Murata
Manufacturing Co., Ltd.

Part Numbering

Chip Monolithic Ceramic Capacitors

GR M 18 8 B1 1H 102 K A01 D (Part Number)

Product ID

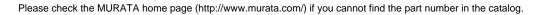
2Series

Product ID	Code	Series
	J	Soft Termination Type
CD.	М	Tin Plated Layer
GR	4	Only for Information Devices / Tip & Ring
	7	Only for Camera Flash Circuit
GQ	М	High Frequency for Flow/Reflow Soldering
GM	Α	Monolithic Microchip
GIVI	D	For Bonding
GN	M Capacitor Array	
	L	Low ESL Type
LL	R	Controlled ESR Low ESL Type
LL	Α	8-termination Low ESL Type
	М	10-termination Low ESL Type
GJ	М	High Frequency Low Loss Type
GA	2	For AC250V (r.m.s.)
GA	3	Safety Standard Certified Type

3Dimensions (LXW)

Code	Dimensions (LXW)	EIA
02	0.4×0.2mm	01005
03	0.6×0.3mm	0201
05	0.5×0.5mm	0202
08	0.8×0.8mm	0303
0D	0.38×0.38mm	015015
ОМ	0.9×0.6mm	0302
15	1.0×0.5mm	0402
18	1.6×0.8mm	0603
1M	1.37×1.0mm	0504
21	2.0×1.25mm	0805
22	2.8×2.8mm	1111
31	3.2×1.6mm	1206
32	3.2×2.5mm	1210
42	4.5×2.0mm	1808
43	4.5×3.2mm	1812
52	5.7×2.8mm	2211
55	5.7×5.0mm	2220

Dimension (T) (Except GNM)


- ,,,	• •
Code	Dimension (T)
2	0.2mm
3	0.3mm
5	0.5mm
6	0.6mm
7	0.7mm
8	0.8mm
9	0.85mm
Α	1.0mm
В	1.25mm
С	1.6mm
D	2.0mm
E	2.5mm
F	3.2mm
M	1.15mm
N	1.35mm
Q	1.5mm
R	1.8mm
s	2.8mm
Х	Depends on individual standards.
	· · · · · · · · · · · · · · · · · · ·

4 Elements (**GNM** Only)

Code	Elements
2	2-elements
4	4-elements

Continued on the following page.

Continued from the preceding page.

5Temperature Characteristics

Temperature Characteristic Codes			Operating				
Code	Public STD (Code	Reference Temperature	Temperature Range	Capacitance Change or Temperature Coefficient	Temperature Range	
1X	SL *1	JIS	20°C	20 to 85°C	+350 to -1000ppm/°C	-55 to 125°C	
2C	CH *1	JIS	20°C	20 to 125°C	0±60ppm/°C	-55 to 125°C	
2P	PH *1	JIS	20°C	20 to 85°C	-150±60ppm/°C	-25 to 85°C	
2R	RH *1	JIS	20°C	20 to 85°C	-220±60ppm/°C	-25 to 85°C	
2S	SH *1	JIS	20°C	20 to 85°C	-330±60ppm/°C	-25 to 85°C	
2T	TH *1	JIS	20°C	20 to 85°C	-470±60ppm/°C	-25 to 85°C	
3C	CJ *1	JIS	20°C	20 to 125°C	0±120ppm/°C	-55 to 125°C	
3P	PJ *1	JIS	20°C	20 to 85°C	-150±120ppm/°C	-25 to 85°C	
3R	RJ *1	JIS	20°C	20 to 85°C	-220±120ppm/°C	-25 to 85°C	
3S	SJ *1	JIS	20°C	20 to 85°C	-330±120ppm/°C	-25 to 85°C	
3T	TJ *1	JIS	20°C	20 to 85°C	-470±120ppm/°C	-25 to 85°C	
3U	UJ *1	JIS	20°C	20 to 85°C	-750±120ppm/°C	-25 to 85°C	
4C	CK *1	JIS	20°C	20 to 125°C	0±250ppm/°C	-55 to 125°C	
5C	C0G *1	EIA	25°C	25 to 125°C	0±30ppm/°C	-55 to 125°C	
5G	X8G *1	EIA	25°C	25 to 150°C	0±30ppm/°C	-55 to 150°C	
6C	C0H *1	EIA	25°C	25 to 125°C	0±60ppm/°C	-55 to 125°C	
6P	P2H *1	EIA	25°C	25 to 85°C	-150±60ppm/°C	-55 to 125°C	
6R	R2H *1	EIA	25°C	25 to 85°C	-220±60ppm/°C	-55 to 125°C	
6S	S2H *1	EIA	25°C	25 to 85°C	-330±60ppm/°C	-55 to 125°C	
6T	T2H *1	EIA	25°C	25 to 85°C	-470±60ppm/°C	-55 to 125°C	
7U	U2J *1	EIA	25°C	25 to 125°C *6	-750±120ppm/°C	-55 to 125°C	
B1	B *2	JIS	20°C	-25 to 85°C	±10%	-25 to 85°C	
В3	В	JIS	20°C	-25 to 85°C	±10%	-25 to 85°C	
C7	X7S	EIA	25°C	-55 to 125°C	±22%	-55 to 125°C	
C8	X6S	EIA	25°C	-55 to 105°C	±22%	-55 to 105°C	
D7	X7T	EIA	25°C	-55 to 125°C	+22, -33%	-55 to 125°C	
D8	X6T	EIA	25°C	-55 to 105°C	+22, -33%	-55 to 105°C	
E7	X7U	EIA	25°C	-55 to 125°C	+22, -56%	-55 to 125°C	
F1	F *2	JIS	20°C	-25 to 85°C	+30, -80%	-25 to 85°C	
F5	Y5V	EIA	25°C	-30 to 85°C	+22, -82%	-30 to 85°C	
L8	X8L	*3	25°C	-55 to 150°C	+15, -40%	-55 to 150°C	
R1	R *2	JIS	20°C	-55 to 125°C	±15%	-55 to 125°C	
R3	R	JIS	20°C	-55 to 125°C	±15%	-55 to 125°C	
R6	X5R	EIA	25°C	-55 to 85°C	±15%	-55 to 85°C	
R7	X7R	EIA	25°C	-55 to 125°C	±15%	-55 to 125°C	
R9	X8R	EIA	25°C	-55 to 150°C	±15%	-55 to 150°C	
1440			0500	FF 1 40500	±10% *4	FF / 1050C	
W0		-	- 25°C	-55 to 125°C	+22, -33% *5	-55 to 125°C	

^{*1} Please refer to table for Capacitance Change under reference temperature.

Continued on the following page.

Please check the MURATA home page (http://www.murata.com/) if you cannot find the part number in the catalog.

^{*2} Capacitance change is specified with 50% rated voltage applied.

^{*3} Murata Temperature Characteristic Code.

^{*4} Apply DC350V bias.

^{*5} No DC bias.

^{*6} Rated Voltage 100Vdc max : 25 to 85°C

Continued from the preceding page.

● Capacitance Change from each temperature

JIS Code

	Capacitance Change from 20°C (%)						
Murata Code	−55°C		-25	−25°C		D°C	
	Max.	Min.	Max.	Min.	Max.	Min.	
1X	-	-	-	-	_	-	
2C	0.82	-0.45	0.49	-0.27	0.33	-0.18	
2P	-	-	1.32	0.41	0.88	0.27	
2R	-	-	1.70	0.72	1.13	0.48	
2\$	-	-	2.30	1.22	1.54	0.81	
2T	-	-	3.07	1.85	2.05	1.23	
3C	1.37	-0.90	0.82	-0.54	0.55	-0.36	
3P	-	-	1.65	0.14	1.10	0.09	
3R	-	-	2.03	0.45	1.35	0.30	
38	-	-	2.63	0.95	1.76	0.63	
3T	-	-	3.40	1.58	2.27	1.05	
3U	-	-	4.94	2.84	3.29	1.89	
4C	2.56	-1.88	1.54	-1.13	1.02	-0.75	

EIA Code

	Capacitance Change from 25°C (%)						
Murata Code	-55°C		-30°C		−10°C		
	Max.	Min.	Max.	Min.	Max.	Min.	
5C/5G	0.58	-0.24	0.40	-0.17	0.25	-0.11	
6C	0.87	-0.48	0.59	-0.33	0.38	-0.21	
6P	2.33	0.72	1.61	0.50	1.02	0.32	
6R	3.02	1.28	2.08	0.88	1.32	0.56	
6S	4.09	2.16	2.81	1.49	1.79	0.95	
6T	5.46	3.28	3.75	2.26	2.39	1.44	
7U	8.78	5.04	6.04	3.47	3.84	2.21	

6 Rated Voltage

Code	Rated Voltage
0E	DC2.5V
0G	DC4V
0J	DC6.3V
1A	DC10V
1C	DC16V
1E	DC25V
YA	DC35V
1H	DC50V
2A	DC100V
2D	DC200V
2E	DC250V
YD	DC300V
2H	DC500V
2J	DC630V
3A	DC1kV
3D	DC2kV
3F	DC3.15kV
ВВ	DC350V (for Camera Flash Circuit)
E2	AC250V
GC	X1/Y2; AC250V (Safety Standard Certified Type GC)
GF	Y2, X1/Y2; AC250V (Safety Standard Certified Type GF)
GD	Y3; AC250V (Safety Standard Certified Type GD)
GB	X2; AC250V (Safety Standard Certified Type GB)


Capacitance

Expressed by three-digit alphanumerics. The unit is picofarad (pF). The first and second figures are significant digits, and the third figure expresses the number of zeros which follow the two numbers.If there is a decimal point, it is expressed by the capital letter "R." In this case, all figures are significant digits.

Ex.)	Code	Capacitance
	R50	0.5pF
	1R0	1.0pF
	100	10pF
	103	10000pF

Continued on the following page.

Continued from the preceding page.

Capacitance Tolerance

Code	Capacitance Tolerance	TC	Series	Ca	pacitance Step	
w	±0.05pF	СΔ	GRM/GJM	≦9.9pF	0.1pF	
			GRM/GJM	≦9.9pF	0.1pF	
В	±0.1pF	СΔ	GQM	≦1pF	0.1pF	
			GQW	1.1 to 9.9pF	1pF Step and E24 Series	
		СΔ	GRM/GJM	≦9.9pF	0.1pF	
С	±0.25pF	except C∆	GRM	≦5pF	* 1pF	
C	±0.25βF	СД	GQM	≦1pF	0.1pF	
		$C\Delta$	GQW	1.1 to 9.9pF	1pF Step and E24 Series	
		СΔ	GRM/GJM	5.1 to 9.9pF	0.1pF	
D	±0.5pF	except C∆	GRM	5.1 to 9.9pF	* 1pF	
		СΔ	GQM	5.1 to 9.9pF	1pF Step and E24 Series	
G	±2%	СΔ	GJM	≥10pF	E12 Series	
	1270	СΔ	GQM	≧10pF	E24 Series	
J	±5%	CΔ, SL, U2J	GRM/GA3	≧10pF	E12 Series	
J	J ±5%	СΔ	GQM/GJM	≥10pF	E24 Series	
		B, R, X7R, X5R, ZLM	GRJ/GRM/GR7/GA3		E6 Series	
K	±10%	COG	GNM		E6 Series	
		B, R, X7R, X5R, ZLM	GR4, GMD		E12 Series	
		B, R, X7R, X7S	GRM/GMA		E6 Series	
М	±20%	X5R, X7R, X7S	GNM		E3 Series	
IVI	12076	X7R	GA2		E3 Series	
		X5R, X7R, X7S, X6S	LLL/LLR/LLA/LLM		E3 Series	
Z	+80%, -20%	F, Y5V	GRM	E3 Series		
R	Depends on individual standards.					

^{*} E24 series is also available.

Individual Specification Code (Except LLR)

Expressed by three figures.

9ESR (**LLR** Only)

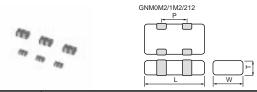
Code	ESR
E01	100mΩ
E03	220mΩ
E05	470mΩ
E07	1000mΩ

Packaging

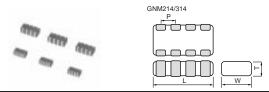
Code	Packaging		
L	ø180mm Embossed Taping		
D	ø180mm Paper Taping		
E	ø180mm Paper Taping (LLL15)		
K	ø330mm Embossed Taping		
J	ø330mm Paper Taping		
F	ø330mm Paper Taping (LLL15)		
В	Bulk		
С	Bulk Case		
Т	Bulk Tray		

Please check the MURATA home page (http://www.murata.com/) if you cannot find the part number in the catalog.

Chip Monolithic Ceramic Capacitors


Capacitor Array GNM Series

■ Features


- 1. High density mounting due to mounting space saving
- 2. Mounting cost saving

■ Applications

General electronic equipment

Part Number	Dimensions (mm)						
Part Number	L	W	Т	Р			
GNM0M2	0.9 ±0.05	0.6 ±0.05	0.45 ±0.05	0.45 ±0.05			
		1.0 ±0.15	0.5 +0.05/-0.10				
GNM1M2	1.37 ±0.15		0.6 ±0.1	0.64 ±0.05			
			0.8 +0/-0.15				
CNIMO10	20+015	1 25 +0 15	0.6 ±0.1	1.0 ±0.1			
GINIVIZIZ	2.0 ±0.15	1.25 ±0.15	0.85 ±0.1				
GNM212	2.0 ±0.15	1.25 ±0.15		1.0 ±0			

Part Number	Dimensions (mm)					
rait Number	L	W	T	Р		
			0.5 +0.05/-0.1			
GNM214	2.0 ±0.15	1.25 ±0.15	0.6 ±0.1	0.5 ±0.05		
			0.85 ±0.1			
			0.8 ±0.1			
GNM314	3.2 ±0.15	1.6 ±0.15	0.85 ±0.1	0.8 ±0.1		
GIVIVIS 14	3.2 ±0.15	1.0 ±0.15	1.0 ±0.1			
			1.15 ±0.1			

Capacitance Table

Temperature Compensating Type C0G(5C) Characteristics

0.6	ex.0.6: 7	Γ Dimensi	ion [mm]		
	1.37x1.0 (1M) <0504>	2.0x1.25 (21) <0805>	3.23 (3 <12	1)	
Number of E	Elements	2(2)		4(4)	
Rated Vo	oltage [Vdc]	50 (1H)	50 (1H)	100 (2A)	50 (1H)
10pF	(100)	0.6	0.6	0.8	0.8
15pF	(150)	0.6	0.6	0.8	0.8
22pF	(220)	0.6	0.6	0.8	0.8
33pF	(330)	0.6	0.6	0.8	0.8
47pF	(470)	0.6	0.6	0.8	0.8
68pF	(680)	0.6	0.6	0.8	0.8
100pF	(101)	0.6	0.6	0.8	0.8
150pF	(151)	0.6	0.6	0.8	0.8
220pF	(221)	0.6	0.6		0.8
330pF	(331)		i I		0.8

High Dielectric Constant Type X7R(R7)/X7S(C7) Characteristics

0.6	0.6 ex.0.6: T Dimension [mm]											
Number o	LxW [mm]	1.37x1.0 (1M) <0504> 2(2)			2.0x1.25 (21) <0805>		3.2x1.6 (31) <1206>					
Rated	Voltage [Vdc]	50 (1H)	25 (1E)	16 (1C)	10 (1A)	50 (1H)	25 (1E)	16 (1C)	50 (1H)	25 (1E)	16 (1C)	6.3 (0J)
470p	F(471)					0.6						
1000p	F(102)	0.6				0.6						
2200p	F(222)		0.6			1	0.6					
4700p	F(472)		0.6			 	0.6					
10000p	F(103)		0.6			! !	0.6					
22000p	F(223)			0.6	0.6			0.85				
47000p	F(473)			0.6	0.6			0.85	0.85		1.0	
0.10μ	F(104)			0.6	0.6			0.85	0.85	0.85	1.0	
1.0µ	F(105)					 						1.15

The part number code is shown in () and Unit is shown in []. <>: EIA [inch] Code

High Dielectric Constant Type X7R(R7) Characteristics-Low Profile

0.5 ex.0.5:	Γ Dimens	
LxW [mm]	1.37x1.0 (1M) <0504>	2.0x1.25 (21) <0805>
Number of Elements	2(2)	4(4)
Rated Voltage [Vdc]	16 (1C)	16 (1C)
0.10μF(104)	0.5	0.5

The part number code is shown in () and Unit is shown in []. <>: EIA [inch] Code

Capacitance Table

High Dielectric Constant Type X5R(R6) Characteristics

0.	6 ex.0.6: 7	Dimens	ion [mm]														
	LxW [mm]		0.9x0.6 (0M) <0302>				1.37x1.0 (1M) <0504>			2.0x1.25 (21) <0805>		2.0x1.25 (21) <0805>		3.2x1.6 (31) <1206>			
	Number of Elements						2((2)							4(4)	
Capacitano	Rated Voltage [Vdc]	16 (1C)	10 (1A)	6.3 (0J)	4 (0G)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	16 (1C)	10 (1A)	6.3 (0J)	10 (1A)	6.3 (0J)	16 (1C)	10 (1A)
	1000pF(102)					0.6					!			 			
	2200pF(222)					1	0.6				! ! !			 			
	4700pF(472)					i L	0.6	l			! !			; ! !		! L	
•	10000pF(103)	0.45	0.45	0.45		 	0.6				 			 		 	
2	22000pF(223)	0.45	0.45	0.45		[[[0.6	0.6		 			 		 - -	
4	47000pF(473)	0.45	0.45	0.45		! !		0.6	0.6		 			 - -		! !	
	0.10μF(104)	0.45	0.45	0.45					0.6					 			
	0.22μF(224)					; ;		0.8		-	 			! !			
	$0.47 \mu F(474)$					 					0.85					 	
	1.0μF(105)				0.45	[0.8	0.8	0.8	0.85	0.85		0.85	0.85	0.85	0.85
	2.2μF(225)					 			8.0	0.8		0.85	0.85		0.85		

The part number code is shown in () and Unit is shown in []. <>: EIA [inch] Code

High Dielectric Constant Type X5R(R6) Characteristics-Low Profile

0.5	ex.0.5: T Dimension [mm]				
	LxW [mm]	1.37 (1) <05		2.0x1.25 (21) <0805>	
Number of	Elements	2(2)	4(4)	
Rated V	Voltage [Vdc]	16 (1C)	10 (1A)	10 (1A)	
1.0μ	F(105)	0.5	0.5	0.5	

The part number code is shown in () and Unit is shown in []. <>: EIA [inch] Code

Temperature Compensating Type C0G(5C) Characteristics

LxW [mm]		1.37x1.0(1M)<0504>	2.0x1.25(21)<0805>	3.2x1.6(31)<1206>			
Number of Elem	ents	2(2)		4(4)			
Rated Volt. [Vdc]	50(1H)	50(1H)	100(2A)	50(1H)		
Capacitance	Tolerance		Part Number				
10pF(100)	±10%(K)	GNM1M25C1H100KD01D	GNM2145C1H100KD01D	GNM3145C2A100KD01D	GNM3145C1H100KD01D		
15pF(150)	±10%(K)	GNM1M25C1H150KD01D	GNM2145C1H150KD01D	GNM3145C2A150KD01D	GNM3145C1H150KD01D		
22pF(220)	±10%(K)	GNM1M25C1H220KD01D	GNM2145C1H220KD01D	GNM3145C2A220KD01D	GNM3145C1H220KD01D		
33pF(330)	±10%(K)	GNM1M25C1H330KD01D	GNM2145C1H330KD01D	GNM3145C2A330KD01D	GNM3145C1H330KD01D		
47pF(470)	±10%(K)	GNM1M25C1H470KD01D	GNM2145C1H470KD01D	GNM3145C2A470KD01D	GNM3145C1H470KD01D		
68pF(680)	±10%(K)	GNM1M25C1H680KD01D	GNM2145C1H680KD01D	GNM3145C2A680KD01D	GNM3145C1H680KD01D		
100pF(101)	±10%(K)	GNM1M25C1H101KD01D	GNM2145C1H101KD01D	GNM3145C2A101KD01D	GNM3145C1H101KD01D		
150pF(151)	±10%(K)	GNM1M25C1H151KD01D	GNM2145C1H151KD01D	GNM3145C2A151KD01D	GNM3145C1H151KD01D		
220pF(221)	±10%(K)	GNM1M25C1H221KD01D	GNM2145C1H221KD01D		GNM3145C1H221KD01D		
330pF(331)	±10%(K)				GNM3145C1H331KD01D		

The part number code is shown in () and Unit is shown in []. <>: EIA [inch] Code

High Dielectric Constant Type X7R(R7)/X7S(C7) Characteristics

LxW [mm]			1.37x1.0(1M)<0504>				
Number of Elem	ents		2	(2)			
Rated Volt. [Vdc	.]	50(1H)	25(1E)	16(1C)	10(1A)		
Capacitance	Tolerance		Part Number				
1000pF(102)	±20%(M)	GNM1M2R71H102MA01D					
2200pF(222)	±20%(M)		GNM1M2R71E222MA01D				
4700pF(472)	±20%(M)		GNM1M2R71E472MA01D				
10000pF(103)	±20%(M)		GNM1M2R71E103MA01D				
22000pF(223)	±20%(M)			GNM1M2R71C223MA01D	GNM1M2R71A223MA01D		
47000pF(473)	±20%(M)			GNM1M2R71C473MA01D	GNM1M2R71A473MA01D		
0.10μF(104)	±20%(M)			GNM1M2R71C104MA01D	GNM1M2C71A104MA01D		

LxW [mm]			2.0x1.25(21)<0805>				
Number of Elem	ents		4(4)				
Rated Volt. [Vdc]	50(1H)	50(1H) 25(1E) 16(1C)				
Capacitance	Tolerance		Part Number				
470pF(471)	±20%(M)	GNM214R71H471MA01D					
1000pF(102)	±20%(M)	GNM214R71H102MA01D					
2200pF(222)	±20%(M)		GNM214R71E222MA01D				
4700pF(472)	±20%(M)		GNM214R71E472MA01D				
10000pF(103)	±20%(M)		GNM214R71E103MA01D				
22000pF(223)	±20%(M)			GNM214R71C223MA01D			
47000pF(473)	±20%(M)			GNM214R71C473MA01D			
0.10μF(104)	±20%(M)			GNM214R71C104MA01D			

LxW [mm]		3.2x1.6 (31)<1206>					
Number of Elements			4((4)			
Rated Volt. [Vdc]	50(1H)	50(1H) 25(1E) 16(1C) 6.3(0J)				
Capacitance	Tolerance		Part Number				
47000pF(473)	±20%(M)	GNM314R71H473MA11D		GNM314R71C473MA01L			
0.10μF(104)	±20%(M)	GNM314R71H104MA11D	GNM314R71E104MA11D	GNM314R71C104MA01L			
1.0μF(105)	±20%(M)				GNM314R70J105MA01L		

The part number code is shown in () and Unit is shown in [].

(Part Number) | GN | M | 1M | 2 | 5C | 1H | 100 | K | D01 | D **9 9 9 9** 6

1 Product ID 2 Series 5 Temperature Characteristics 8 Capacitance Tolerance

3 Dimensions (LxW) 6 Rated Voltage

4 Number of Elements Capacitance

9Individual Specification Code

Packaging

Packaging Code in Part Number shows STD 180mm Reel Taping.

^{*} Please refer to GNM series Specifications and Test Method (2).

High Dielectric Constant Type X7R(R7) Characteristics-Low Profile

LxW [mm]		1.37x1.0(1M)<0504>	2.0x1.25(21)<0805>	
Number of Elem	ents	2(2)	4(4)	
Rated Volt. [Vdc]		16(1C)	16(1C)	
Capacitance	Tolerance	Part Number		
0.10μF(104)	±20%(M)	GNM1M2R71C104MAA1D	GNM214R71C104MAA1D	

The part number code is shown in () and Unit is shown in []. <>: EIA [inch] Code

High Dielectric Constant Type X5R(R6) Characteristics

LxW [mm]		0.9x0.6(0M)<0302>						
Number of Elem	ents		2(2)					
Rated Volt. [Vdc]	16(1C)	16(1C) 10(1A) 6.3(0J)		4(0G)			
Capacitance Tolerance			Part N	umber				
10000pF(103)	±20%(M)	GNM0M2R61C103ME18D*	GNM0M2R61A103ME17D*	GNM0M2R60J103ME17D*				
22000pF(223)	±20%(M)	GNM0M2R61C223ME18D*	GNM0M2R61A223ME17D*	GNM0M2R60J223ME17D*				
47000pF(473)	±20%(M)	GNM0M2R61C473ME18D*	GNM0M2R61A473ME17D*	GNM0M2R60J473ME17D*				
0.10μF(104)	±20%(M)	GNM0M2R61C104ME18D*	GNM0M2R61A104ME17D*	GNM0M2R60J104ME17D*				
1.0μF(105)	±20%(M)				GNM0M2R60G105ME17D*			

LxW [mm]		1.37x1.0(1M)<0504>					
Number of Elem	ents		2(2)				
Rated Volt. [Vdc]	50(1H)	25(1E)	16(1C)			
Capacitance	Tolerance		Part Number				
1000pF(102)	±20%(M)	GNM1M2R61H102MA01D					
2200pF(222)	±20%(M)		GNM1M2R61E222MA01D				
4700pF(472)	±20%(M)						
10000pF(103)	±20%(M)		GNM1M2R61E103MA01D				
22000pF(223)	±20%(M)			GNM1M2R61C223MA01D			
47000pF(473)	±20%(M)			GNM1M2R61C473MA01D			
0.22μF(224)	±20%(M)		GNM1M2R61C224ME18D*				
1.0μF(105)	±20%(M)			GNM1M2R61C105ME18D*			

LxW [mm]		1.37x1.0(1M)<0504>		
Number of Elem	ents	2((2)	
Rated Volt. [Vdc	Volt. [Vdc] 10(1A) 6.3(0 J			
Capacitance	Tolerance	Part N	umber	
22000pF(223)	±20%(M)	GNM1M2R61A223MA01D		
47000pF(473)	±20%(M)	GNM1M2R61A473MA01D		
0.10μF(104)	±20%(M)	GNM1M2R61A104MA01D		
1.0μF(105)	±20%(M)	GNM1M2R61A105ME17D*	GNM1M2R60J105ME12D*	
2.2uF(225)	+20%(M)	GNM1M2R61A225ME18D*	GNM1M2R60J225ME18D*	

LxW [mm]		2.0x1.25 (21)<0805>			
Number of Elem	ents	2(2)			
Rated Volt. [Vdc]	16(1C)	10(1A)	6.3 (0J)	
Capacitance	Tolerance	Part Number			
0.47μF(474)	±20%(M)	GNM212R61C474MA16D			
1.0μF(105)	±20%(M)	GNM212R61C105MA16D	GNM212R61A105MA13D		
2.2μF(225)	±20%(M)		GNM212R61A225ME16D*	GNM212R60J225ME16D*	

The part number code is shown in () and Unit is shown in []. <>: EIA [inch] Code

^{*} Please refer to GNM series Specifications and Test Method (2).

Product IDSeriesTemperature CharacteristicsCapacitance Tolerance

Packaging Code in Part Number shows STD 180mm Reel Taping.

 ³ Dimensions (LxW)
 4 Number of Elements
 6 Rated Voltage
 9 Individual Specification Code
 10 Packaging

GNM314R61A105MA13D

High Dielectric Constant Type X5R(R6) Characteristics

LxW [mm]		2.0x1.25(21)<0805>			
Number of Elem	ents	4 (4)			
Rated Volt. [Vdc]	10(1A)	6.3(0J)		
Capacitance	Tolerance	Part N	umber		
1.0μF(105)	±20%(M)	GNM214R61A105ME17D*	GNM214R60J105ME17D*		
2.2μF(225) ±20%(M)		GNM214R60J225M			
LxW [mm]		3.2x1.6(31)<1206>			
Number of Elem	ents	4(4)			
Rated Volt. [Vdc]	16(1C) 10(1A)			
Capacitance Tolerance		Part Number			

GNM314R61C105MA15D

±20%(M)

1.0μF(**105**)

High Dielectric Constant Type X5R(R6) Characteristics-Low Profile

LxW [mm]		1.37x1.0(1	2.0x1.25(21)<0805>	
Number of Elem	ents	2(2)		4(4)
Rated Volt. [Vdc]	16(1C)	10(1A)	
Capacitance	Tolerance			
1.0μF(105)	±20%(M)	GNM1M2R61C105MEA2D*	GNM1M2R61A105MEA4D*	GNM214R61A105MEA2D*

The part number code is shown in () and Unit is shown in []. < >: EIA [inch] Code

< >: EIA [inch] Code The part number code is shown in () and Unit is shown in [].

^{*} Please refer to GNM series Specifications and Test Method (2).

^{*} Please refer to GNM series Specifications and Test Method (2).

GNM Series Specifications and Test Methods (1)

When no "*" is added in PNs table, please refer to GNM Series Specifications and Test Methods (1).

When "*" is added in PNs table, please refer to GNM Series Specifications and Test Methods (2).

				Specifications		,	ease refer to GNN				
No.	Ite	m	Temperature Compensating Type	High Dielectric Type			Tes	t Method			
1	Operating Temperat Range		5C: -55 to +125°C	R7, C7: -55 to +125°C R6: -55 to +85°C							
2	Rated Vol	tage	See the previous page	ges.			The rated voltage is defined as the maximum voltage the applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{P-P} whichever is larger, should be maintained within the rat voltage range.			V ^{P-P} or V ^{O-P} ,	
3	Appearan	ce	No defects or abnorr	nalities			Visual inspectio	n			
4	Dimensio	ns	Within the specified	dimensions			Using calipers				
5	Dielectric	Strength	No defects or abnorr	nalities			No failure should (5C) or 250% of terminations for current is less th	the rated vol 1 to 5 second	tage (R7) i	s applied b	etween the
6	Insulation Resistance		More than 10,000Ms (whichever is smalle				The insulation revoltage not exceed max. and within	eding the rat	ed voltage		
7	Capacitar	nce	Within the specified	olerance			The capacitance	e/Q/D.F. shou	Ild be meas	sured at 25	°C at the
			30pF min.: Q≧1000				frequency and v				
0	Q/	Faatan	30pF max.: Q≥400+20C	Char. 25V min. 16V	10V	6.3V	Char.	5C		R	7
8	Dissipatio (D.F.)	n Factor	C: Nominal Capacitance (pF)	R7, R6, 0.025 0.035 C7 max. max.	0.035 max.	0.05 max.	Frequency Voltage	1±0.1M 0.5 to 5V		1±0.1 1.0±0.2	
9	Capacitance Temperature Characteristics	Capacitance Change Temperature Coefficient Capacitance Drift	Within the specified tolerance (Table A) Within the specified tolerance (Table A) Within ±0.2% or ±0.05pF (whichever is larger.)	Range Tell	Mp. Ch	Cap. hange Vithin ±15% Vithin ±22%	The capacitance change should be measured after 5 mine each specified temperature stage. (1) Temperature Compensating Type The temperature coefficient is determined using the capatance measured in step 3 as a reference. When cycling the temperature sequentially from steps 1 through 5, the capacitance should be within the specified tolerance for the temperature coefficient and capacitance change as in Tale. The capacitance drift is calculated by dividing the different between the maximum and minimum measured values in steps 1, 3 and 5 by the cap. value in step 3. Step Temperature (°C) 1 25±2 2 -55±3 (for 5C/R7/C7), -30±3 (for F5) 3 25±2 4 125±3 (for 5C/R7/C7), 85±3 (for F5) 5 25±2 (2) High Dielectric Constant Type The ranges of capacitance change compared with the ab 25°C value over the temperature ranges shown in the tab should be within the specified ranges. • Initial measurement for high dielectric constant type. Perform a heat treatment at 150+0/-10°C for one hour at then set for 24±2 hours at room temperature. Perform the initial measurement.		e capacicing the selection of the select		
10	Adhesive Strength of Termination		GNM a		er resist	cui.	Solder the capa Fig.1 using a eu the test jig for 10 The soldering sl reflow method a soldering is unif Type GNM1M2 GNM212 GNM214 GNM314	tectic solder. D±1 sec. nould be done ind should be form and free a 0.5 0.6 0.6 0.8	Then apply e either with conducted	5N force in h an iron or l with care :	parallel with using the so that the

Continued on the following page.

GNM Series Specifications and Test Methods (1

When no "*" is added in PNs table, please refer to GNM Series Specifications and Test Methods (1). Continued from the preceding page. When "*" is added in PNs table, please refer to GNM Series Specifications and Test Methods (2). Specifications Test Method No Temperature High Dielectric Type Compensating Type Appearance No defects or abnormalities Solder the capacitor to the test jig (glass epoxy board) in the same manner and under the same conditions as (10). The Within the specified tolerance Capacitance capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied 30pF min : Q≥1000 Vibration 30pF max.: uniformly between the approximate limits of 10 and 55Hz. The Char. 25V min. 10V 6.3V Resistance 16V Q≥400+20C frequency range, from 10 to 55Hz and return to 10Hz, should Q/D.F. R7, R6, 0.025 0.035 0.035 0.05 be traversed in approximately 1 minute. This motion should be C7 max. max max applied for a period of 2 hours in each of 3 mutually perpendic-C: Nominal Capacitance (pF) ular directions (total of 6 hours). Appearance No marking defects Solder the capacitor on the test jig (glass epoxy board) shown in Fig. 2 using a eutectic solder. Capacitance Within ±5% or ±0.5pF Then apply a force in the direction shown in Fig. 3 for 5±1 sec. Within ±10% Change (whichever is larger) The soldering should be done by the reflow method and should be conducted with care so that the soldering is uniform and free •GNM□□4 •GNM□□2 of defects such as heat shock. 100 100 5.0 5.0 12 Deflection 50 Pressurizing speed: 1.0mm/sec Pressurize R230 t=0.8mm Type а b Flexure : ≤1 GNM1M2 2.0±0.05 GNM212 2.0±0.05 0.6±0.05 0.5±0.05 0.5±0.05 citance meter GNM214 2.0±0.05 0.7±0.05 | 0.3±0.05 | 0.2±0.05 **GNM314** 2.5±0.05 | 0.8±0.05 | 0.4±0.05 | 0.4±0.05 Fig. 3 Fig. 2 Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Preheat at Solderability of 75% of the terminations are to be soldered evenly and 13 80 to 120°C for 10 to 30 seconds. After preheating, immerse in Termination continuously. eutectic solder solution for 2±0.5 seconds at 230±5°C or Sn-3.0Ag-0.5Cu solder solution for 2±0.5 seconds at 245±5°C Resistance to The measured and observed characteristics should satisfy the Soldering Heat specifications in the following table No marking defects Appearance Within ±2.5% Preheat the capacitor at 120 to 150°C for 1 minute. Immerse Capacitance or ±0.25pF R7, R6, C7: Within ±7.5% the capacitor in a eutectic solder or Sn-3.0Ag-0.5Cu solder Change (whichever is solution at 270±5°C for 10±0.5 seconds. Let sit at room larger) temperature for 24±2 hours, then measure. 30pF min.: Q≥1000 14 30pF max.: Initial measurement for high dielectric constant type Char. 25V min. 10V 6.3V 16V Q≥400+20C Perform a heat treatment at 150+0/-10°C for one hour and Q/D.F. R7. R6. 0.025 0.035 0.035 0.05 then let sit for 24±2 hours at room temperature. C7 max max max. max C: Nominal Perform the initial measurement Capacitance (pF) I.R. More than $10,000M\Omega$ or $500\Omega \cdot F$ (whichever is smaller)

Continued on the following page.

Dielectric

Strength

No failure

GNM Series Specifications and Test Methods (1)

When no "*" is added in PNs table, please refer to GNM Series Specifications and Test Methods (1).
When "*" is added in PNs table, please refer to GNM Series Specifications and Test Methods (2). Continued from the preceding page.

				Specifications				
No.	o. Item		Temperature Compensating Type	High Dielectric Type	Test Method			
	Temperat Cycle	ture	, , ,	bbserved characteristics should satisfy the following table.	Fix the capacitor to the supporting jig in the same manner and			
15		Appearance	No marking defects		under the same conditions as (10). Perform the five cycles according to the four heat treatments listed in the following			
		Capacitance Change	Within ±2.5% or ±0.25pF (whichever is larger)	R7, R6, C7: Within ±7.5%	table. Let sit for 24±2 hours (temperature compensating type) or 48±4 hours (high dielectric constant type) at room temperature, then measure.			
		Q/D.F.	30pF min.: Q≥1000 30pF max.: Q≥400+20C C:Nominal Capacitance (pF)	Char. 25V min. 16V 10V 6.3V R7, R6, 0.025 C7 0.035 max. 0.035 max. 0.035 max. 0.05 max.	Step 1 2 3 4 Temp. (°C) Min. Operating Temp. +0/-3 Room Temp. Operating Temp. How Temp. Tem			
		I.R.		Ω or 500 Ω · F (whichever is smaller)	Perform a heat treatment at 150+0/-10°C for one hour and then let sit for 24±2 hours at room temperature. Perform the initial measurement.			
		Dielectric	No failure	2 Of 30052 FT (WillChever is Sittalier)				
	Humidity State	Strength	The measured and c	bserved characteristics should satisfy the following table.				
		Appearance	No marking defects					
16		Capacitance Change	Within ±5% or ±0.5pF (whichever is larger)	R7, R6, C7: Within ±12.5%	Set the connector at 40±2°C and 90 to 050′ humidity for 500±41			
		Q/D.F.	30pF and over: Q≥350 10pF and over, 30pF and below: Q≥275+5C/2 10pF and below: Q≥200+10C C: Nominal Capacitance (pF)	Char. 25V min. 16V 10V/6.3V R7, R6, 0.05 0.05 0.05 C7 max. max. max.	Set the capacitor at 40±2°C and 90 to 95% humidity for 500±1: hours. Remove and let sit for 24±2 hours at room temperature, then measure.			
		I.R.	More than 1,000MΩ	or 50Ω · F (whichever is smaller)				
	Humidity	Load	The measured and o	bserved characteristics should satisfy the following table.				
		Appearance	No marking defects					
17		Capacitance Change	Within ±7.5% or ±0.75pF (whichever is larger)	R7, R6, C7: Within ±12.5%	Apply the rated voltage at 40±2°C and 90 to 95% humidity for 500±12 hours.			
		Q/D.F.	30pF and over: Q≥200 30pF and below: Q≥100+10C/3 C: Nominal Capacitance (pF)	Char. 25V min. 16V 10V/6.3V R7, R6, 0.05 0.05 0.05 C7 max. max. max.	Remove and let sit for 24±2 hours at room temperature, then measure. The charge/discharge current is less than 50mA.			
		I.R.	More than 500MΩ or	· 25Ω · F (whichever is smaller)				

Continued on the following page. $\begin{tabular}{|c|c|c|c|} \hline \end{tabular}$

GNM Series Specifications and Test Methods (1)

	Continued fr	om the prec	eding page.		lease refer to GNM Series Specifications and Test Methods (1). lease refer to GNM Series Specifications and Test Methods (2).
				Specifications	
No.	Ite	em	Temperature Compensating Type	High Dielectric Type	Test Method
	High Tem Load	perature	The measured and of specifications in the	bserved characteristics should satisfy the following table.	
		Appearance	No marking defects		1
		Capacitance Change	Within ±3% or ±0.3pF (whichever is larger)	R7, R6, C7: Within ±12.5%	Apply 200% of the rated voltage for 1000±12 hours at the maximum operating temperature ±3°C. Let sit for 24±2 hours at room temperature, then measure. The charge/discharge current is less than 50mA.
18	Q/D.F.		30pF and over: Q≥350 10pF and over, 30pF and below: Q≥275+5C/2 10pF and below: Q≥200+10C C: Nominal Capacitance (pF)	Char. 25V min. 16V 10V/6.3V R7, R6, 0.04 0.05 0.05 C7 max. max. max.	Initial measurement for high dielectric constant type. Apply 200% of the rated DC voltage for one hour at the maximum operating temperature ±3°C. Remove and let sit for 24±2 hours at room temperature. Perform initial measurement.
		I.R.	More than 1.000MΩ	or 50Ω · F (whichever is smaller)	

Table A

Char.	Nominal Values	Capacitance Change from 25°C (%)						
		−55°C		−30°C		−10°C		
	(ppm/°C) *1	Max.	Min.	Max.	Min.	Max.	Min.	
5C	0±30	0.58	-0.24	0.40	-0.17	0.25	-0.11	

^{*1:} Nominal values denote the temperature coefficient within a range of 25 to 125°C.

GNM Series Specifications and Test Methods (2)

When no "*" is added in PNs table, please refer to GNM Series Specifications and Test Methods (1). When "*" is added in PNs table, please refer to GNM Series Specifications and Test Methods (2).

No.	Item	Specifications	Test Method			
1	Operating Temperature Range	R6: -55°C to +85°C				
2	Rated Voltage	See the previous pages.	The rated voltage is defined as the maximum voltage that may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{p,p} or V ^{o,p} , whichever is larger, should be maintained within the rated voltage range.			
3	Appearance	No defects or abnormalities	Visual inspection			
4	Dimensions	Within the specified dimension	Using calipers			
5	Dielectric Strength	No defects or abnormalities	No failure should be observed when 250% of the rated voltage is applied between the terminations for 1 to 5 seconds, provided the charge/discharge current is less than 50mA.			
6	Insulation Resistance	50Ω · F min.	The insulation resistance should be measured with a DC voltage not exceeding the rated voltage at 25°C and 75%RH max. and within 1 minute of charging.			
7	Capacitance	Within the specified tolerance	The capacitance/D.F. should be measured at 25°C at the			
8	Dissipation Factor (D.F.)	0.1 max.*3 Table 3 GNM0M2 R6 103/223/473/104 GNM1M2 R6 0J 105/225 GNM1M2 R6 1A 105MEA4 GNM1M2 R6 1A 225 GNM212 R6 0J 225 GNM212 R6 1A 225 GNM214 R6 0J 225 *3 However 0.125 max. for Table 3 items.	Nominal Capacitance			
9	Capacitance Temperature Characteristics	Char.Temp. RangeReference Temp.Cap. ChangeR6-55 to +85°C25°CWithin ±15%	The capacitance change should be measured after 5 min.at each specified temperature stage. Step Temperature (°C) 1 25±2 2 -55±3 3 25±2 4 85±3 5 25±2 The ranges of capacitance change compared with the 25°C value over the temperature ranges shown in the table should be within the specified ranges. Initial measurement for high dielectric constant type. Perform a heat treatment at 150+0/-10°C for one hour and then set for 24±2 hours at room temperature. Perform the initial measurement.			
10	Adhesive Strength of Termination	No removal of the terminations or other defects should occur. GNM 4 GNM 2 Solder resist Copper foil Fig. 1	Solder the capacitor to the test jig (glass epoxy board) shown in Fig. 1 using a eutectic solder. Then apply 5N (GNM0M2: 2N) force in parallel with the test jig for 10±1 sec. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. Type a b c d GNM0M2 0.2 0.96 0.25 0.2 GNM1M2 0.5 1.6 0.32 0.32 GNM1M2 0.5 1.6 0.32 0.32 GNM212 0.6 1.8 0.5 0.5 GNM214 0.6 2.0 0.25 0.25 GNM314 0.8 2.5 0.4 0.4 (in mm)			

Appearance No defects or abnormalities Within the specified tolerance Capacitance Vibration 11 D.F. *3 However 0.125 max. for Table 3 items.

Solder the capacitor to the test jig (glass epoxy board) in the same manner and under the same conditions as (10). The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 minute. This motion should be applied for a period of 2 hours in each of 3 mutually perpendicular directions (total of 6 hours).

GNM Series Specifications and Test Methods (2

When no "*" is added in PNs table, please refer to GNM Series Specifications and Test Methods (1). Continued from the preceding page When "*" is added in PNs table, please refer to GNM Series Specifications and Test Methods (2). Nο Specifications Test Method Item Appearance No marking defects Solder the capacitor to the test jig (glass epoxy board) shown in Fig. 2 using a eutectic solder. Then apply a force in the Capacitance Within ±10% direction shown in Fig. 3. The soldering should be done by the Change reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. •GNM□□4 GNM□□2 50 Pressurizing speed: 1 0mm/sec Pressurize 12 Deflection Thickness: 0.8mm d Type а b C GNM0M2 2.0±0.05 | 0.2±0.05 | 0.2±0.05 | 0.25±0.05 GNM1M2 45 GNM212 2.0±0.05 GNM214 2.0±0.05 | 0.7±0.05 | 0.3±0.05 | 0.2±0.05 Fig. 3 GNM314 2.5±0.05 | 0.8±0.05 | 0.4±0.05 | 0.4±0.05 Fig. 2 Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Preheat at Solderability of 75% of the terminations are to be soldered evenly 80 to 120°C for 10 to 30 seconds. After preheating, immerse in Termination and continuously. eutectic solder solution for 2±0.5 seconds at 230±5°C or Sn-3.0Ag-0.5Cu solder solution for 2±0.5 seconds at 245±5°C. Appearance No marking defects Preheat the capacitor at 120 to 150°C for 1 minute. Immerse Capacitance R6*4: Within ±7.5% the capacitor in a eutectic solder or Sn-3.0Ag-0.5Cu solder 4GNM0M2R60G105: Within +15/-7.5% Change solution at 270±5°C for 10±0.5 seconds. Resistance 0.1 max. *3 Let sit at room temperature for 24±2 hours, then measure. to Soldering D.F. *3 However 0.125 max. for Table 3 items. Initial measurement Heat Perform a heat treatment at 150 +0/-10°C for one hour and I.R. $50\Omega \cdot F \min$ then let sit for 24±2 hours at room temperature. Perform Dielectric the initial measurement. No failure Strength Appearance No marking defects Fix the capacitor to the supporting jig in the same manner and under the same conditions as (10). R6*5: Within +12.5% Perform the five cycles according to the four heat treatments *5GNM0M2R60G105, GNM0M2R60J103/223/473/104, Capacitance listed in the following table. GNM0M2R61A103/223/473/104, Change Let sit for 24±2 hours at room temperature, then measure. GNM0M2R61C103/223/473/104, GNM1M2R61A105: Step Within ±15% Temperature 15 Min. Operating Min. Operating Room Room Temp. (°C) Cycle 0.1 max. *3 Temp Temp. Temp. Temp. D.F. *3 However 0.125 max. for Table 3 items Time (min.) 30±3 2 to 3 30±3 2 to 3 I.R. $50\Omega \cdot F$ min. Initial measurement Perform a heat treatment at 150 +0/-10 °C for one hour and Dielectric then let sit for 24±2 hours at room temperature. No failure Strength Perform the initial measurement Apply the rated voltage at 40±2°C and 90 to 95% humidity for Appearance No marking defects 500±12 hours. The charge/discharge current is less than 50mA. Capacitance R6: Within ±12.5% Initial measurement High Change Perform a heat treatment at 150 +0/-10°C for one hour Temperature D.F. 0.2 max. and then let sit for 24±2 hours at room temperature. 16 High Perform the initial measurement. Humidity Measurement after test (Steady) Perform a heat treatment at 150 +0/-10°C for one hour I.R. 12.5 Ω · F min. and then let sit for 24±2 hours at room temperature, then Appearance No marking defects Apply 150% (GNM1M2R61A225/1C105: 125% of the rated voltage) of the rated voltage for 1000±12 hours at the Capacitance R6: Within ±12.5% maximum operating temperature ±3°C. Let sit for 24±2 hours Change at room temperature, then measure. D.F. 0.2 max. The charge/discharge current is less than 50mA. Initial measurement Durability Perform a heat treatment at 150 +0/-10°C for one hour

I.R.

 $25\Omega \cdot F min.$

and then let sit for 24±2 hours at room temperature.

Perform a heat treatment at 150 +0/-10°C for one hour and then let sit for 24±2 hours at room temperature, then measure.

Perform the initial measurement.

Measurement after test

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Murata:

```
GNM1M2R60J105ME12D GNM1M2R61A104MA01D GNM1M2R61A105ME14D GNM1M2R71C223MA01D
GNM1M2R71C473MA01D GNM212R61C105MA16D GNM214R71C104MA01D GNM214R71E103MA01D
GNM214R71H102MA01D GNM3145C1H100JD01D GNM3145C1H101JD01D GNM3145C1H101KD01D
GNM3145C1H120JD01D GNM3145C1H120KD01D GNM3145C1H121JD01D GNM3145C1H121KD01D
GNM3145C1H150JD01D GNM3145C1H150KD01D GNM3145C1H151JD01D GNM3145C1H151KD01D
GNM3145C1H180JD01D
                   GNM3145C1H180KD01D
                                      GNM314F51C104ZD01D
                                                         GNM314F51C154ZD01D
GNM314F51C683ZD01D
                  GNM314F51H223ZD01D GNM314F51H333ZD01D GNM314F51H473ZD01D
GNM314F52A222ZD01D
                  GNM314F52A332ZD01D GNM314F52A472ZD01D GNM314R71C104KA01L
GNM314R71C104MA01K GNM314R71C104MA01L GNM314R71C223KD01D GNM314R71C223MD01D
GNM314R71C333KD01D GNM314R71C333MD01D GNM314R71C393KD01D GNM314R71C473MA01K
GNM314R71C473MA01L
                   GNM314R71E183KD01D GNM314R71H102KD01D GNM314R71H102MD01D
GNM314R71H103KD01D GNM314R71H103MD01D GNM314R71H152KD01D GNM3145C2A180JD01D
GNM3145C2A180KD01D
                  GNM3145C2A220JD01D GNM3145C2A220KD01D
                                                         GNM3145C2A270JD01D
GNM3145C2A270KD01D GNM3145C2A330JD01D GNM3145C2A330KD01D
                                                         GNM3145C2A390JD01D
GNM3145C2A390KD01D
                  GNM3145C2A470JD01D
                                      GNM3145C2A470KD01D
                                                         GNM3145C2A560JD01D
GNM3145C2A560KD01D GNM3145C2A680JD01D GNM3145C2A680KD01D GNM3145C2A820JD01D
GNM3145C2A820KD01D
                   GNM3145C1H181JD01D
                                      GNM3145C1H181KD01D
                                                         GNM3145C1H220JD01D
GNM3145C1H220KD01D
                   GNM3145C1H221JD01D
                                      GNM3145C1H221KD01D
                                                         GNM3145C1H270JD01D
GNM3145C1H270KD01D GNM3145C1H271JD01D GNM3145C1H271KD01D GNM3145C1H330JD01D
GNM3145C1H331JD01D GNM3145C1H331KD01D GNM3145C1H390JD01D GNM3145C1H470JD01D
GNM3145C1H470KD01J
                  GNM3145C1H560JD01D
                                      GNM3145C1H560KD01D
                                                         GNM3145C1H680JD01D
GNM3145C1H680KD01D GNM3145C1H820JD01D GNM3145C1H820KD01D GNM3145C2A100JD01D
GNM3145C2A101JD01D GNM3145C2A101KD01D GNM3145C2A120JD01D GNM3145C2A120KD01D
GNM3145C2A121JD01D GNM3145C2A121KD01D GNM3145C2A150JD01D GNM3145C2A150KD01D
GNM3145C2A151JD01D GNM3145C2A151KD01D GNM314R72A152KD01D GNM314R72A152MD01D
```