for this DAC8164/65EVM (AVDD and IOVDD) is selectable between +3.3 V and +5 V via jumper headers (JMP7 and JMP17). The AVDD supply of +3.3 VA comes from J3A-8, whereas the +5 VA comes from J3A-3 terminal. The IOVDD supply of +3.3 VD comes from J3A-9, whereas the +5 VD comes from J3A-10 terminal. These power supply voltages are referenced to ground through the J3A-6 and J3A-5 terminals, respectively. The VCC and VSS supplies are only used by the U2 and U4 operational amplifiers as well as the U3 voltage reference, which ranges from +15 V to -15 V maximum and connects through J3A-1 and J3A-2 terminals, respectively. All the analog power supplies are referenced to analog ground through J3A-6 terminal.

The negative rail of the output operational amplifier, U2, can be selected between VSS and AGND via JMP10 jumper. The external operational amplifier is installed as an option to provide output signal conditioning or for other output mode requirement that is desired by the user.

CAUTION

To avoid potential damage to the EVM board, ensure that the correct cables are connected to their respective terminals as labeled on the EVM board.

Stresses greater than the maximum listed voltage ratings may cause permanent damage to the device.

1.2.2 Reference Voltage

The DAC8164/65 is equipped with a +2.5-V internal reference that is enabled by default. The +2.5-V internal reference can be measured from its V_{REFH} pin, which can be used to source other devices that require +2.5-V reference. Because the DAC8164/65's internal reference is enabled by default, care must be taken to ensure that the JMP8 is open and JMP9 is shorted between pins 1 and 2. Otherwise, inaccurate performance or damage to the part can result. Provided that the external voltage that is applied to the V_{REFH} pin does not exceed the applied voltage in the V_{DD} pin, and it does not exceed 100 mA of sourcing current, the DAC8164/65 should not be damaged. It is not recommended to leave the external voltage applied on the V_{REFH} pin if the internal reference is not disabled. The external reference source must be disconnected immediately and the EVM power must be recycled to ensure the correct performance of the device.

The +5-V precision voltage reference is provided as an optional reference source to supply the external voltage reference for the DAC through REF02, U3. This reference voltage is selectable via jumper, JMP8. When shorting pins 1 and 2, the +5-V reference is selected, whereas shorting pins 2 and 3 selects user preferred reference. The jumper, JMP9, must be shorted between pins 1 and 2 in order for the V_{REFL} pin of the DAC to be properly grounded.

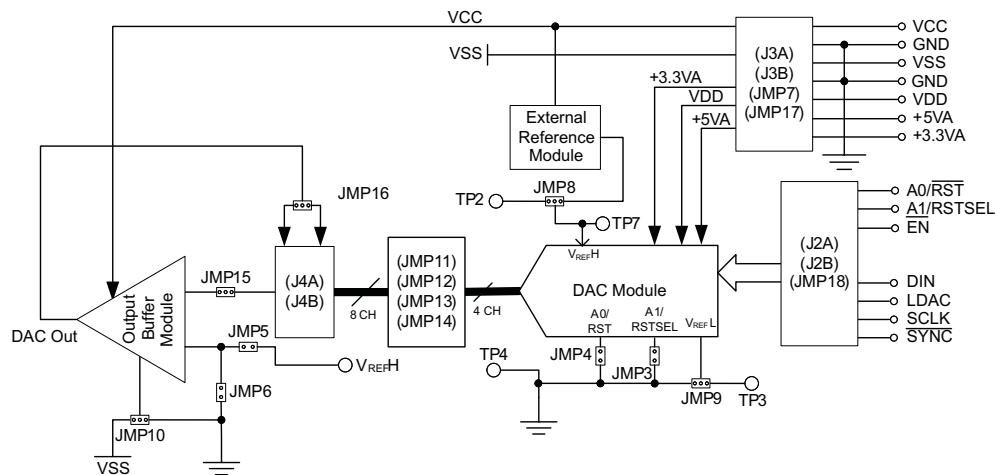
The +5-V reference voltage goes through an adjustable 100-k Ω potentiometer, R15, in series with 20-k Ω R16, to allow the user to adjust the reference voltage to its desired settings. The voltage reference then is buffered through U4A as seen by the device under test. The REF02 precision reference is powered by V_{CC} (+15 V) through J3A-1 terminal.

CAUTION

When applying an external voltage reference through TP2 or J4A-20, ensure that it does not exceed the applied AVDD. Otherwise, this can permanently damage the DAC8164/65, U1, device under test.

1.3 EVM Basic Functions

This EVM is designed primarily as a functional evaluation platform to test certain functional characteristics of the DAC8164/65 digital-to-analog converter. Functional evaluation of the installed DAC device can be accomplished with the use of any microprocessor, TI DSP, or a signal/waveform generator.


The headers J2A (top side) and J2B (bottom side) are pass-through connectors provided to allow the control signals and data required to interface a host processor or waveform generator to the DAC8164/65EVM using a custom-built cable.

An adapter interface board (5-6k adapter interface) is also available to fit and mate with TI's C5000™ and C6000™ DSP Starter Kit (DSK). This makes it unnecessary to build a custom cable. In addition, the Precision Analog Application group of Texas Instruments has other interface boards that are designed to connect to and interface with this EVM as well. For more details or information regarding the 5-6k adapter interface board or the other interface platforms, call Texas Instruments or send an email to dataconvapps@list.ti.com.

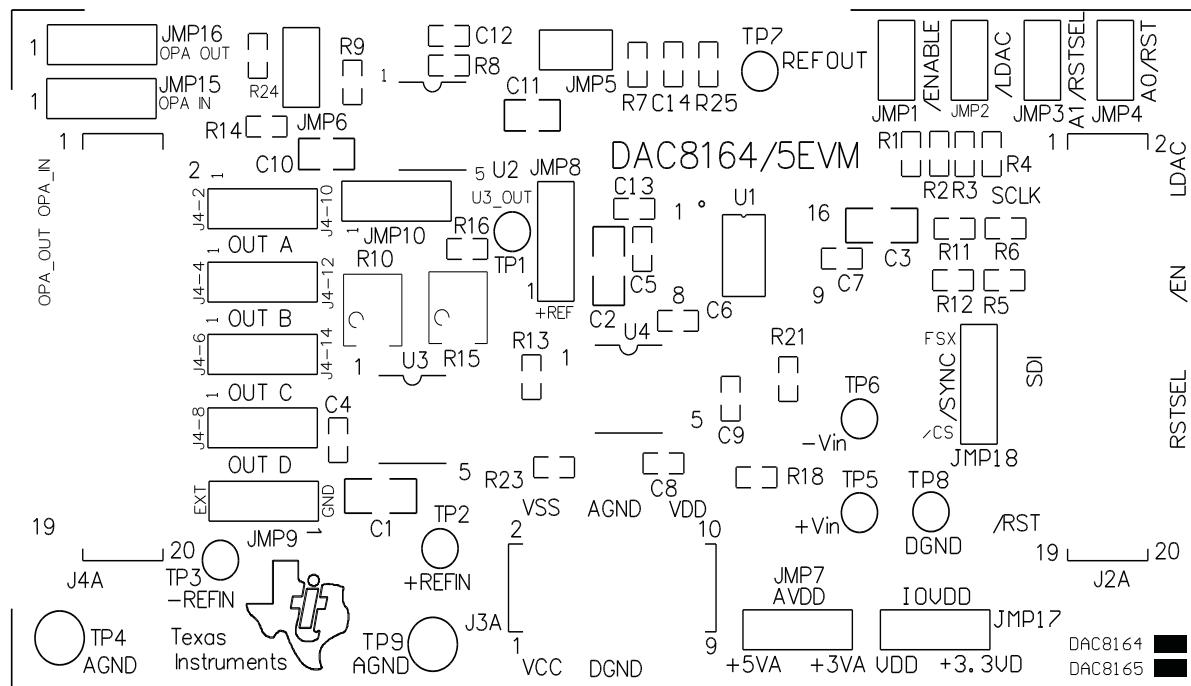
The DAC outputs can be monitored through the selected pins of J4A header connector. The outputs can be switched through each of their respective jumpers, JMP11, JMP12, JMP13, and JMP14 for the stacking purposes. The stacking of multiple EVMs allows a total of eight (DAC8164/65) DAC channels to be used provided that the frame synchronization signal, \overline{SYNC} , is unique for each EVM board stacked. The \overline{SYNC} signal can be selected for each EVM board via jumper JMP18.

In addition, the option of selecting the DAC output to be fed to the noninverting side of the output operational amplifier, U2, is also possible by using a jumper across the selected pins of J4A. The output operational amplifier, U2, must be first configured correctly for the desired waveform characteristic (see section 3 of this user's guide manual).

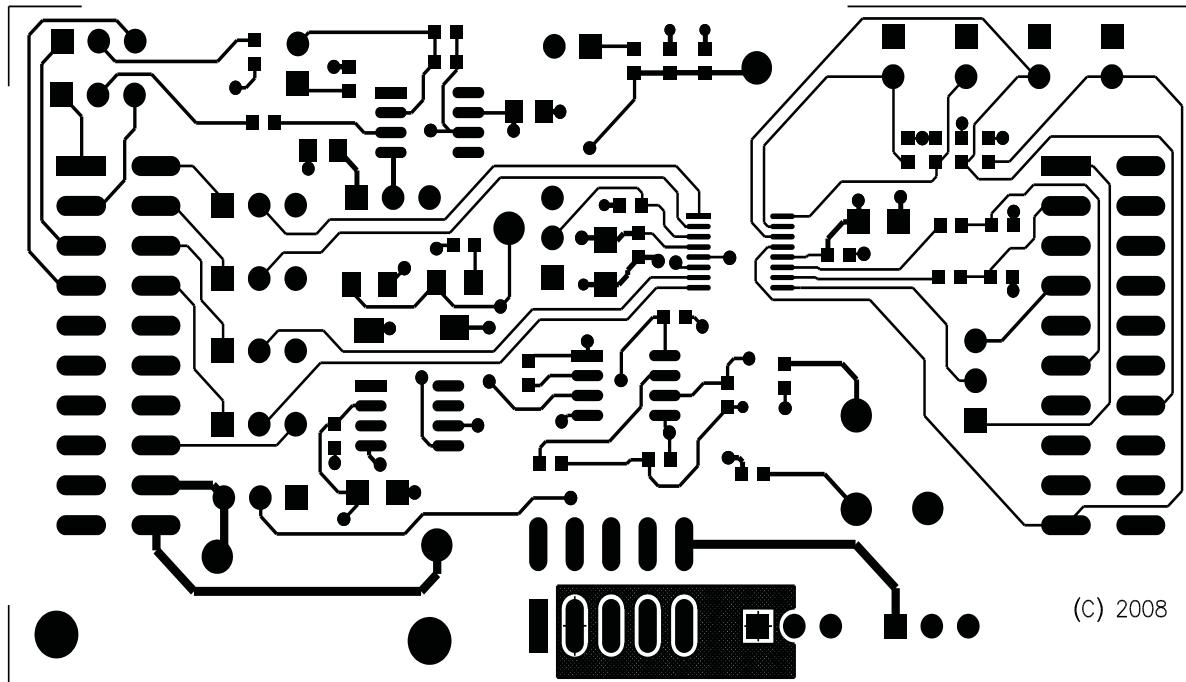
A block diagram of the EVM is shown in [Figure 1](#).

Figure 1. DAC8164/65EVM Block Diagram

2 PCB Design


This section describes the layout design of the PCB, the physical and mechanical characteristics of the EVM. The list of components used on this evaluation module is also included in this section.

2.1 PCB Layout


The DAC8164/65EVM is designed to preserve the performance quality of the DAC, device under test, as specified in the data sheet. Carefully analyzing the EVM's physical restrictions and the given or known elements that contribute to the EVM's performance degradation is the key to a successful design implementation. These obvious attributes that diminish the performance of the EVM can be easily addressed during the schematic design phase, by properly selecting the right components and building the circuit correctly. The circuit must include adequate bypassing, identifying and managing the analog and digital signals, and understanding the components mechanical attributes.

The obscure part of the design is the layout process in which limited knowledge and inexperience can easily present a problem. The main concern is primarily with component placement and the proper routing of signals. The bypass capacitors must be placed as close as possible to the pins, and the analog and digital signals must be properly separated from each other. The power and ground plane is important and must be carefully considered in the layout process. A solid plane is ideally preferred but sometimes impractical. Therefore, when solid planes are not possible, a split plane does the job as well. When considering a split plane design, analyze the component placement and carefully split the board into its analog and digital sections starting from the device under test. The ground plane plays an important role in controlling the noise and other effects that otherwise contribute to the error of the DAC output. To ensure that the return currents are handled properly, route the appropriate signals only in their respective sections, meaning that the analog traces must only lay directly above or below the analog section and the digital traces in the digital section. Minimize the length of the traces but use the biggest possible trace width allowable in the design. These design practices can be seen in the following illustrations.

The DAC8164/65EVM board is constructed on a four-layer, printed-circuit board using a copper-clad FR-4 laminate material. The printed-circuit board has a dimension of 43,1800 mm (1.7000 inch) \times 82,5500 mm (3.2500 inch), and the board thickness is 1,5748 mm (0.062 inch). [Figure 2](#) through [Figure 8](#) show the individual artwork layers.

Figure 2. Top Silkscreen

Figure 3. Layer 1 (Top Signal Plane)

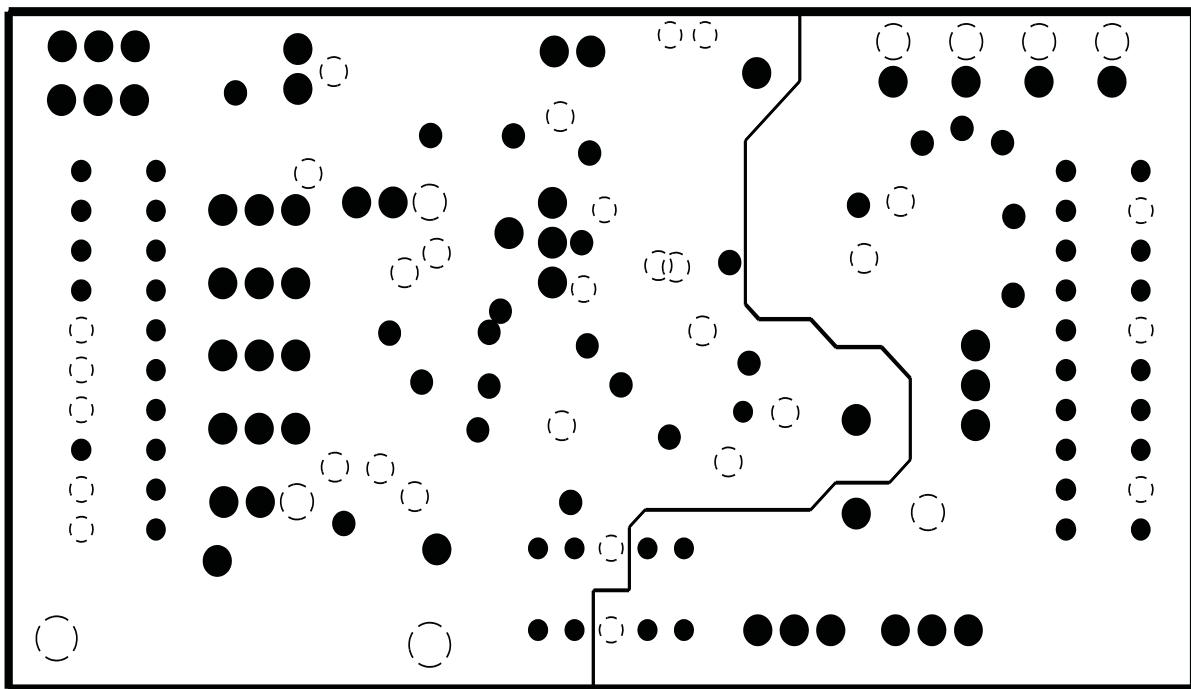


Figure 4. Layer 2 (Ground Plane)

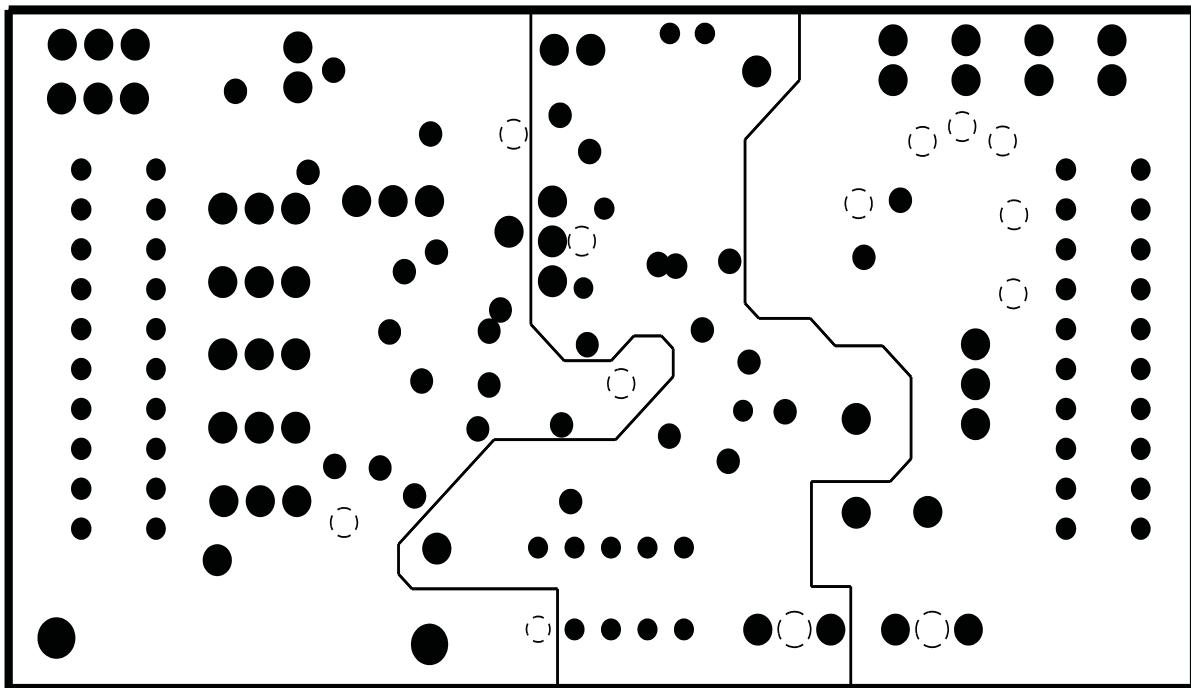


Figure 5. Layer 3 (Power Plane)

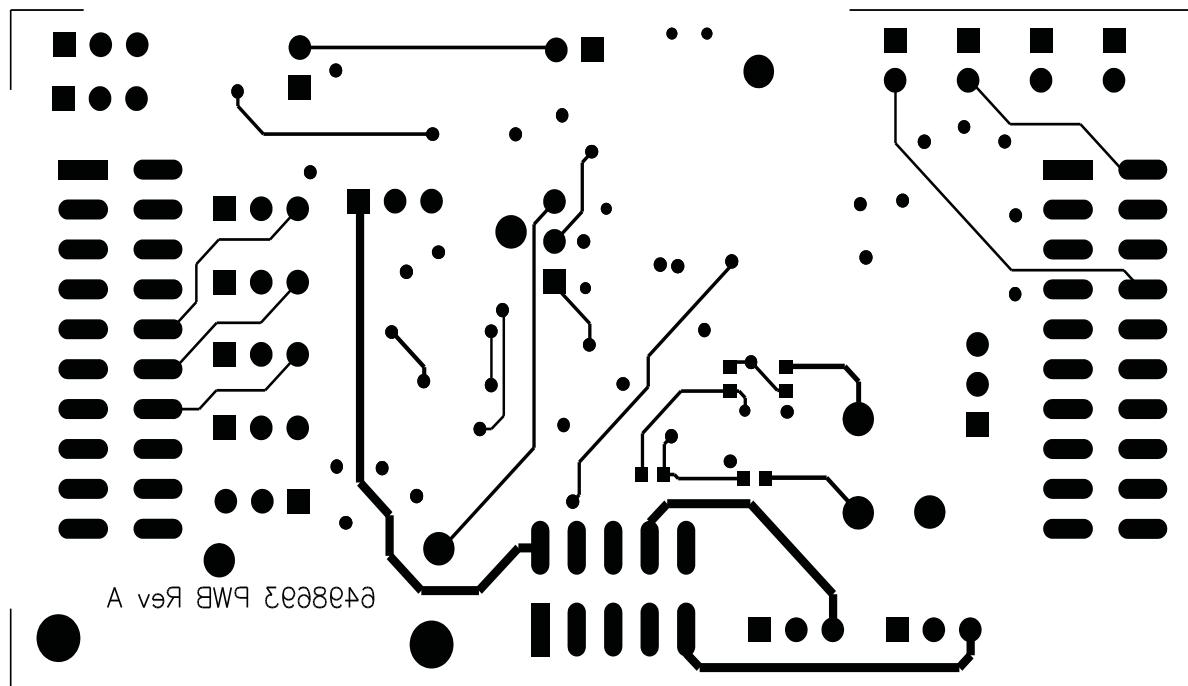


Figure 6. Layer 4 (Bottom Signal Plane)

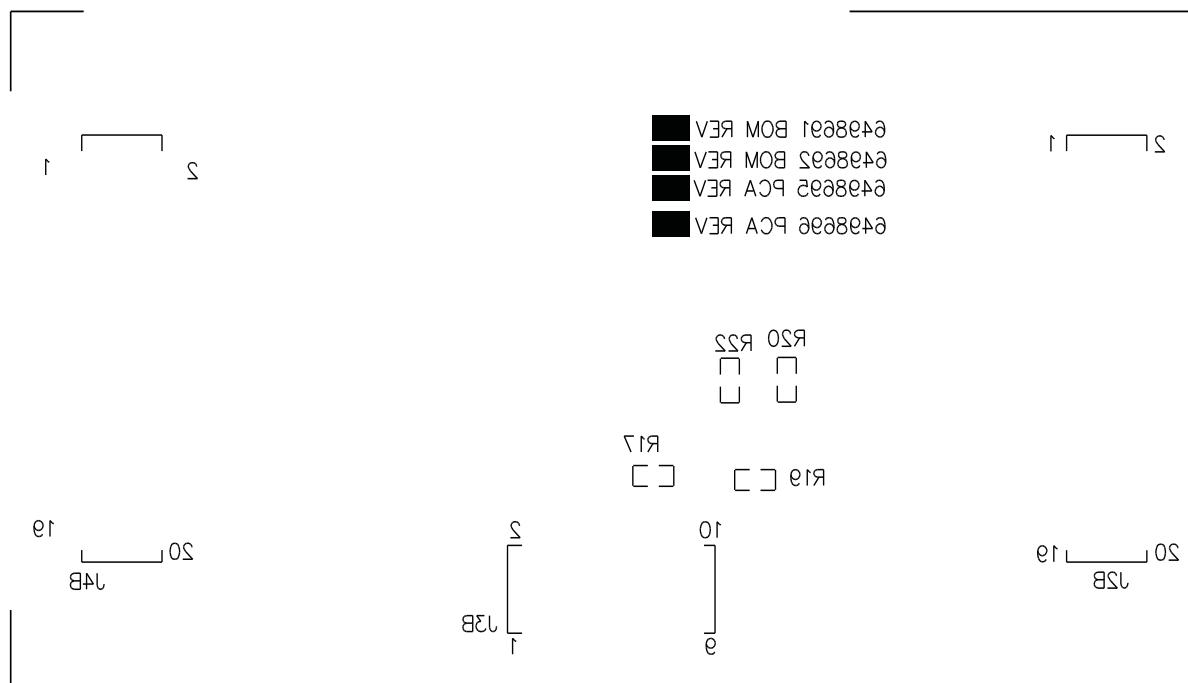


Figure 7. Bottom Silkscreen

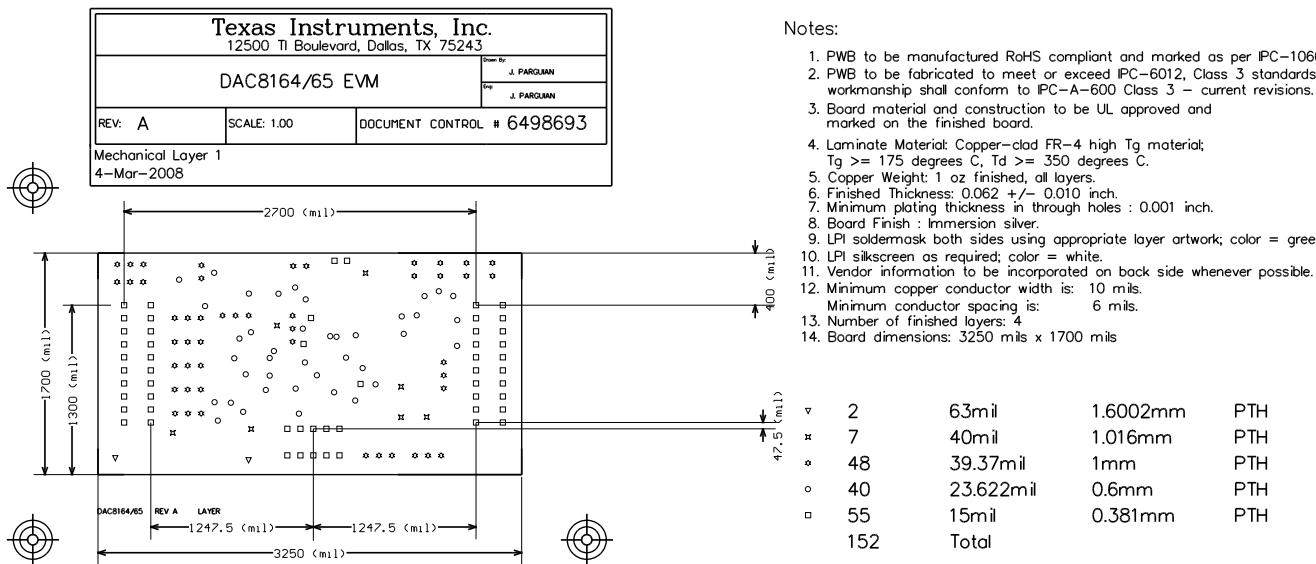


Figure 8. Drill Drawing

2.2 Bill of Materials

Table 1. Parts List

Item	Qty.	Value	Designators	Description	Vendor	Vendor Part No.
1	7	10k Ω	R1-R4, R-R9	1/10W 0603 Thick Film Chip Resistor, $\pm 1\%$ Tol	Panasonic	ERJ-3EKF1002V
2	1	20k Ω Trim Pot	R10	5T Potentiometer, 4mm SMD, Cermet	Bourns	3214W-1-203E
3	4	0 Ω	R11-R14	1/16W 0603 Thick Film Chip Resistor, $\pm 1\%$ Tol	Panasonic	ERJ-3EKF0R00V
4	1	100k Ω Trim Pot	R15	Potentiometer, 4mm SMD, Cermet	Bourns	3214W-1-104E
5	1	20k Ω	R16	1/10W 0603 Thick Film Chip Resistor, $\pm 1\%$ Tol	Panasonic	ERJ-3EKF2002V
6	1	100 Ω	R24	W 1206 Thick Film Chip Resistor, $\pm 5\%$ Tol	Panasonic	ERJ-8GEYJ101V
7	3	10F	C1-C3	Multilayer Ceramic Chip Capacitor, 1206 SMD, 16V, $\pm 15\%$ TC, $\pm 20\%$ Tol	TDK	C3216X7R1C106M
8	4	0.1 μ F	C4-C7	Multilayer Ceramic Chip Capacitor, 0603 SMD, 25V, $\pm 15\%$ TC, $\pm 10\%$ Tol	TDK	C1608X7R1E104K
9	2	1 μ F	C10, C11	Multilayer Ceramic Chip Capacitor, 0805 SMD, 25V, $\pm 15\%$ TC, $\pm 10\%$ Tol	TDK	C2012X7R1E105K
10	1	1nF	C12	Multilayer Ceramic Chip Capacitor, 0603 SMD, 50V, $\pm 15\%$ TC, $\pm 5\%$ Tol	TDK	C1608COG1H102J
11	1	100pF	C13	Multilayer Ceramic Chip Capacitor, 0603 SMD, 50V, 30ppm/ $^{\circ}$ C, $\pm 5\%$ Tol	TDK	C1608COG1H101J
12	11	14-Bit String DAC	U1	TSSOP-16(PW), 4-CH, SPI, Low Glitch, Voltage Output DAC with Internal reference	Texas Instruments	DAC8164IDPW DAC8165IDPW
13	1	Difet Operational Amplifier	U2	8-SOP(D) Precision High-Speed, Difet Operational Amplifier	Texas Instruments	OPA627AU
14	1	5V Reference	U3	15ppm/ $^{\circ}$ C, $\pm 0.2\%$ Tol Output, SOIC-8, Voltage Reference	Texas Instruments	REF02AU
15	1	FET Input Operational Amplifier	U4	8-SOIC(D) High Speed Low Noise Operational Amplifier	Texas Instruments	OPA2132UA
16	2	$10 \times 2 \times 0.1$ SMT	J2A J4A	20-Pin Terminal Strip	Samtec	TSM-110-01-S-DV-M
17	1	$5 \times 2 \times 0.1$ SMT	J3A	10-Pin Terminal Strip	Samtec	TSM-105-01-T-DV
18	2	$10 \times 2 \times 0.1$ SMT	J2B, J4B	20-Pin Socket Strip ⁽¹⁾	Samtec	SSW-110-22-S-D-VS-P
19	1	$5 \times 2 \times 0.1$ SMT	J3B	10-Pin Socket Strip ⁽¹⁾	Samtec	SSW-105-22-F-D-VS-K

⁽¹⁾ J2B, J3B and J4B parts are not shown in the schematic diagram. All the JxB designated parts are installed in the bottom side of the PCB opposite the JxA designated counterpart. Example, J2A is installed on the topside while J2B is installed in the bottom side opposite of J2A. **Do NOT install the following: C8 C9 C14 R5 R6 R17 R18 R19 R20 R21 R22 R23 R25.**

Table 1. Parts List (continued)

Item	Qty.	Value	Designators	Description	Vendor	Vendor Part No.
20	6	2 x 1 x 0.7874 TH	JMP1–JMP6	2-Pin Terminal Strip	Samtec	TSW-102-07-G-S
21	10	3 x 1 x 0.7874 TH	JMP7–JMP16	3-Pin Terminal Strip	Samtec	TSW-103-07-G-S
22	7	1 x 1 x 0.040D TH	TP1–TP3, TP5 , TP6 , TP7,TP8	Testpoint Mini-Loop ⁽¹⁾	Keystone Electronics	5000
23	2	1 x 1 x 0.061D TH	TP4, TP9	Turret Terminal Pin	Mill-Max	2348-2-00-01-00-00-07-0
24	1	N/A	N/A	Printed Wiring Board	Texas Instruments	6498693
25	13	Do Not Populate	C8 , C9 , C14 , R5 , R6 , R17–R23 , R25	Do not install these components ⁽¹⁾	TBD	TBD
26	10	0.100 Shorting Blocks	N/A	Shorting Blocks	Samtec	SNT-100-BK-G-H
27	0	N/A	N/A	Schematic Diagram	Texas Instruments	6498694
28	0	N/A	N/A	Printed-Circuit Assembly	Texas Instruments	6498695
29	0	N/A	N/A	Kit Assembly	Texas Instruments	6498697
30	0	N/A	N/A	DAC8165 PCA	Texas Instruments	6498696
31	0	N/A	N/A	DAC8165 Kit	Texas Instruments	6498698

3 EVM Operation

This section covers in detail the operation of the EVM to provide guidance to the user in evaluating the onboard DAC and how to interface the EVM to a specific host processor.

See the DAC8164 or the DAC8165 data sheet, ([SBAS410](#) or [SBAS409](#)), respectively, for information about its serial interface and other related topics.

The EVM board is factory tested and configured to operate in the unipolar output mode.

3.1 Factory Default Setting

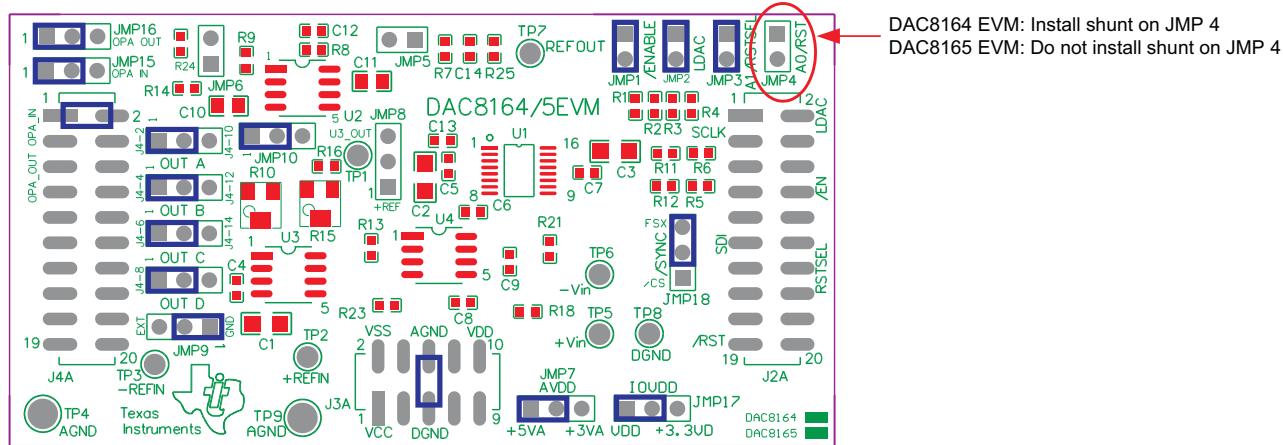

The EVM board is set to its default configuration from the factory as described on the [Table 2](#) to operate in unipolar +2.5-V mode of operation. [Figure 9](#) shows the default jumper configuration for the DAC8164/65EVM.

Table 2. Factory Default Jumper Setting

Reference	Jumper	Function
JMP1	CLOSE	ENABLE pin of the DAC8164/65 is tied to ground. DAC is permanently enabled.
JMP2	CLOSE	LDAC pin of the DAC8164/65 is tied to ground. DAC update is controlled by software.
JMP3	CLOSE	Address, A1, of DAC8164 is grounded (i.e., A1 = 0).
	CLOSE	RSTSEL pin of DAC8165 is grounded. DAC outputs reset to minimum scale.
JMP4	CLOSE	Address A0 of DAC8164 is grounded (i.e., A0 = 0).
	OPEN	RST pin of DAC8165 is pulled up to IOV _{DD} .
JMP5	OPEN	V _{REFH} is not routed to the inverting input of the operational amplifier for voltage offset (or for bipolar mode of operation).
JMP6	OPEN	Output operational amplifier, U2, is configured as voltage follower.
JMP7	1-2	Analog supply AV _{DD} for the DAC8164/65 is +5 VA.
JMP8	OPEN	Onboard external buffered reference U3 is not selected. Default is the +2.5-V internal reference of the DAC8164/65.
JMP9	1-2	V _{REFL} is connected to analog ground.
JMP10	1-2	Negative supply rail of U2 operational amplifier is supplied with V _{SS} .
JMP11	1-2	DAC output (V _{OUTA}) is routed to J4A-2.
JMP12	1-2	DAC output (V _{OUTB}) is routed to J4A-4.
JMP13	1-2	DAC output (V _{OUTC}) is routed to J4A-6.
JMP14	1-2	DAC output (V _{OUTD}) is routed to J4A-8.

Table 2. Factory Default Jumper Setting (continued)

Reference	Jumper	Function
JMP15	1-2	DAC output (V_{OUTA}) is routed to the noninverting input of U2 operational amplifier.
JMP16	1-2	U2 output is monitored from J4A-5.
JMP17	1-2	Digital supply IOV_{DD} for the DAC8164/65 is +5 VD.
JMP18	2-3	\overline{FSX} signal from J2A-7 is used for frame synchronization, \overline{SYNC} , signal.
J4A	1-2	DAC output (V_{OUTA}) is connected to the noninverting input of the output operational amplifier, U2.

Figure 9. DAC8164/65EVM Default Jumper Configuration

3.2 Host Processor Interface

The host processor basically drives the DAC; so, the DACs proper operation depends on the successful configuration between the host processor and the EVM board. In addition, a properly written code is also required to operate the DAC.

A custom cable can be made specific to the host interface platform. The EVM allows interface to the host processor through J2A header connector for the serial control signals and the serial data input. The output can be monitored through the J4A header connector.

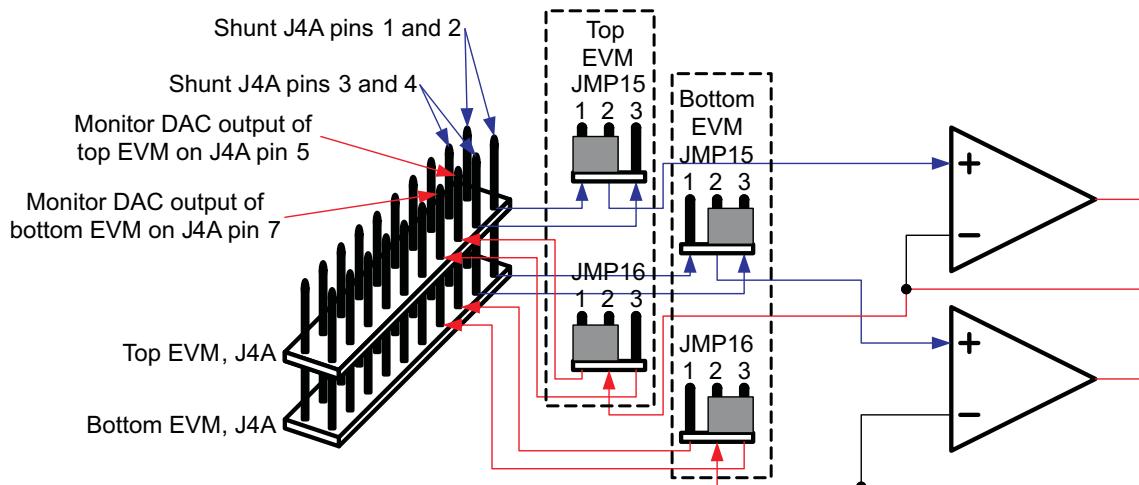
An interface adapter board is also available for a specific TI DSP starter kit as well as an MSP430-based microprocessor as mentioned in section 1 of this manual. Using the interface board alleviates the tedious task of building customized cables and allows easy configuration of a simple evaluation system.

The DAC8164/65 interfaces with any host processor capable of handling SPI protocols or the TI DSP. For more information regarding the DAC8164 or the DAC8165 data interface, see the data sheet, ([SBAS410](#) or [SBAS409](#)), respectively.

3.3 EVM Stacking

The stacking of EVMs is possible if a user needs to evaluate two DAC8164/65 devices to yield a total of up to eight- (DAC8164/65) channel outputs. A maximum of two EVMs are allowed because the output terminal, J4, dictates the number of DAC channels that can be connected without output bus contention.

Table 3 shows how the DAC output channels are mapped into the output terminal, J4, with respect to the jumper position of JMP11, JMP12, JMP13, and JMP14.


Table 3. DAC Output Channel Mapping

Reference	Jumper Position	Function
JMP11	1-2	DAC output (V_{OUTA}) is routed to J4-2.
	2-3	DAC output (V_{OUTA}) is routed to J4-10.
JMP12	1-2	DAC output (V_{OUTB}) is routed to J4-4.
	2-3	DAC output (V_{OUTB}) is routed to J4-12.
JMP13	1-2	DAC output (V_{OUTC}) is routed to J4-6.
	2-3	DAC output (V_{OUTC}) is routed to J4-14.
JMP14	1-2	DAC output (V_{OUTD}) is routed to J4-8.
	2-3	DAC output (V_{OUTD}) is routed to J4-16.

In order to allow exclusive control of each EVM that is stacked together, the DAC8164/65 must have separate SYNC signal. This is accomplished in hardware by routing the SYNC signal of the first EVM through CS (J2A/J2B pin 1) by shorting pins 1-2 of jumper JMP18. The second EVM must use the FSX signal (J2A/J2B pin 7) to drive the SYNC signal by shorting pins 2-3 of the jumper JMP18. The outputs can be mapped as described in [Table 3](#) for each of the EVMs stacked.

3.4 Output Operational Amplifier

The EVM includes an optional signal-conditioning circuit for the DAC output through an external operational amplifier, U2. During stacking of the EVMs, only two DAC output channels can be monitored at any given time for evaluation because of the way the odd-numbered pins of J4 header (J4A-1 to J4A-7) are configured. See the schematic included in this manual and [Section 3.3](#).

Figure 10. DAC8164/65EVM Output Operational Amplifier Jumper Configuration for Stacking

The output operational amplifier is set to unity gain configuration by default but can be modified by simple jumper settings. Nevertheless, the raw output of the DAC can be probed through the specified pins of J4 output terminal, which also provides mechanical stability when stacking or plugging into any interface board. In addition, it provides easy access for monitoring up to two (DAC8164/65) DAC channels when stacking two EVMs together (see [Section 3.3](#)).

The following sections describe the different configurations of the output amplifier, U2.

3.4.1 Unity Gain Output

The buffered output configuration can be used to prevent loading the DAC8164/65 though it may present some slight distortion because of the feedback resistor and capacitor. Users can tailor the feedback circuit to closely match their desired wave shape by simply desoldering R8 and C12 and replacing them with the desired values. Another option is to simply eliminate R8 and C12 altogether and just solder a 0- Ω resistor in replacement of R8 and leave C12 unpopulated.

[Table 4](#) shows the jumper setting for the unity gain configuration of the DAC external output buffer in unipolar mode.

Table 4. Unity Gain Output Jumper Settings

Reference	Jumper Setting	Function
JMP15	1-2	Connects DAC output (V_{OUTA}) to the noninverting input of the output operational amplifier, U2.
	2-3	Connects DAC output (V_{OUTB}) to the noninverting input of the output operational amplifier, U2.
JMP5	OPEN	Disconnect V_{REFH} from the inverting input of the operational amplifier, U2
JMP10	1-2	Connects the negative rail of the operational amplifier, U2, to AGND.
JMP6	OPEN	Disconnect negative input of the operational amplifier from the gain resistor, R9.
JMP16	1-2	Connects the output terminal of the operational amplifier, U2, to J4A-5 for monitoring the voltage output.

3.4.2 Output Gain of Two Operation

The configuration as described on [Table 5](#) yields a gain of two output for a wider mode of voltage output operation.

Table 5. Gain of Two Output Jumper Settings

Reference	Jumper Setting	Function
JMP15	1-2	Connects DAC output (V_{OUTA}) to the noninverting input of the output operational amplifier, U2.
	2-3	Connects DAC output (V_{OUTB}) to the noninverting input of the output operational amplifier, U2.
JMP5	OPEN	Disconnect V_{REFH} from the inverting input of the operational amplifier, U2.
JMP10	1-2	Supplies power, V_{SS} , to the negative rail of operational amplifier, U2, for wider range of operation.
JMP6	CLOSE	Connect the negative input of the operational amplifier, U2, to the gain resistor, R9.
JMP16	1-2	Connects the output terminal of the operational amplifier, U2, to J4A-5 for monitoring the voltage output.

3.4.3 Bipolar Output Operation

Using the external V_{REFH} to offset the DAC output and extend the range of operation to achieve a bipolar mode of operation is possible by properly configuring the output operational amplifier, U2. This configuration is described in [Table 6](#).

Table 6. Bipolar Output Operation Jumper Settings

Reference	Jumper Setting	Function
JMP15	1-2	Connects DAC output (V_{OUTA}) to the noninverting input of the output operational amplifier, U2.
	2-3	Connects DAC output (V_{OUTB}) to the noninverting input of the output operational amplifier, U2.
JMP5	CLOSE	Connects V_{REFH} to the inverting input of the operational amplifier, U2.
JMP10	1-2	Supplies power, V_{SS} , to the negative rail of operational amplifier, U2, for wider range of operation.
JMP6	OPEN	Disconnect negative input of the operational amplifier from the gain resistor, R9.

Table 6. Bipolar Output Operation Jumper Settings (continued)

Reference	Jumper Setting	Function
JMP16	1-2	Connects the output terminal of the operational amplifier, U2, to J4A-5 for monitoring the voltage output.

3.4.4 Capacitive Load Drive

Another output configuration option is to drive a wide range of capacitive load requirement. However, all operational amplifiers under certain conditions may become unstable depending on the operational amplifier configuration, gain, and load value. These are just a few factors that can affect operational amplifiers stability performance and must be considered when implementing.

In unity gain, the OPA627 operational amplifier, U2, performs well with large capacitive loads. Increasing the gain enhances the amplifier's ability to drive even more capacitance, and by adding a load resistor, even improves the capacitive load drive capability.

Table 7 shows the jumper setting configuration for a capacitive load drive.

Table 7. Capacitive Load Drive Output Jumper Settings

Reference	Jumper Setting	Function
JMP15	1-2	Connects DAC output (V_{OUTA}) to the noninverting input of the output operational amplifier, U2.
	2-3	Connects DAC output (V_{OUTB}) to the noninverting input of the output operational amplifier, U2.
JMP5	OPEN	Connects V_{REFH} to the inverting input of the operational amplifier, U2.
JMP10	1-2	Supplies power, V_{SS} , to the negative rail of operational amplifier, U2, for wider range of operation.
JMP6	CLOSE	Connects the negative input of the operational amplifier, U2, to the gain resistor, R9.
JMP16	1-2	Connects the output terminal of the operational amplifier, U2, to J4A-5 for monitoring the voltage output.

3.5 Jumper Setting

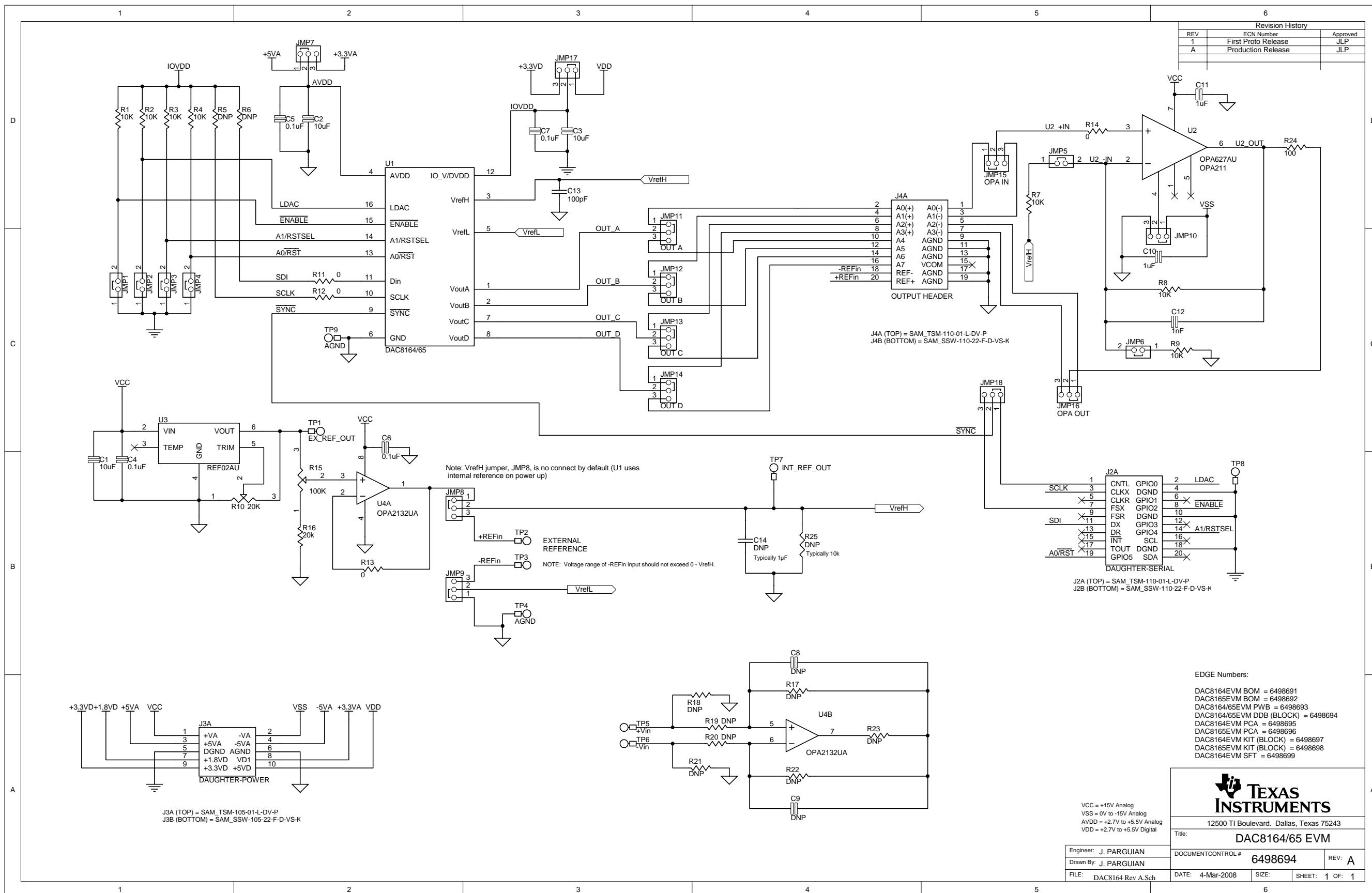
Table 8 shows the function of each specific jumper setting of the EVM.

Table 8. Jumper Setting Function

Reference	Jumper Setting	Function
JMP1		Connects \overline{ENABLE} to $IOVDD$ and allows the host controller to enable the DUT via J2A-8
		Connects \overline{ENABLE} to $DGND$ and enables the DUT permanently.
JMP2		Connects LDAC to IOV_{DD} and allows the host controller to update the DAC output using hardware LDAC pin via J2A-2.
		Connects LDAC to $DGND$ and allows the DAC output to be updated by software LDAC.
JMP3		Connects A1 (for DAC8164EVM) to IOV_{DD} and sets the address pin, A1 of the DAC8164EVM to high (A1 = 1). Also allows the host controller to control A1 pin via J2A-14.
		Connects RSTSEL (for DAC8165EVM) to IOV_{DD} and sets the DAC8165 to reset to mid-scale. Also allows the host controller to control the RSTSEL pin of the DUT via J2A-14.
		Connects A1 (for DAC8164EVM) to $DGND$ and sets the address pin, A1 of the DAC8164EVM to low (A1 = 0).
		Connects RSTSEL (for DAC8165EVM) to $DGND$ and sets the DAC8165 to reset to minimum scale.

Table 8. Jumper Setting Function (continued)

Reference	Jumper Setting	Function
JMP4		Connects A0 (for DAC8164EVM) to IOV _{DD} and sets the address pin, A0 of the DAC8164EVM to high (A0 = 1). Also allows the host controller to control A0 pin via J2A-19.
		Connects RST (for DAC8165EVM) to IOV _{DD} and puts the DAC8165 to reset mode. Also allows the host controller to control the RST pin of the DUT via J2A-19.
		Connects A0 (for DAC8164EVM) to DGND and sets the address pin, A0 of the DAC8164EVM to low (A0 = 0).
		Connects RST (for DAC8165EVM) to DGND and puts the DAC8165 to reset mode.
JMP5		Disconnects the inverting input of the output operational amplifier, U2, from the gain resistor, R7 and sets the output of the DAC for unipolar mode of operation.
		Connects the inverting input of the output operational amplifier, U2, to the gain resistor, R7, for bipolar mode of operation.
JMP6		Disconnects the inverting input of the output operational amplifier, U2, from the gain resistor, R9 and configures the operational amplifier for unity gain.
		Connects the inverting input of the output operational amplifier, U2, to the gain resistor, R9, and configures the operational amplifier for 2x gain output.
JMP7		+5-V analog supply is selected for AV _{DD} .
		+3.3-V analog supply is selected for AV _{DD} .
JMP8		This jumper position selects the adjustable +5V reference to route to the V _{REFH} input of the DAC8164/65.
		This is the default jumper position for DAC8164/65EVM because the +2.5V internal reference is enabled by default.
		This jumper position selects the TP2 input terminal for reference to route to the V _{REFH} input of the DAC8164/65.
JMP9		This jumper position selects the AGND to route to the V _{REFL} input of the DAC8164/65.
		This jumper position selects the TP3 input terminal for reference to route to the V _{REFL} input of the DAC8164/65.
JMP10		Negative supply rail of the output operational amplifier, U2, is powered by V _{SS} for bipolar operation.
		Negative supply rail of the output operational amplifier, U2, is tied to AGND for unipolar operation.
JMP11		Routes V _{OUT} to J4A-2.
		Routes V _{OUT} to J4A-10.
JMP12		Routes V _{OUT} to J4-4.
		Routes V _{OUT} to J4-12.


Table 8. Jumper Setting Function (continued)

Reference	Jumper Setting	Function
JMP13		Routes V_{OUT} to J4-6.
		Routes V_{OUT} to J4-14.
JMP14		Routes V_{OUT} to J4-8.
		Routes V_{OUT} to J4-16.
JMP15		This jumper position selects the J4A-1 pin of the output terminal, J4A, to route to the noninverting input of the operational amplifier, U2.
		Disconnects the noninverting input of the operational amplifier, U2, from the output terminal, J4A.
		This jumper position selects the J4A-3 pin of the output terminal, J4A, to route to the noninverting input of the operational amplifier, U2.
JMP16		This jumper position selects the operational amplifier, U2, output pin to route to the J4A-5 output terminal.
		Disconnects the operational amplifier's, U2, output pin from the output terminal of J4A.
		This jumper position selects the operational amplifier, U2, output pin to route to the J4A-7 output terminal.
JMP17		+5-VD (VDD) digital supply is selected for IOVDD.
		+3.3-VD digital supply is selected for IOVDD.
JMP18		\overline{CS} signal from J2A-1 is routed to drive the \overline{SYNC} signal of the DAC8164/65.
		FSX signal from J2A-7 is routed to drive the SYNC signal of the DAC8164/65.

Legend: indicates the corresponding pins that are shorted or closed

3.6 Schematic

The DAC8164/65 evaluation module schematic appears on the following page.

4 Information

4.1 Related Documentation from Texas Instruments

To obtain a copy of any of the following TI documents, call the Texas Instruments Literature Response Center at (800) 477-8924 or the Product Information Center (PIC) at (972) 644-5580. When ordering, identify this manual by its title and literature number. Updated documents also can be obtained through the TI Web site at www.ti.com.

Data Sheets	Literature Number:
DAC8164	SBAS410
DAC8165	SBAS409
REF02	SBVS003
OPA211	SB0S377
OPA627	SBOS165
OPA2132	SBOS054

4.2 Questions About This or Other Data Converter EVMs?

If you have questions about this or other Texas Instruments data converter evaluation modules, send an e-mail to the Data Converter Application Team at dataconvapps@list.ti.com. Include in the subject heading the product with which you have questions or concerns.

EVALUATION BOARD/KIT IMPORTANT NOTICE

Texas Instruments (TI) provides the enclosed product(s) under the following conditions:

This evaluation board/kit is intended for use for **ENGINEERING DEVELOPMENT, DEMONSTRATION, OR EVALUATION PURPOSES ONLY** and is not considered by TI to be a finished end-product fit for general consumer use. Persons handling the product(s) must have electronics training and observe good engineering practice standards. As such, the goods being provided are not intended to be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including product safety and environmental measures typically found in end products that incorporate such semiconductor components or circuit boards. This evaluation board/kit does not fall within the scope of the European Union directives regarding electromagnetic compatibility, restricted substances (RoHS), recycling (WEEE), FCC, CE or UL, and therefore may not meet the technical requirements of these directives or other related directives.

Should this evaluation board/kit not meet the specifications indicated in the User's Guide, the board/kit may be returned within 30 days from the date of delivery for a full refund. **THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.**

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge.

EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

TI currently deals with a variety of customers for products, and therefore our arrangement with the user is **not exclusive**.

TI assumes **no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein**.

Please read the User's Guide and, specifically, the Warnings and Restrictions notice in the User's Guide prior to handling the product. This notice contains important safety information about temperatures and voltages. For additional information on TI's environmental and/or safety programs, please contact the TI application engineer or visit www.ti.com/esh.

No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or combination in which such TI products or services might be or are used.

FCC Warning

This evaluation board/kit is intended for use for **ENGINEERING DEVELOPMENT, DEMONSTRATION, OR EVALUATION PURPOSES ONLY** and is not considered by TI to be a finished end-product fit for general consumer use. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC rules, which are designed to provide reasonable protection against radio frequency interference. Operation of this equipment in other environments may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference.

EVM WARNINGS AND RESTRICTIONS

It is important to operate this EVM within the input voltage range of 2.7 V to 5 V and the output voltage range of -5 V to +5 V.

Exceeding the specified input range may cause unexpected operation and/or irreversible damage to the EVM. If there are questions concerning the input range, please contact a TI field representative prior to connecting the input power.

Applying loads outside of the specified output range may result in unintended operation and/or possible permanent damage to the EVM. Please consult the EVM User's Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative.

During normal operation, some circuit components may have case temperatures greater than 30°C. The EVM is designed to operate properly with certain components above 85°C as long as the input and output ranges are maintained. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors. These types of devices can be identified using the EVM schematic located in the EVM User's Guide. When placing measurement probes near these devices during operation, please be aware that these devices may be very warm to the touch.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2008, Texas Instruments Incorporated

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Amplifiers	amplifier.ti.com
Data Converters	dataconverter.ti.com
DSP	dsp.ti.com
Clocks and Timers	www.ti.com/clocks
Interface	interface.ti.com
Logic	logic.ti.com
Power Mgmt	power.ti.com
Microcontrollers	microcontroller.ti.com
RFID	www.ti-rfid.com
RF/IF and ZigBee® Solutions	www.ti.com/lprf

Applications

Audio	www.ti.com/audio
Automotive	www.ti.com/automotive
Broadband	www.ti.com/broadband
Digital Control	www.ti.com/digitalcontrol
Medical	www.ti.com/medical
Military	www.ti.com/military
Optical Networking	www.ti.com/opticalnetwork
Security	www.ti.com/security
Telephony	www.ti.com/telephony
Video & Imaging	www.ti.com/video
Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265

Copyright © 2008, Texas Instruments Incorporated