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1. About This IP Core
The Altera® CPRI MegaCore® IP core implements the Common Public Radio Interface 
(CPRI) specification. CPRI is a high-speed serial interface designed for network radio 
equipment controllers (REC) to receive data from and provide data to remote radio 
equipment (RE).

1 The information in this user guide, including the latency numbers in “Delay 
Measurement and Calibration Features” on page E–1, is applicable to version 13.1 of 
the CPRI IP core.

The CPRI IP core targets high-performance, remote, radio network applications. You 
can configure the CPRI IP core as an RE or an REC. Figure 1–1 shows an example 
system implementation with a two-hop daisy chain. Optical links between devices 
support high performance.:

General Description
The Altera CPRI IP core implements Layer 1 and Layer 2 of the CPRI V5.0 
specification. It provides access to the V5.0 Layer 1 and Layer 2 access points through 
various interfaces:

Figure 1–1. Typical CPRI Application on Altera Devices
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1–2 Chapter 1: About This IP Core
General Description
■ V5.0 Layer 1 access:

■ Auxiliary (AUX) interface for full access to V5.0 control data stream for 
antenna-carrier (Ctrl_AxC) bytes in control word.

■ Register support for loading and unloading full control words, including 
Ctrl_AxC bytes.

■ Auxiliary (AUX) interface support for user-defined GSM mapping.

■ IQ data access:

■ Mapping block (MAP) to antenna-carrier interfaces for easy IQ user data plane 
access based on pre-configured antenna-carrier channels.

■ Auxiliary (AUX) interface for full access to the user data plane.

■ Ethernet channel access:

■ Auxiliary interface for full access to the Ethernet space in the CPRI frame.

■ Register support for loading and unloading the Ethernet frame.

■ Media independent (MI) interface port for Ethernet Frame access.

■ High level data link control (HDLC) channel access:

■ Auxiliary interface for full access to the HDLC space in the CPRI frame.

■ Register support for loading and unloading the HDLC frame.

■ Vendor-specific space (VSS) data:

■ Auxiliary interface for full access to control words.

■ Register support for loading and unloading full control words, including VSS 
space.

■ Synchronization and timing access:

■ Auxiliary interface for full access to synchronization and timing.

You configure the CPRI IP core to include an Ethernet media access control (MAC) 
block or to communicate with an external Ethernet module through an MI interface. 

You can configure the CPRI link line rate.

1 For information about the CPRI IP core interfaces and functionality, refer to Chapter 4, 
Functional Description. For information about configuration options, refer to 
Chapter 3, Parameter Settings.
CPRI IP Core June 2014 Altera Corporation
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Chapter 1: About This IP Core 1–3
CPRI IP Core Features
Figure 1–2 shows the CPRI IP core interfaces. The IP core assembles the outbound 
CPRI frame control words and data from all of these interfaces, and unloads and 
routes control words and data from the inbound CPRI frame to the appropriate 
interfaces, based on configuration and register settings.

CPRI IP Core Features
The CPRI IP core has the following features:

■ Complies with the Common Public Radio Interface (CPRI) Specification V5.0 
(2011-09-21) Interface Specification for wireless base station submodule 
interconnections, without the full range of IQ data sample widths, using auxiliary 
interface for user-defined GSM mapping.

■ Supports radio equipment controller (REC) and radio equipment (RE) module 
configurations, including RE master, RE slave, and REC master ports.

■ Supports Universal Mobile Telecommunication System (UMTS) Terrestrial Radio 
Access (UTRA) – frequency division duplexing (UTRA-FDD) (UMTS/Wideband 
Code Division Multiple Access (W-CDMA)), Evolved UTRA (E-UTRA) (3rd 
Generation Partnership Project (3GPP) Long Term Evolution (LTE) specification), 
3GPP Global System for Mobile Communications (GSM)/Enhanced Data Rates for 
GSM Evolution (EDGE) Radio Access Network, and Worldwide interoperability 
for Microwave Access (WiMAX) (IEEE 802.16 standard).

■ Provides full access to CPRI frame.

Figure 1–2. CPRI IP Core Interfaces

Notes to Figure 1–2:

(1) You can configure your CPRI IP core with zero, one, or multiple antenna-carrier interfaces. If you configure zero antenna-carrier interfaces, the 
MAP interface is not configured in your CPRI IP core. In that case you can communicate IQ data through the AUX interface to your user-defined 
routing layer.

(2) You can configure your CPRI IP core with or without an HDLC block.
(3) You can configure your CPRI IP core with an Ethernet MAC block or a media-independent (MI) interface (MII) block. The two options are mutually 

exclusive. 
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1–4 Chapter 1: About This IP Core
CPRI IP Core Features
■ Supports the following additional CPRI link features:

■ Programmable CPRI communication line rate (to 614.4, 1228.8, 2457.6, 3072.0, 
4915.2, 6144.0, or 9830.4 Mbps) using Altera on-chip high-speed transceivers.

■ Programmable operation mode: CPRI link master or CPRI link slave.

■ Auto-rate negotiation support.

■ Scrambling and descrambling at 4915.2 Mbps, 6144.0 Mbps, and 9830.4 Mbps.

■ Receiver (Rx) delay measurement.

■ Transmitter (Tx) delay calibration.

■ Programmable hardware processing of the reset request bit in the CPRI frame.

■ Vendor-specific subchannel (VSS) communication on the CPRI link.

■ Diagnostic parallel reverse loopback paths.

■ Diagnostic stand-alone RE slave testing mode.

■ Includes the following additional interfaces:

■ Interface to external or on-chip processor, using the Altera Avalon® 
Memory-Mapped (Avalon-MM) interconnect specification.

■ Ethernet communication interfaces that support simultaneous Ethernet and 
HDLC communication to and from the CPRI link.

■ Optional configuration of Ethernet MAC.

■ Optional Media-Independent Interface for Ethernet frame access.

■ Optional configuration of HDLC block.

■ Auxiliary interface provides full access to CPRI frame.

■ Supports data transfer to and from custom mapping functions, including 
user-defined GSM mapping.

■ Supports data transfer from slave to master ports to implement daisy-chain 
topologies.

■ Supports custom IQ sample widths.

■ Optional built-in IQ data interface with the following features:

■ Implements mapping methods in Sections 4.2.7.2.5 and 4.2.7.2.7 of the CPRI 
V4.2 Specification, and mapping Options 1 and 2 in Sections 4.2.7.2.3 and 
4.2.7.2.4 of the CPRI V4.2 Specification.

■ Implements WiMAX mapping methods described in Sections 4.2.7.2.2, 
4.2.7.2.5, and 4.2.7.2.7 of the CPRI V4.2 Specification.

■ Implements UMTS/LTE mapping methods described in Section 4.2.7.2 of 
the CPRI V4.2 Specification.

■ Implements WiMAX timing control methodology described in Section 
4.2.8.2 of the CPRI V4.2 Specification.

■ Supports as many as 24 antenna-carrier interfaces.

■ Supports clocking antenna-carrier interfaces with external data channel 
clocks or internal IP core clock.
CPRI IP Core June 2014 Altera Corporation
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Chapter 1: About This IP Core 1–5
Device Family Support
■ Supports synchronous buffer or simple FIFO synchronization modes for 
externally clocked antenna-carrier interfaces. 

■ Supports independent sample rates for each antenna-carrier interface.

■ Supports 15- and 16-bit data sample widths on uplink and downlink using 
the Altera Avalon Streaming (Avalon-ST) interconnect specification.

Device Family Support
Table 1–1 defines the device support levels for Altera IP cores.

Table 1–2 lists the level of support offered by the CPRI IP core for each Altera device 
family.

Table 1–3 shows the slowest device family speed grade that supports each CPRI line 
rate in each device family. Lower speed grade numbers correspond to faster devices.

Table 1–1. Altera IP Core Device Support Levels

FPGA Device Families

Preliminary support—The IP core is verified with preliminary timing models for this device family. 
The IP core meets all functional requirements, but might still be undergoing timing analysis for the 
device family. It can be used in production designs with caution.

Final support—The IP core is verified with final timing models for this device family. The IP core 
meets all functional and timing requirements for the device family and can be used in production 
designs.

Table 1–2. Device Family Support

Device Family Support

Stratix® V Refer to the What’s New in Altera IP page of 
the Altera website.

Stratix IV GX Final

Arria® V (GX, GT, and GZ variants) Preliminary

Arria II (GX and GZ variants) Final

Cyclone® V GX Preliminary

Cyclone IV GX Final

Other device families No support

Table 1–3. Slowest Recommended Device Family Speed Grades (Part 1 of 2) 

Device Family
or Variant

CPRI Line Rate (Mbps)

614.4 1228.8 2457.6 3072.0 4915.2 6144 9830.4

Stratix V GX –4 –4 –4 –4 –4 –4 -2

Stratix IV GX –4 –4 –4 –4 –4 –3 (3)

Arria V GT C6 C6 C6 I5 I5 I5 I5 (4)

Arria V GX C6 C6 C6 I5 I5 I5 (3)

Arria V GZ –4 –4 –4 –4 –4 –4 –3

Arria II GX –6 –6 –6 –6 I3 (2) I3 (2) (3)
June 2014 Altera Corporation CPRI IP Core
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1–6 Chapter 1: About This IP Core
IP Core Verification
IP Core Verification
Before releasing a version of the CPRI IP core, Altera runs comprehensive regression 
tests in the current version of the Quartus® II software. These tests use the parameter 
editor to create the instance files. Altera tests these files in simulation and hardware to 
confirm functionality.

Altera tests and verifies the CPRI IP core in hardware, especially the deterministic 
latency feature, for different platforms and environments.

Performance and Resource Utilization
This section contains tables showing IP core variation size and performance examples. 
For resource utilization information for additional CPRI IP core variations, refer to the 
reports the Quartus II software generates during compilation.

Table 1–4 lists the resources and expected performance for CPRI IP core variations 
configured with the following features:

■ Operate in REC master mode

■ Include autorate negotiation support

■ Provide Ethernet access through the MI interface

■ Do not provide an HDLC block

■ Use Basic mapping mode

■ Clock the AxC channels with independent clocks (the Enable MAP interface 
synchronization with core clock parameter is turned off)

■ Do not include automatic round-trip delay calibration logic

■ Do not include VSS access through the CPU interface

The numbers of ALMs and logic registers are rounded up to the nearest 100.

Table 1–4 lists results obtained with the Quartus II software v12.1 SP1 for the 
following devices: 

Arria II GZ –4 –4 –4 –4 –3 –3 (3)

Cyclone V GX C8 –7 –7 –7 (3) (3) (3)

Cyclone IV GX C8, I7 C8, I7 C8, I7 –7 (3) (3) (3)

Notes to Table 1–3:

(1) The entry –x indicates that both the industrial speed grade Ix and the commercial speed grade Cx are supported for this device family and CPRI 
line rate.

(2) Only the I3 speed grade is available for a CPRI IP core that runs at this line rate and targets the Arria II GX device family.
(3) This CPRI line rate is not supported for this device family.
(4) Altera recommends that for designs that include a 9.8304 Gbps CPRI IP core variation that targets an Arria V GT device, you use multiple seeds 

in the Quartus II Design Space Explorer to find the optimal Fitter settings to meet the timing constraints. Following the Timing Advisor's 
recommendations, including optimizing for speed and using LogicLock regions may be necessary to meet timing, especially for more complex 
variations implemented in the largest devices.

Table 1–3. Slowest Recommended Device Family Speed Grades (Part 2 of 2) 

Device Family
or Variant

CPRI Line Rate (Mbps)

614.4 1228.8 2457.6 3072.0 4915.2 6144 9830.4
CPRI IP Core June 2014 Altera Corporation
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Chapter 1: About This IP Core 1–7
Performance and Resource Utilization
■ Stratix V GX (5SGXMA5N3F40I4

■ Arria V GT (5AGTMD3G3F31I3)

■ Arria V GX (5AGXFB3H6F35C6 for 614.4, 1228.8, 2457.6, and 3072 Mbps variations 
and 5AGXFB3H4F35I5 for other variations)

■ Arria V GZ (5AGZME7K3F40I4)

■ Cyclone V GX (5CGXFC9E7F35C8 for 6144 Mbps variations and 5CGXFC9E6F35I7 
for 122.8, 2457.6, and 3072 Mbps variations)

Table 1–4. CPRI IP Core FPGA Resource Utilization (Part 1 of 2)

Device  Line Rate
(Mbps)

Number of 
Antenna-Carrier 

Interfaces
ALMs Primary 

Register
Secondary 
Register

M10K or M20K 
Blocks (1)

Stratix V GX

614.4

0 2089 2346 230 3

1 2695 3218 323 9

2 2867 3499 330 11

3 3032 3703 343 13

4 3185 3943 394 15

1228.8, 
2457.6, 
3072.0, 4915.2

0 2062 2331 217 3

1 2662 3128 317 9

4 3126 3770 333 15

8 3810 4582 410 23

6144.0, 9830.4

0 2450 3408 350 3

1 3241 4990 546 9

4 3734 5687 606 15

8 4443 6581 697 23

Arria GZ

614.4

0 2068 2356 230 3

1 2786 3368 299 9

2 2984 3589 352 11

3 3189 3818 403 13

4 3378 4073 285 15

1228.8, 
2457.6, 
3072.0, 4915.2

0 2029 2319 221 3

1 2796 3309 210 9

4 3321 3891 371 15

8 3998 4737 428 23

6144.0, 9830.4

0 2438 3451 219 3

1 3488 5145 515 9

4 3988 5844 649 15

8 4651 6806 707 23

Arria V GT
(Soft PCS 
Variant)

9830.4

0 6649 9239 738 5

1 7523 10979 911 15

4 7990 11718 922 21

8 8696 12707 1057 29
June 2014 Altera Corporation CPRI IP Core
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Release Information
Release Information
Table 1–5 provides information about this release of the CPRI IP core.

Arria V GX

614.4

0 2299 2321 202 3

1 2983 3131 428 15

2 3117 3332 291 17

3 3324 3553 287 19

4 3560 3795 414 21

1228.8, 
2457.6, 3072.0

0 2266 2345 175 3

1 2924 3157 186 15

4 3484 3811 237 21

8 4126 4635 285 29

4915.2, 6144.0

0 3254 5156 169 3

1 4065 6702 421 13

4 4568 7473 411 19

8 5689 8402 425 27

Cyclone V

614.4

0 2398 2416 410 3

1 3200 3526 580 14

2 3401 3667 648 16

3 3580 3931 609 18

4 3667 4016 594 20

1228.8, 
2457.6, 3072.0

0 2238 2417 133 3

1 3139 3494 170 14

4 3704 4006 247 20

8 4501 4842 302 28

Note to Table 1–4:

(1) M10K blocks in Arria V GX, Arria V GT, and Cyclone V GX devices and M20K blocks in Arria V GZ and Stratix V devices.

Table 1–4. CPRI IP Core FPGA Resource Utilization (Part 2 of 2)

Device  Line Rate
(Mbps)

Number of 
Antenna-Carrier 

Interfaces
ALMs Primary 

Register
Secondary 
Register

M10K or M20K 
Blocks (1)

Table 1–5. CPRI Release Information

Item Description

Version 14.0

Release Date June 2014

Ordering Code IP-CPRI

Product ID 00CB

Vendor ID 6AF7
CPRI IP Core June 2014 Altera Corporation
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2. Getting Started
Installing and Licensing IP Cores
The Quartus II software includes the Altera IP Library. The library provides many 
useful IP core functions for production use without additional license. You can fully 
evaluate any licensed Altera IP core in simulation and in hardware until you are 
satisfied with its functionality and performance. 

Some Altera IP cores, such as MegaCore® functions, require that you purchase a 
separate license for production use. After you purchase a license, visit the Self Service 
Licensing Center to obtain a license number for any Altera product. For additional 
information, refer to Altera Software Installation and Licensing.

1 The default installation directory on Windows is <drive>:\altera\<version number>; 
on Linux it is <home directory>/altera/<version number>.

OpenCore Plus IP Evaluation
Altera's free OpenCore Plus feature allows you to evaluate licensed MegaCore IP 
cores in simulation and hardware before purchase. You need only purchase a license 
for MegaCore IP cores if you decide to take your design to production. OpenCore Plus 
supports the following evaluations:

■ Simulate the behavior of a licensed IP core in your system.

■ Verify the functionality, size, and speed of the IP core quickly and easily.

■ Generate time-limited device programming files for designs that include IP cores.

■ Program a device with your IP core and verify your design in hardware.

OpenCore Plus evaluation supports the following two operation modes:

■ Untethered—run the design containing the licensed IP for a limited time.

■ Tethered—run the design containing the licensed IP for a longer time or 
indefinitely. This requires a connection between your board and the host 
computer.

All IP cores using OpenCore Plus in a design time out simultaneously when any IP 
core times out.

Figure 2–1. IP core Installation Path

acds

quartus - Contains the Quartus II software

ip - Contains the Altera IP Library and third-party IP cores

altera - Contains the Altera IP Library source code

<IP core name> - Contains the IP core source files  
CPRI IP Core
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2–2 Chapter 2: Getting Started
IP Catalog and Parameter Editor
IP Catalog and Parameter Editor
The Quartus II IP Catalog (Tools > IP Catalog) and parameter editor help you easily 
customize and integrate IP cores into your project. You can use the IP Catalog and 
parameter editor to select, customize, and generate files representing your custom IP 
variation.

The IP Catalog automatically displays the IP cores available for your target device. 
Double-click any IP core name to launch the parameter editor and generate files 
representing your IP variation. The parameter editor prompts you to specify your IP 
variation name, optional ports, architecture features, and output file generation 
options. The parameter editor generates a top-level .qsys or .qip file representing the 
IP core in your project. Alternatively, you can define an IP variation without an open 
Quartus II project. When no project is open, select the Device Family directly in IP 
Catalog to filter IP cores by device.

1 The IP Catalog is also available in Qsys (View > IP Catalog). The Qsys IP Catalog 
includes exclusive system interconnect, video and image processing, and other 
system-level IP that are not available in the Quartus II IP Catalog.

Use the following features to help you quickly locate and select an IP core:

■ Filter IP Catalog to Show IP for active device family or Show IP for all device 
families.

■ Search to locate any full or partial IP core name in IP Catalog. Click Search for 
Partner IP, to access partner IP information on the Altera website.

■ Right-click an IP core name in IP Catalog to display details about supported 
devices, installation location, and links to documentation.

Figure 2–2. Quartus II IP Catalog

Search and filter IP for your target device

Double-click to customize, right-click for information
CPRI IP Core June 2014 Altera Corporation
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Chapter 2: Getting Started 2–3
Using the Parameter Editor
1 The IP Catalog and parameter editor replace the MegaWizard™ Plug-In Manager in 
the Quartus II software. The Quartus II software may generate messages that refer to 
the MegaWizard Plug-In Manager. Substitute “IP Catalog and parameter editor” for 
“MegaWizard Plug-In Manager” in these messages.

Using the Parameter Editor
The parameter editor helps you to configure your IP variation ports, parameters, 
architecture features, and output file generation options:

■ Use preset settings in the parameter editor (where provided) to instantly apply 
preset parameter values for specific applications.

■ View port and parameter descriptions and links to detailed documentation.

■ Generate testbench systems or example designs (where provided).

Customizing and Generating IP Cores
You can customize IP cores to support a wide variety of applications. The Quartus II 
IP Catalog displays IP cores available for the current target device. The parameter 
editor guides you to set parameter values for optional ports, features, and output files. 

To customize and generate a custom IP core variation, follow these steps: 

1. In the IP Catalog (Tools > IP Catalog), locate and double-click the name of the IP 
core to customize. The parameter editor appears.

2. Specify a top-level name for your custom IP variation. This name identifies the IP 
core variation files in your project. If prompted, also specify the target Altera 
device family and output file HDL preference. Click OK.

Figure 2–3. IP Parameter Editors

View IP port
and parameter 
details

Apply preset parameters for
specific applications

Specify your IP variation name
and target device

Legacy parameter 
editors
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2–4 Chapter 2: Getting Started
IFiles Generated for Altera IP Cores
3. Specify the desired parameters, output, and options for your IP core variation:

■ Optionally select preset parameter values. Presets specify all initial parameter 
values for specific applications (where provided).

■ Specify parameters defining the IP core functionality, port configuration, and 
device-specific features.

■ Specify options for generation of a timing netlist, simulation model, testbench, 
or example design (where applicable).

■ Specify options for processing the IP core files in other EDA tools.

4. Click Finish or Generate to generate synthesis and other optional files matching 
your IP variation specifications. The parameter editor generates the top-level .qip 
or .qsys IP variation file and HDL files for synthesis and simulation. Some IP cores 
also simultaneously generate a testbench or example design for hardware testing.

When you generate the IP variation with a Quartus II project open, the parameter 
editor automatically adds the IP variation to the project. Alternatively, click Project > 
Add/Remove Files in Project to manually add a top-level .qip or .qsys IP variation 
file to a Quartus II project. To fully integrate the IP into the design, make appropriate 
pin assignments to connect ports. You can define a virtual pin to avoid making 
specific pin assignments to top-level signals.

IFiles Generated for Altera IP Cores
The Quartus II software generates the following files during generation of your IP 
core variation:

Figure 2–4. IP Core Generated Files

Notes:
1. If supported and enabled for your IP variation
2. If functional simulation models are generated

<Project Directory>

<your_ip>_sim 1

<Altera IP>_instance.vo - IPFS model 2

<simulator_vendor>
<simulator setup scripts>

<your_ip>.qip - Quartus II IP integration file

<your_ip>.sip - Lists files for simulation 

<your_ip>_testbench or _example - testbench or example design1

<your_ip>.v, .sv. or .vhd - Top-level IP synthesis file 

<Altera IP_name>_instance

<your_ip>_syn.v or .vhd - Timing & resource estimation netlist1
<your_ip>.cmp - VHDL component declaration file 
<your_ip>.bsf - Block symbol schematic file 

<your_ip> - IP core synthesis files
<your_ip>.sv, .v, or .vhd - HDL synthesis files
<your_ip>.sdc - Timing constraints file

<your_ip>.ppf - XML I/O pin information file 1

<your_ip>.spd - Combines individual simulation scripts 1

<your_ip>_sim.f - Refers to simulation models and scripts 1
CPRI IP Core June 2014 Altera Corporation
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Upgrading Outdated IP Cores
Upgrading Outdated IP Cores
Altera IP cores have a version number that corresponds with the Quartus II software 
version. The Quartus II software alerts you when your IP core is outdated with 
respect to the current Quartus II software version. Click Project > Upgrade IP 
Components to easily identify and upgrade outdated IP cores.

You are prompted to upgrade IP when the new version includes port, parameter, or 
feature changes. You are also notified if IP is unsupported or cannot be migrated in 
the current software. Most Altera IP cores support automatic simultaneous upgrade, 
as indicated in the GUI. IP cores unsupported by auto upgrade require regeneration in 
the parameter editor.

To upgrade outdated IP cores in your design, follow these steps:

1. In the latest version of the Quartus II software, open the Quartus II project 
containing an outdated IP core variation.

2. Click Project > Upgrade IP Components. The Upgrade IP Components dialog 
box displays all outdated IP cores in your project, along with basic instructions for 
upgrading each core.

3. Upgrading IP cores changes your original design files. To preserve these original 
files, click Project > Archive and save a project archive preserving your original 
files.

4. To simultaneously upgrade all IP cores that support automatic upgrade, click 
Perform Automatic Upgrade. The IP variation upgrades to the latest version.

5. To upgrade IP cores unsupported by automatic upgrade, select the IP core in 
Upgrade IP Components dialog box, and then click Upgrade in Editor. The 
parameter editor appears. Click Finish or Generate to regenerate the IP variation 
and complete the upgrade. The version number updates when complete.

1 Altera verifies that the current version of the Quartus II software compiles the 
previous version of each IP core. The MegaCore IP Library Release Notes and Errata 
reports any verification exceptions. Altera does not verify compilation for IP cores 
older than the previous release.

Figure 2–5. Upgrading Outdated IP Cores

Displays upgrade
status for all IP cores
in the Project

Upgrades all IP core that support “Auto Upgrade”
Upgrades individual IP cores unsupported by “Auto Upgrade”

Indicates that IP upgrade is:
Required
Optional
Complete
Unsupported 
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2–6 Chapter 2: Getting Started
Upgrading Outdated IP Cores
Alternatively, you can upgrade IP cores at the command line. To upgrade a single IP 
core: 

quartus_sh --ip_upgrade -variation_files <variation_file_path> <project>

To upgrade a list of IP cores:

quartus_sh --ip_upgrade -variation_files 
<variation_file_path>;<qsys_file_path>;<variation_file_path> <project>

1 File paths must be relative to the project directory and you must reference 
the IP variation .v or .vhd file or .qsys file, not the .qip file.

Simulation Files
Generating a CPRI IP core creates an <instance_name>_sim directory with a 
subdirectory for each of four different Altera-supported simulators for the current 
software release. Each of the vendor-specific directories contains files and scripts to 
simulate your CPRI IP core with that vendor’s simulation tools.

The <instance_name>_sim/altera_cpri directory contains the top-level simulation file 
for your CPRI IP core.

Generating a CPRI IP core creates a more complex directory structure for Arria V, 
Cyclone V, and Stratix V variations than for variations that target other device 
families, because the Arria V, Cyclone V, and Stratix V variations instantiate an Altera 
Deterministic Latency PHY IP core or an Altera Native PHY IP core. In an Arria V, 
Cyclone V, or Stratix V variation, your <instance_name>_sim directory contains 
multiple subdirectories, one for each of the various components in the CPRI IP core, in 
addition to the individual directories for vendors for four different simulators.

Figure 2–6 shows the directory structure of your CPRI IP core that contains a 
Deterministic Latency PHY IP core and generates a testbench. Not all CPRI IP core 
variations provide matching demonstration testbenches. For information about the 
CPRI IP core variations that provide a testbench, refer to “Simulating the Design”.

Figure 2–6. Generated CPRI IP Core Directory Structure for Most 28-nm Variations

<working directory>

Vendor-specific directories contain simulation scripts

<instance name>_testbench
Contains the VHDL and System Verilog testbench simulation files

altera_cpri
Contains the lower-level testbench simulation files

altera_cpri_instance, altera_merlin_master_translator,
altera_merlin_slave_translator, altera_xcvr_det_latency
Contain the CPRI IP core instance lower-level simulation files

Quartus II project working directory

<instance name>_sim
CPRI IP core instance simulation files and scripts

<instance name>
CPRI IP core instance HDL files

altera_cpri
Contains the CPRI IP core instance top-level simulation file
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The altera_xcvr_det_latency directory contains the files to simulate the Altera 
Deterministic Latency PHY IP core that is generated as part of your CPRI IP core. It 
also contains a mentor subdirectory with IEEE encrypted files to simulate the PHY IP 
core efficiently.

Simulating the Design 
During the design process, to check your design quickly, you can simulate your CPRI 
IP core with any of several Altera-supported EDA simulation tools. 

f For more information about these tools and how to simulate designs created using the 
Quartus II software, refer to the “Simulation” section in volume 3 of the Quartus II 
Handbook.

Most CPRI IP core variations support a demonstration testbench. You can simulate 
your CPRI IP core variation using its IP functional simulation model and 
demonstration testbench. The IP functional simulation model, and testbench files for 
the CPRI IP core variations that support demonstration testbenches, are generated in 
your project directory when you generate your CPRI IP core. The testbench files 
include scripts to compile and run the demonstration testbench. The testbench 
demonstrates how to instantiate a model in a design and includes simple stimuli to 
control the user interfaces of the CPRI IP core.

1 The autorate negotiation testbench is generated in VHDL, and the non-autorate 
negotiation testbench is generated in System Verilog. If you specify Verilog HDL in 
the parameter editor, it generates a Verilog HDL IP functional simulation model for 
the CPRI IP core. If you specify VHDL, the parameter editor generates a VHDL IP 
functional simulation model for the CPRI IP core. Testbenches are generated as 
supported by the CPRI IP core variation you specify if you turn on Generate Example 
Design. You can use the Verilog HDL functional simulation model with the VHDL 
demonstration testbench for simulation, or vice versa, using a mixed-language 
simulator.

For a complete list of models or libraries required to simulate the CPRI IP core, refer to 
the compile.tcl scripts provided with the demonstration testbenches described in 
Chapter 8, CPRI IP Core Demonstration Testbench and in Appendix C, CPRI Autorate 
Negotiation Testbench. If you turn on Generate Example Design for a variation 
without a demonstration testbench, you can view the example scripts in the generated 
testbench directory, and use them as a basis to assist you in building your own 
testbench.

Not all variations provide demonstration testbenches. To run a demonstration 
testbench, you must generate a variation that provides a working testbench. To ensure 
your CPRI variation has a non-autorate negotiation testbench you can simulate, set 
the following values in the CPRI parameter editor:

■ Operation mode must have the value of Master.

■ If the CPRI variation has a MAP interface, Mapping mode must have the value of 
All or Basic.

■ If the CPRI variation has a MAP interface, Enable MAP interface synchronization 
with core clock must be turned off.
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To ensure your CPRI variation has an autorate negotiation testbench, set the following 
values in the CPRI parameter editor:

■ Operation mode must have the value of Master.

■ Enable auto-rate negotiation must be turned on.

■ Include MAC block must be turned on.

■ Number of antenna-carrier interfaces must have the value of zero.

■ Include HDLC block must be turned off.

Refer to Chapter 3, Parameter Settings for information about these parameter values. 

Refer to Chapter 8, CPRI IP Core Demonstration Testbench for more information 
about the non-autorate negotiation testbench and to Appendix C, CPRI Autorate 
Negotiation Testbench for more information about the autorate negotiation testbench.

f For information about IP functional simulation models, refer to the Simulating Altera 
Designs chapter in volume 3 of the Quartus II Handbook.

Integrating the CPRI IP Core in a Design
To compile the CPRI IP core and configure it on a device, you must integrate it in a 
Quartus II project that provides additional functionality and constraints.

Supporting the Transceivers
When you integrate your CPRI IP core variation in your design, observe the following 
connection requirements:

■ In Arria II, Cyclone IV GX, and Stratix IV GX designs:

■ Ensure that you connect the calibration clock (gxb_cal_blk_clk) to a clock 
signal with the appropriate frequency range of 10–125 MHz. The cal_blk_clk 
ports on other components that use transceivers must be connected to the same 
clock signal.

■ Add a dynamic reconfiguration block (altgx_reconfig) and connect it as 
specified in the Arria II Device Handbook, Cyclone IV Device Handbook, or 
Stratix IV Device Handbook. This block supports offset cancellation to 
compensate for analog voltages offset from required ranges due to process 
variations. This block is not required for CPRI IP core autorate negotiation to 
function correctly. The design compiles without the altgx_reconfig block, but 
it cannot function correctly in hardware. 

■ In Arria V, Cyclone V, and Stratix V designs, add an Altera Transceiver 
Reconfiguration Controller and connect it as specified in the Altera Transceiver PHY 
IP Core User Guide. This block supports offset cancellation to compensate for 
analog voltages offset from required ranges due to process variations. The design 
does compile without the Altera Transceiver Reconfiguration Controller, with a 
critical warning, but it cannot function correctly in hardware.
CPRI IP Core June 2014 Altera Corporation
User Guide

http://www.altera.com/literature/hb/arria-ii-gx/arria-ii-gx_handbook.pdf
http://www.altera.com/literature/hb/cyclone-iv/cyclone4-handbook.pdf
http://www.altera.com/literature/hb/stratix-iv/stratix4_handbook.pdf
http://www.altera.com/literature/ug/xcvr_user_guide.pdf
http://www.altera.com/literature/ug/xcvr_user_guide.pdf
http://www.altera.com/literature/hb/qts/qts_qii53025.pdf
http://www.altera.com/literature/hb/qts/qts_qii53025.pdf


Chapter 2: Getting Started 2–9
Compiling and Programming the Device
Specifying Constraints
Altera provides a Synopsys Design Constraints (.sdc) file that you must apply to 
ensure that the CPRI IP core meets design timing requirements. In most cases the 
script requires modification for your design. For modification guidelines, refer to 
Appendix F, Integrating the CPRI IP Core Timing Constraints in the Full Design.

In addition, before you compile your system to generate an SRAM Object File (.sof) 
with which to configure your device, Altera recommends that you create assignments 
for the high-speed transceiver VCCH settings. 

To create assignments for the high-speed transceiver VCCH settings, perform the 
following steps:

1. In the Quartus II window, on the Assignments menu, click Assignment Editor.

2. In the <<new>> cell in the To column, type the top-level signal name for your 
CPRI IP core instance gxb_txdataout signal. 

3. Double-click in the Assignment Name column and click I/O Standard. 

4. Double-click in the Value column and click your standard (for example, 1.5-V 
PCML).

5. In the new <<new>> row, repeat steps 2 to 4 for your CPRI IP core instance 
gxb_rxdatain signal.

f For information about timing analyzers, refer to the Quartus II Help and the “Timing 
Analysis” section in volume 3 of the Quartus II Handbook.

Compiling and Programming the Device
You can use the Start Compilation command on the Processing menu in the 
Quartus II software to compile your design. After successfully compiling your design, 
program the targeted Altera device with the Programmer and verify the design in 
hardware.

1 Before compiling your CPRI IP core or other incomplete CPRI design in the Quartus II 
software, you must assign unconnected CPRI IP core signals to virtual pins.

f For information about compiling your design in the Quartus II software, refer to the 
Quartus II Incremental Compilation for Hierarchical and Team-Based Design chapter in 
volume 1 of the Quartus II Handbook. For information about programming an Altera 
device, refer to the “Device Programming” section in volume 3 of the Quartus II 
Handbook.

Instantiating Multiple CPRI IP Cores
If you want to instantiate multiple CPRI IP cores in an Arria II, Cyclone IV GX, or 
Stratix IV GX device, to ensure your design optimizes its use of device pins, you must 
observe the following additional requirements:
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■ You must ensure that the gxb_cal_blk_clk input and gxb_powerdown signals are 
connected according to the requirements for your target device family.

■ You must ensure that a single calibration clock source drives the 
gxb_cal_blk_clk input to each CPRI IP core (or any other IP core or user logic 
that uses the ALTGX IP core). 

■ When you merge multiple CPRI IP cores in a single transceiver block, the same 
signal must drive gxb_powerdown to each of the CPRI IP core variations and 
other IP cores, Altera IP cores, and user logic that use the ALTGX IP core. 

■ You must ensure that the instances each have different starting channel numbers.

Multiple CPRI IP cores in a single device must use distinct transceiver channels. 
You enforce this restriction by specifying different starting channel numbers for 
the distinct CPRI IP cores. Refer to Chapter 3, Parameter Settings.

■ To configure multiple CPRI IP cores in a single transceiver block, you must specify 
in your Quartus Settings File (.qsf) that these CPRI link data lines are configured 
in the same GXB_TX_PLL_RECONFIG_GROUP, using the following syntax for each 
outgoing CPRI link cN_gxb_txdataout:

set_instance_assignment -name GXB_TX_PLL_RECONFIG_GROUP 1 -to cN_gxb_txdataout
CPRI IP Core June 2014 Altera Corporation
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3. Parameter Settings
You customize the CPRI IP core by specifying parameters in the CPRI parameter 
editor, which you access from the IP Catalog (Tools > IP Catalog).

This chapter describes the parameters and how they affect the behavior of the CPRI IP 
core. You can modify parameter values to specify the following CPRI IP core 
properties:

■ Default clocking mode—whether this CPRI IP core instance is configured initially 
with slave clocking mode (RE slave) or with master clocking mode (REC or RE 
master).

■ Line rate.

■ Autorate negotiation—whether this CPRI IP core instance supports the connection 
of external logic to implement autorate negotiation. 

■ Starting channel number. This option is available only in the following devices:

■ Arria II GX and Arria II GZ

■ Cyclone IV

■ Stratix IV

■ Depth of the low-level receiver elastic buffer.

■ Transceiver reference clock frequency. This option is available only in Arria V, 
Cyclone V, and Stratix V devices.

■ Ethernet MAC—whether to include an internal Ethernet MAC block or provide an 
MII to connect to an external Ethernet module. These two options are mutually 
exclusive.

■ HDLC block—whether to include an internal HDLC block or not.

■ Number of antenna-carrier interfaces.

■ Whether the antenna-carrier interfaces are clocked by the CPRI IP core clock 
cpri_clkout or by external clocks.

■ Mapping modes—select the mode: All, Basic, Advanced1, Advanced2, and 
Advanced3.

■ Whether to include an automatic round-trip delay calibration block or not.

■ Whether to allow vendor-specific space (VSS) access through the CPU interface or 
not.

Physical Layer Parameters
This section lists the parameters that affect the configuration of the physical layer of 
the CPRI IP core.
CPRI IP Core
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Operation Mode Parameter
The Operation mode parameter specifies whether the CPRI IP core is configured with 
slave clocking mode or with master clocking mode. An REC is configured with master 
clocking mode.

The value of this parameter determines the initial operation mode of the CPRI IP core. 
In IP core variations that target an Arria V, Cyclone V, or Stratix V device, you can 
modify the IP core operation mode dynamically by modifying the value of the 
operation_mode bit of the CPRI_CONFIG register (Table 7–6 on page 7–4). 

In your design, you must connect the clocks appropriately for the operation mode. 
Refer to “Clock Diagrams for the CPRI IP Core” on page 4–5.

For information about how to dynamically switch the clock mode of your CPRI IP 
core in variations that target an Arria V, Cyclone V, or Stratix V device, refer to 
“Dynamically Switching Clock Mode” on page 4–9.

Line Rate Parameter
The Line rate parameter specifies the line rate on the CPRI link in gigabits per second 
(Gbps). Table 3–1 lists the CPRI line rates that each device family supports. A 
checkmark indicates a supported variation.

Table 3–1. Device Family Support for CPRI Line Rates (1)

Device Family
or Variant

CPRI Line Rate (Gbps)

0.6144 1.2288 2.4576 3.072 4.9152 6.144 9.8304

Arria II GX v v v v v v —

Arria II GZ v v v v v v —

Arria V GX v v v v v v —

Arria V GT v v v v v v v
Arria V GZ v v v v v v v
Cyclone IV GX v v v v — — —

Cyclone V GX v v v v — — —

Stratix IV GX v v v v v v —

Stratix V GX v v v v v v v
Stratix V GT v v v v v v v
Note to Table 3–1:

(1) Refer to Table 1–3 on page 1–5 for information about the device speed grades that support each CPRI line rate. 
The parameter editor does not enforce these restrictions. However, if you target a device whose speed grade does 
not support the CPRI line rate you configure, compilation fails because the design cannot meet timing in hardware.
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Enable Autorate Negotiation
Autorate negotiation is the process of stepping down from a higher target CPRI line 
rate to a lower target CPRI line rate if you are unable to establish a link at the higher 
line rate. If your CPRI IP core has autorate negotiation enabled, and you program it to 
step down from its highest target CPRI line rate to its lower target CPRI line rates 
when it does not achieve frame synchronization, your CPRI IP core achieves frame 
synchronization at the highest possible CPRI line rate in its range of potential line 
rates, depending on the capability of its CPRI partner.

For information about the autorate negotiation feature, refer to Appendix B, 
Implementing CPRI Link Autorate Negotiation. 

Turn on the Enable auto-rate negotiation parameter to specify that your CPRI IP core 
supports autorate negotiation. By default, this parameter is turned off.

Transceiver Starting Channel Number
You can specify the starting number for the CPRI IP core transceiver. For a CPRI IP 
core master, the Master transceiver starting channel number specifies the starting 
channel number for the transceiver. 

For a CPRI IP core configured with slave clocking mode, the Slave transmitter 
starting channel number and Slave receiver starting channel number are two 
separate parameters. Both must have values that are starting channel numbers 
available in your design. The two numbers must be different but the Quartus II 
software creates an FPGA configuration with a single slave transceiver.

If you instantiate multiple CPRI IP cores on the same device, you must ensure each 
uses distinct transceiver channels.

These parameters are not available in Arria V, Cyclone V, and Stratix V devices.

Rx Elastic Buffer Depth
You can specify the depth of the Rx elastic buffer in the CPRI Receiver block. The 
Receiver buffer depth value is the log2 of the Rx elastic buffer depth. Allowed values 
are 4 to 8, inclusive.

The default depth of the Rx elastic buffer is 64, specified by the Receiver buffer depth 
parameter default value of 6. For most systems, the default Rx elastic buffer depth is 
adequate to handle dispersion, jitter, and drift that can occur on the link while the 
system is running. However, the parameter is available for cases in which additional 
depth is required.

1 Altera recommends that you set Receiver buffer depth to 4 in CPRI RE slave 
variations. 

CPRI IP core variations configured at a CPRI line rate of 9830.4 Mbps that target an 
Arria V GT device do not include an Rx elastic buffer. However, this parameter affects 
the depth of the RX buffer between the soft PCS and the Altera Transceiver Native 
PHY IP core, instead. Refer to Figure 4–4 on page 4–8 and Figure 4–5 on page 4–9.

f For information about the Altera Transceiver Native PHY IP core, refer to the Altera 
Transceiver PHY IP Core User Guide.
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The value you specify for Receiver buffer depth is referred to as WIDTH_RX_BUF in 
this user guide.

For more information about the Rx elastic buffer, refer to “Rx Elastic Buffer” on 
page 4–54.

Transceiver Reference Clock Frequency
If your CPRI variation targets an Arria V, Cyclone V, or Stratix V device, the 
Transceiver reference clock frequency parameter is available. Use this parameter to 
modify the expected frequency of the CPRI transceiver input reference clock to the 
frequency of an available clock for your design. 

The frequency you specify is an input parameter to the Altera Deterministic Latency 
PHY IP core that is included in your Arria V, Cyclone V, or Stratix V CPRI variation. 
Values available at each CPRI line rate are the reference clock frequencies for which 
the Deterministic Latency PHY IP core supports the target CPRI line rate. The default 
value is 122.88 MHz. 

In the case of an Arria V GT variation configured with CPRI line rate 9830.4 Mbps, the 
frequency is an input parameter to the Altera Native PHY IP core. 

f For more information about the Altera Deterministic Latency PHY IP core and the 
Altera Native PHY IP core, refer to the Altera Transceiver PHY IP Core User Guide.

Automatic Round-Trip Delay Calibration
Turn on the Automatic round-trip delay calibration parameter to specify that your 
CPRI IP core includes the calibration logic. By default, the parameter is turned off.

f For more information on automatic round-trip calibration delay feature, refer to 
“Dynamic Pipelining for Automatic Round-Trip Delay Calibration” on page E–19

Data Link Layer Parameters
This section lists the parameter that affects the configuration of the data link layer of 
the CPRI IP core.

Include MAC Block
Turn on the Include MAC block parameter to specify that your CPRI IP core includes 
an internal Ethernet MAC block. By default, this parameter is turned off. If this 
parameter is turned off, the CPRI IP core implements the media-independent 
interface (MII) to your own external Ethernet MAC, instead.

If this parameter is turned off in your CPRI IP core, your application cannot access the 
Ethernet registers. Attempts to access these registers read zeroes and do not write 
successfully, as for a reserved register address. 

For information about the internal Ethernet MAC block, refer to “Accessing the 
Ethernet Channel” on page 4–47.

For information about the MII, refer to “Media Independent Interface to an External 
Ethernet Block” on page 4–37.
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Include HDLC Block
Turn on the Include HDLC block parameter to specify that your CPRI IP core 
includes an internal HDLC block. By default, this parameter is turned off. 

If this parameter is turned off in your CPRI IP core, your application cannot access the 
HDLC registers. Attempts to access these registers read zeroes and do not write 
successfully, as for a reserved register address. 

For information about the HDLC block, refer to “Accessing the HDLC Channel” on 
page 4–50.

Application Layer Parameters
This section lists the parameters that affect the configuration of the application layer 
of the CPRI IP core.

Mapping Mode
The Mapping mode(s) parameter specifies whether your CPRI IP core MAP interface 
supports a programmable AxC mapping mode or is configured with a specific 
mapping mode. Table 3–2 lists the supported values.

Table 3–2. MAP Interface AxC Mapping Mode Support (Part 1 of 2)

Value Description

All

If you select this value, you configure a CPRI IP core which you can program 
dynamically to be in any mapping mode. In this case, you determine the current 
mapping mode for your CPRI IP core by programming the map_mode field of the 
CPRI_MAP_CONFIG register (0x100). 

For backward compatibility with previous releases of the CPRI IP core, the value of 
All is the default value for this parameter. 

For information about the map_mode register field, refer to Table 7–31 on 
page 7–15.

Basic

Your CPRI IP core MAP interface is configured to function in basic mapping mode 
only. This mapping mode has the following features:

■ Conforms to the description in Sections 4.2.7.2.2 and 4.2.7.2.3 of the CPRI 
Specification V4.2 Interface Specification.

■ Supports communication that complies with the LTE/E-UTRA or UMTS/WCDMA 
standard.

For information about the basic mapping mode in the CPRI IP core, refer to “MAP 
Interface Mapping Modes” on page 4–13.

Advanced 1

Your CPRI IP core MAP interface is configured in a single AxC mapping mode only, 
a mode that has the following features:

■ Conforms to Method 1: IQ Sample Based described in Section 4.2.7.2.5 of the 
CPRI Specification V4.2 Interface Specification.

■ Supports communication that complies with the WiMAX standard. 

For information about this AxC mapping mode, refer to Appendix D, Advanced AxC 
Mapping Modes. 
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Number of Antenna-Carrier Interfaces
The Number of antenna/carrier interfaces parameter specifies the number of 
antenna-carrier interfaces, or data channels, in your CPRI IP core. The supported 
values are 0 to 24. Set this parameter to the maximum number of data channels you 
expect your CPRI IP core to use at the same time.

If this parameter has the value of zero, your CPRI IP core does not implement the 
CPRI MAP interface. For example, you might use this option if your CPRI IP core 
passes IQ data samples through the AUX interface to an external custom mapping 
function that you provide. The default value of this parameter is zero.

The combination of CPRI IP core line rate, sampling width, and sampling rate restricts 
the number of active antenna-carrier interfaces your CPRI IP core can support. For 
example, if your CPRI IP core operates at line rate 3.072 Gbps, it can support as many 
as 20 active antenna-carrier interfaces, but if your CPRI IP core operates at line rate 
1.2288 Gbps, it can support a maximum of eight active antenna-carrier interfaces. For 
details, refer to Table 4–5 and Table 4–6 on page 4–17. 

You can specify in software that some of the antenna-carrier interfaces that you 
configure in your CPRI IP core are not active. This feature allows you to change the 
number of active and enabled data channels dynamically. 

1 The software configuration feature allows you to modify the number of active 
antenna-carrier interfaces. If you modify this number, you must keep in mind the 
restrictions for your current CPRI line rate. Otherwise, data is dropped in the 
mapping to and from the individual antenna-carrier interfaces.

Advanced 2

Your CPRI IP core MAP interface is configured in a single AxC mapping mode only, 
a mode that has the following features:

■ Conforms to Method 3: Backward Compatible described in Section 4.2.7.2.4 of 
the CPRI Specification V4.2 Interface Specification.

■ Supports communication that complies with the WiMAX or LTE/E-UTRA 
standard. 

For information about this AxC mapping mode, refer to Appendix D, Advanced AxC 
Mapping Modes. 

Advanced 3

Your CPRI IP core MAP interface is configured in a single AxC mapping mode only, 
a legacy mode that has the following features:

■ Conforms to Method 1: IQ Sample Based described in Section 4.2.7.2.5 of the 
CPRI Specification V4.2 Interface Specification.

■ Supports communication that complies with the LTE/E-UTRA standard.

This mode does not support 16-bit wide IQ data samples. Refer to Table 7–31 on 
page 7–15.

For information about this AxC mapping mode, refer to Appendix D, Advanced AxC 
Mapping Modes. 

Table 3–2. MAP Interface AxC Mapping Mode Support (Part 2 of 2)

Value Description
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If you set the map_ac field of the CPRI_MAP_CNT_CONFIG register to a number N that is 
lower than the value you specify for Number of antenna/carrier interfaces, then the 
first N data channels are active and the others are not. In addition, for each 
antenna-carrier interface you can use the relevant map_rx_enable bit of the 
CPRI_IQ_RX_BUF_CONTROL register and the relevant map_tx_enable bit of the 
CPRI_IQ_TX_BUF_CONTROL register to enable or disable the specific data channel and 
direction. A data channel must be configured, active, and enabled to function. If it is 
configured and active but not enabled, or if it is configured but not active, data to and 
from it is ignored.

The value you specify for Number of antenna/carrier interfaces is referred to as 
N_MAP in this user guide.

For more information about the antenna-carrier interfaces in a CPRI IP core, refer to 
“MAP Interface” on page 4–12.

Enable Internally-Clocked Synchronization Mode
If you configure one or more antenna-carrier interfaces, the option to Enable MAP 
interface synchronization with core clock is available. If you turn on this option, both 
the MAP receiver interface and the MAP transmitter interface are clocked with the 
CPRI IP core internal clock, cpri_clkout. If you turn off this option, these interfaces 
are clocked with individual Rx and Tx clocks for each antenna-carrier interface. By 
default, this option is turned off.

If you turn on this option, the CPRI IP core coordinates communication on these 
interfaces in the internally-clocked synchronization mode. Turning on this option 
simplifies synchronization of data transfers to and from the antenna-carrier interfaces. 

The Boolean value you specify for Enable MAP interface synchronization with core 
clock is referred to as SYNC_MAP in this user guide. Table 3–3 shows the 
correspondence between the parameter, the MAP interface synchronization mode, 
and the clocks that clock the antenna-carrier interfaces.

For more information about these clocks, refer to “Clocking Structure” on page 4–3. 
For more information about the synchronization modes for the Rx and Tx MAP 
interfaces, and how they vary depending on your selection of this option, refer to 
“MAP Interface” on page 4–12.

Vendor-Specific Space (VSS) Access through CPU Interface
When you turn on this option, you can access the VSS control words through the CPU 
interface using the CPRI_CTRL_INDEX, CPRI_TX_CTRL, and CPRI_RX_CTRL registers. 
Additionally, you can access other control words within a hyperframe. If this option is 
turned off, you access all the control words directly through the AUX interface 
instead.

Table 3–3. Meaning of Enable Map Interface synchronization with core clock Parameter

Enable MAP interface 
synchronization with core clock SYNC_MAP MAP Interface 

Synchronization Mode Clocks for Antenna-Carrier Interfaces

On 1 Internally-clocked mode cpri_clkout

Off 0 Synchronous buffer or 
FIFO mode

mapN_rx_clk, mapN_tx_clk, for 
antenna-carrier interfaces N = 1 ... (N_MAP – 1)
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1 Use this option with caution. During transmission, this feature has higher priority 
than all other interfaces (such as CPU, Ethernet, HDLC, Ethernet, and MII) except the 
AUX interface, and will overwrite standard control words in the hyperframe.

f For more information about the registers, refer to “Accessing the Hyperframe Control 
Words” on page 4–42
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4. Functional Description
The CPRI protocol interface complies with the CPRI Specification V5.0. The 
specification divides the protocol into a two-layer hierarchy: a physical layer (layer 1) 
and a data link layer (layer 2). The specification describes the following three 
communication planes: 

■ User data

■ Control and management (C&M)

■ Timing synchronization information

f More detailed information about the CPRI specification is available from the CPRI 
website at www.cpri.info.

The Altera CPRI IP core implements layer 1 and layer 2 of the specification in the 
CPRI protocol interface module. This chapter describes the individual data and 
control interfaces available to you and how the data on these interfaces is loaded and 
unloaded from the CPRI frame.

This chapter contains the following sections:

■ Architecture Overview

■ Clocking Structure

■ Reset Requirements

■ MAP Interface

■ Auxiliary Interface

■ Media Independent Interface to an External Ethernet Block

■ CPU Interface

■ Accessing the Hyperframe Control Words

■ Accessing the Ethernet Channel

■ Accessing the HDLC Channel

■ CPRI Protocol Interface Layer (Physical Layer)
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Architecture Overview
Figure 4–1 shows the main blocks of the CPRI IP core.

The Altera CPRI IP core supports the following interfaces:

■ MAP Interface

■ Auxiliary Interface

■ Media Independent Interface to an External Ethernet Block

■ CPU Interface

■ CPRI link interface described in CPRI Protocol Interface Layer (Physical Layer)

Information about the signals on the individual interfaces is available in the following 
sections and in Chapter 6, Signals. 

The following sections describe the individual interfaces and clocks. 

Figure 4–1. CPRI IP Core Block Diagram

Notes to Figure 4–1:

(1) You can configure your CPRI IP core with zero, one, or multiple IQ data channels.
(2) You can configure your CPRI IP core with an Ethernet MAC block or an MII block. The two options are mutually exclusive. 
(3) You can configure your CPRI IP core with or without an HDLC block.
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Clocking Structure
The CPRI IP core has a variable number of clock domains. The clock domains in your 
CPRI IP core variation depend on the following factors:

■ Number of antenna-carrier interfaces.

■ Whether the MII is configured.

■ Whether the antenna-carrier interfaces are clocked internally. Refer to “Enable 
Internally-Clocked Synchronization Mode” on page 3–7.

■ Target device family.

■ In one case, different CPRI line rates.

The input clock frequency requirements depend on the target device family and CPRI 
line rate. Refer to Table 4–2 on page 4–10 for these requirements.

You can configure a CPRI IP core in master or slave clocking mode, as described in 
“Operation Mode Parameter” on page 3–2. REC configurations and RE master 
configurations use master clocking mode, and RE slave configurations use slave 
clocking mode. Your design must handle some of the transceiver input clocks 
differently in the two different clocking modes. The clocking diagrams in “Clock 
Diagrams for the CPRI IP Core” on page 4–5 describe the requirements.

The CPRI IP core supports dynamic switching between master and slave clocking 
modes in Arria V, Cyclone V, and Stratix V devices. This section describes how to 
connect the CPRI IP core input clock signals to support dynamic clock mode 
switching and how to dynamically switch the clock mode in your CPRI IP core. 

Table 4–1 describes the individual clocks. The clocking diagrams in Figure 4–2 on 
page 4–6 to Figure 4–4 on page 4–8 show the clocks and clock domain boundaries. 
Table 4–2 on page 4–10 lists the clock frequencies for the different CPRI IP core 
variations.

CPRI IP Core Clocks
Table 4–1 describes the clock domains in the CPRI IP core.

For more information about these clocks, including driver requirements, refer to 
Chapter 6, Signals. For expected input clock frequencies refer to Chapter 6, Signals 
and to Table 4–2 on page 4–10.

Table 4–1. CPRI IP Core Clocks (Part 1 of 3)

Clock Name Direction Configuration 
Requirements Description

cpri_clkout Output Present in all 
CPRI IP cores

Main clock for the CPRI IP core. The CPRI IP core derives this clock 
from the transceiver transmit PLL, and the frequency of this clock 
depends on the CPRI line rate. For more information refer to “CPRI 
Communication Link Line Rates” on page 4–10.
June 2014 Altera Corporation CPRI IP Core
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mapN_tx_clk
for N in 
0..(N_MAP–1)

Input

Present in 
variations 
configured with 
N_MAP > 0 
antenna-carrier 
interfaces and 
with Enable MAP 
interface 
synchronization 
with core clock 
turned off

Expected rate of received data on antenna-carrier interface N. The 
frequency of this clock is the sample rate on the incoming 
antenna-carrier interface. For more information about data channel 
sample rates, refer to Table 4–5 and Table 4–6 on page 4–17.

mapN_rx_clk
for N in 
0..(N_MAP–1)

Input

Clocks the transmissions of antenna-carrier interface N. The 
frequency of this clock is the sample rate on the outgoing 
antenna-carrier interface. For more information about data channel 
sample rates, refer to Table 4–5 and Table 4–6 on page 4–17.

clk_ex_delay Input Present in all 
CPRI IP cores

Clock for extended delay measurement. For more information refer to 
“Extended Rx Delay Measurement” on page E–6.

cpri_mii_txclk Output
Present in 
variations 
configured with 
an MI interface

Clocks the MII transmitter module. This clock has the same 
frequency as the cpri_clkout clock. The frequency depends on the 
CPRI line data rate. Refer to “CPRI Communication Link Line Rates” 
on page 4–10.

cpri_mii_rxclk Output

Clocks the MII receiver module. This clock has the same frequency as 
the cpri_clkout clock. The frequency depends on the CPRI line 
data rate. Refer to “CPRI Communication Link Line Rates” on 
page 4–10.

cpu_clk Input Present in all 
CPRI IP cores

Controls the input to the CPU interface of the CPRI IP core and drives 
the CPU interface. Assumed to be asynchronous with the 
cpri_clkout clock. The maximum frequency is constrained by fMAX 
and can vary based on the device family and speed grade.

gxb_refclk Input Present in all 
CPRI IP cores

Reference clock for the transceiver PLLs. In master clocking mode, 
this clock drives both the receiver PLL and the transmitter PLL in the 
transceiver. In slave clocking mode, this clock drives the receiver 
PLL.
In master clocking mode, you must tie this input to the same source 
as gxb_pll_inclk.

gxb_cal_blk_clk Input

Not present in 
variations that 
target an Arria V, 
Cyclone V, or 
Stratix V device

Transceiver calibration-block clock.

reconfig_clk Input Present in all 
CPRI IP cores Transceiver dynamic reconfiguration block clock.

gxb_pll_inclk Input Present in all 
CPRI IP cores

Input clock to the transmitter PLL in a CPRI IP core configured in 
slave clocking mode. In master clocking mode, you must tie this 
input to the same source as gxb_refclk.

pll_clkout Output Present in all 
CPRI IP cores

Generated from transceiver clock data recovery circuit. Intended to 
connect to an external PLL for jitter clean-up in slave clocking mode.

Table 4–1. CPRI IP Core Clocks (Part 2 of 3)

Clock Name Direction Configuration 
Requirements Description
CPRI IP Core June 2014 Altera Corporation
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Clock Diagrams for the CPRI IP Core
Figure 4–2 and Figure 4–3 show the clocking schemes for CPRI IP cores configured as 
RE slaves, RE masters, and REC masters that do not target an Arria V GT device or 
that are not configured with a CPRI line rate of 9830.4 Mbps.

Figure 4–4 on page 4–8 and Figure 4–5 on page 4–9 show the clocking schemes for 
CPRI IP cores configured as RE slaves, RE masters, and REC masters with a CPRI line 
rate of 9830.4 Mbps that target an Arria V GT device. These variations have no clock 
divider and no Tx elastic buffer or Rx elastic buffer. However, they require two 
additional synchronized input clocks, usr_pma_clk and usr_clk. 

You must drive the usr_pma_clk and usr_clk clocks at the , which you must drive at 
the frequency of 122.88 MHz, and usr_clk, which you must drive at the frequency of 
245.76 MHz.

usr_pma_clk Input
Present in 
variations 
configured at 
9830.4 Gbps that 
target an 
Arria V GT device

Extra clock signal required to drive the PMA in these CPRI IP core 
variations. Refer to Table 6–15 on page 6–17 for driver frequency and 
synchronization requirements.

usr_clk Input
Extra clock signal required to drive the PCS in these CPRI IP core 
variations. Refer to Table 6–15 on page 6–17 for driver frequency and 
synchronization requirements.

Table 4–1. CPRI IP Core Clocks (Part 3 of 3)

Clock Name Direction Configuration 
Requirements Description
June 2014 Altera Corporation CPRI IP Core
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Clock Diagrams for Most CPRI IP Core Variations
Figure 4–2 shows the clock diagram for a CPRI IP core configured as an RE slave, 
unless the IP core is configured with CPRI line rate 9.830.4 Mbps and targets an 
Arria V GT device.

Figure 4–2. CPRI IP Core Slave Clocking Except for Arria V GT 9.8 Gbps Variations

Note to Figure 4–2:

(1) The clock divider factor depends on the device family. In device families with a factor of 1, the divider is not configured. Table 4–17 on page 4–59 
lists the datapath width and clock divider by device family.
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Figure 4–3 shows the clock diagram for a CPRI IP core configured as an REC master 
or as an RE master, unless the IP core is configured with CPRI line rate 9830.4 Mbps 
and targets an Arria V GT device.

Clock Diagrams for CPRI IP Core Arria V GT Variations at 9830.4 Mbps
CPRI IP core variations configured with a CPRI line rate of 9830.4 Mbps that target an 
Arria V GT device have a different clocking scheme. These variations have no clock 
divider, and have neither an RX elastic buffer nor a TX elastic buffer. 

These variations use two additional input clock signals, usr_clk and usr_pma_clk. 
Table 6–15 on page 6–17 describes the requirements for these two input clock signals.

When a variation configured with a CPRI line rate of 9830.4 Mbps that targets an 
Arria V GT device participates in autorate negotiation, you must modify the 
frequency of the usr_clk and usr_pma_clk input clocks to specific values for the 
different CPRI line rates. Refer to Appendix B, Implementing CPRI Link Autorate 
Negotiation.

Figure 4–3. CPRI IP Core Master Clocking Except for Arria V GT 9.8 Gbps Variations

Note to Figure 4–3:

(1) The clock divider factor depends on the device family. In device families with a factor of 1, the divider is not configured. Table 4–17 on page 4–59 
lists the datapath width and clock divider by device family.
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Figure 4–4 shows the clocking scheme for a CPRI IP core that targets an Arria V GT 
device and is configured with a CPRI line rate of 9830.4 Mbps, configured or 
programmed as an RE slave.

Figure 4–4. CPRI IP Core Slave Clocking in Arria V GT 9.8 Gbps Variations (1)

Notes to Figure 4–4:

(1) In slave clocking mode, the usr_clk and usr_pma_clk input clocks must be driven by a common source from the cleanup PLL. For additional 
constraints these clocks require, refer to Table 6–15 on page 6–17.
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Figure 4–5 shows the clocking scheme for a CPRI IP core that targets an Arria V GT 
device and is configured with a CPRI line rate of 9830.4 Mbps, configured or 
programmed as an REC or RE master.

Dynamically Switching Clock Mode
The CPRI IP core supports dynamic clock mode switching in variations that target an 
Arria V, Cyclone V, or Stratix V device, from master clock mode to slave clock mode 
and from slave clock mode to master clock mode. The value you select for Operation 
mode in the CPRI parameter editor determines the clock mode in which the IP core is 
configured initially. However, you can modify this value dynamically.

To switch the clock mode of your Arria V, Cyclone V, or Stratix V CPRI IP core, 
perform the following steps:

1. Ensure your design supports the input clock connection requirements for the clock 
mode to which you intend to switch the IP core. 

2. Implement the clock connection requirements for the intended new clock mode by 
switching the source that drives the gxb_pll_inclk signal. Refer to “Clock 
Diagrams for the CPRI IP Core” on page 4–5.

3. Write the new value to the operation_mode bit of the CPRI_CONFIG register. Refer to 
Table 7–6 on page 7–4 for the appropriate value.

4. Wait until you observe successful CPRI link resynchronization. Refer to 
Appendix A, Initialization Sequence.

Figure 4–5. CPRI IP Core Master Clocking in Arria V GT 9.8 Gbps Variations (1)

Notes to Figure 4–5:

(1) In master clocking mode, you must drive the gxb_pll_inclk and gxb_refclk input signals from a common source.
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CPRI Communication Link Line Rates
The CPRI specification specifies line rates of n × 614.4 Mbps for various values of n. 
The CPRI IP core supports different ranges of line rates in different device families. 
Table 3–1 on page 3–2 lists the CPRI line rate support available in the different device 
families.

Table 4–2 shows the relationship between line rates, default transceiver reference 
clock (gxb_refclk) rates, parallel recovered clock (pll_clkout) rates, and internal 
clock (cpri_clkout) rates. 

The cpri_clkout frequency depends only on the CPRI line rate. The pll_clkout 
frequency depends on the CPRI line rate and on the datapath width through the 
transceiver, except in Arria V, Cyclone V, and Stratix V devices. The pll_clkout 
frequency in an Arria V GT device depends on whether the IP core was originally 
configured with the CPRI line rate of 9.8304 Gbps, and whether or not the IP core 
CPRI line rate is modified dynamically through auto-rate negotiation. The datapath 
width is determined by device family, as shown in Table 4–17 on page 4–59.

The gxb_refclk clock is the incoming reference clock for the device transceiver’s PLL. 
Altera allows you to program the transceiver to work with any of a set of gxb_refclk 
frequencies that the PLL in the transceiver can convert to the required internal clock 
speed for the CPRI IP core line rate. The parameter editor in which you configure the 
gxb_refclk frequency depends on the target device family for your CPRI IP core 
variation.

Table 4–2. CPRI Link Line Rates and Clock Rates (1)

Line Rate 
(Mbps)

Clock Frequency (MHz)

Default gxb_refclk Frequency
(If line rate is supported) cpri_clkout 

Frequency 
(If line rate 

is 
supported)

pll_clkout Frequency
(If line rate is supported)

Arria II GX 
and 

Cyclone IV GX 
Devices

Arria II GZ 
and 

Stratix IV GX 
Devices

Arria V 
Cyclone V 

and 
Stratix V 
Devices

Arria II GX 
and 

Cyclone IV GX 
Devices

Arria II GZ 
and 

Stratix IV GX 
Devices

Arria V (2) 
Cyclone V 

and 
Stratix V 
Devices

Arria V GT
Devices 

Configure
at 9830.4

Mbps

614.4 61.44 61.44

(3)

15.36 61.44 61.44 61.44 —

1228.8 61.44 61.44 30.72 61.44 30.72 30.72 61.44

2457.6 122.88 61.44 61.44 122.88 61.44 61.44 122.88

3072 153.60 76.80 76.80 153.60 76.80 76.80 153.6

4915.2 (4) 245.76 122.88 122.88 245.76 122.88 122.88 61.44

6144 (4) 307.20 153.60 153.60 307.20 153.60 153.60 76.8

9830.4 (5) — — 245.76 — — 245.76 122.88

Notes to Table 4–2:

(1) In this table, device families can be grouped with other device families that do not support all of the same CPRI line rates. The values apply only fo
supported CPRI line rates for each device family.

(2) This column lists the pll_clkout frequencies for Arria V GX and Arria V GZ devices, as well as Arria V GT devices that are originally configured a
a CPRI line rate less than 9803.4 Mbps. 

(3) The value of gxb_refclk in CPRI IP cores that target a 28-nm device (Arria V, Cyclone V, or Stratix V device) is the Transceiver reference clock 
frequency parameter value that you set in the CPRI parameter editor.

(4) The CPRI IP core does not support CPRI line rates 4915.2 Mbps and 6144 Mbps in variations that target Cyclone IV GX or Cyclone V GX devices.
(5) The CPRI IP core supports CPRI line rate 9830.4 Mbps in variations that target Stratix V (GX or GT), Arria V GT, or Arria V GZ devices. The CPRI IP

core does not support CPRI line rate 9830.4 Mbps for any other devices, including Arria V GX devices.
CPRI IP Core June 2014 Altera Corporation
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Reset Requirements
When you generate a CPRI IP core variation that targets an Arria II, Cyclone IV GX, or 
Stratix IV GX device, you generate an ALTGX IP core with specific default settings. 
These default transceiver settings configure a transceiver that works correctly with 
the CPRI IP core when the input gxb_refclk clock has the frequency shown in 
Table 4–2. However, you can edit the ALTGX IP core instance to specify a different 
gxb_refclk frequency that is more convenient for your design, for example, to enable 
you to use an existing clock in your system as the gxb_refclk reference clock. 

When you generate a CPRI IP core variation that targets an Arria V, Cyclone V, or 
Stratix V device, you generate an Altera Deterministic Latency PHY IP core or Altera 
Native PHY IP core with specific default settings. However, you set the gxb_refclk 
frequency in the CPRI parameter editor. As described in Chapter 3, Parameter 
Settings, for these target devices the CPRI parameter editor provides a list of potential 
transceiver reference clock frequencies from which you select the frequency that is 
most convenient for your design.

Reset Requirements
The CPRI IP core has multiple independent reset signals.To reset the CPRI IP core 
completely, you must assert all the reset signals.

You can assert all reset signals asynchronously to any clock. However, each reset 
signal must be asserted for at least one full clock period of a specific clock, and be 
deasserted synchronously to the rising edge of that clock. For example, the CPU 
interface reset signal, cpu_reset, must be deasserted on the rising edge of cpu_clk. 
Table 4–3 lists the reset signals and their corresponding clock domains.

Table 4–3. Reset Signals and Corresponding Clock Domains

Reset Signal Clock Domain Description

reset reconfig_clk
Resets the CPRI protocol interface. Drives the 
reset controller.

gxb_powerdown —

Powers down and resets the high-speed 
transceiver block. For setup and hold times, 
refer to the relevant device handbook. This 
signal is not present in CPRI IP core variations 
that target an Arria V, Cyclone V, or Stratix V 
device.

reset_ex_delay clk_ex_delay Resets the extended delay measurement block.

config_reset cpri_clkout Resets the registers to their default values.

cpu_reset cpu_clk Resets the CPU interface.

mapN_rx_reset mapN_rx_clk
Resets the MAP Channel N receiver block in 
FIFO or synchronous buffer MAP 
synchronization mode.

mapN_tx_reset mapN_tx_clk
Resets the MAP Channel N transmitter block in 
FIFO or synchronous buffer MAP 
synchronization mode.
June 2014 Altera Corporation CPRI IP Core
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You must implement logic to ensure the minimal hold time and synchronous 
deassertion of each reset input signal to the CPRI IP core. Figure 4–6 shows a circuit 
that ensures these conditions for one reset signal.

For more information about the requirements for reset signals, refer to Chapter 6, 
Signals.

The CPRI IP core has a dedicated reset control module to enforce the specific reset 
requirements of the high-speed transceiver module. This reset controller generates the 
recommended reset sequence for the transceiver. The reset signal controls the reset 
control module.

In Arria V, Cyclone V, and Stratix V devices, the Altera Deterministic Latency PHY IP 
core or Altera Native PHY IP core that is generated with the CPRI IP core implements 
the reset controller. In earlier device families, the reset control module is internal to 
the CPRI IP core, but external to the ALTGX IP core instance generated with the CPRI 
IP core.

After reset, your software must perform link synchronization and other initialization 
tasks. For information about the required initialization sequence following CPRI IP 
core reset, refer to Appendix A, Initialization Sequence.

MAP Interface
The CPRI IP core MAP interface comprises the individual antenna-carrier interfaces, 
or data channels, through which the CPRI IP core transfers IQ sample data to and 
from the RF implementation. The MAP interface is implemented as an incoming and 
an outgoing Avalon-ST interface. The Avalon-ST interface provides a standard, 
flexible, and modular protocol for data transfers from a source interface to a sink 
interface.

f For information about the Avalon-ST interface, refer to Avalon Interface Specifications.

Figure 4–6. Circuit to Ensure Synchronous Deassertion of Reset Signal
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MAP Interface
The CPRI IP core communicates with the RF implementations (antenna-carriers) 
through multiple AxC interfaces, or data channels. A CPRI IP core configured with a 
MAP interface module can have as many as 24 data channels, and as few as one data 
channel. If a CPRI IP core is configured with zero data channels, it does not have a 
MAP interface module. The Number of antenna/carrier interfaces value you set in 
the parameter editor determines the number of channels in your CPRI IP core 
configuration. Each data channel communicates with the corresponding RF 
implementation using two 32-bit Avalon-ST interfaces, one interface for incoming 
communication and one interface for outgoing communication.

The MAP interface module controls transmission and reception of data on the AxC 
interfaces. 

1 The MAP interface does not support GSM mapping. You must implement this CPRI 
V5.0 Specification feature using the CPRI IP core AUX interface.

This section contains the following topics:

■ MAP Interface Mapping Modes

■ MAP Receiver Interface

■ MAP Transmitter Interface

MAP Interface Mapping Modes
The CPRI IP core supports basic and advanced MAP interface mapping modes. 

In the basic mapping mode, all of the AxC interfaces use the same sample rate and 
sample width, and the uplink and downlink sample rates are identical.

In the advanced mapping modes, different data channels can use different sample 
rates, and the sample rates need not be integer multiples of 3.84 MHz. However, all 
data channels use the same sample width. 

If you select All as the value for Mapping mode(s) in the CPRI parameter editor, the 
map_mode field of the CPRI_MAP_CONFIG register determines the mapping mode your 
CPRI IP core implements currently. Otherwise, the value you specify for this 
parameter determines the single mapping mode your CPRI IP core implements. 

Table 4–4 lists the MAP interface mapping modes the CPRI IP core supports and how 
to configure or program your IP core in each mapping mode. 

Table 4–4. Determining the MAP Interface Mapping Mode (Part 1 of 2)

 Mapping mode(s) 
Parameter Value

Value Programmed in 
map_mode field of 
CPRI_MAP_CONFIG 

Register

Mapping 
Mode Mode Description

Basic Don’t Care
Basic In current section

All 2’b00
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Configuring your IP core with the All mapping mode provides you the flexibility to 
modify the mapping mode dynamically, but configuring your IP core with the specific 
mapping mode you expect to use generates a smaller IP core.

Basic AxC Mapping Mode
The basic mapping mode supports the LTE/E-UTRA and UMTS/WCDMA 
standards. This mapping mode is implemented when you configure and program 
your CPRI IP core in either of the following ways:

■ If you select Basic as the value for Mapping mode(s) in the CPRI parameter editor.

■ If you select All as the value for Mapping mode(s) in the CPRI parameter editor 
and you program the map_mode field of the CPRI_MAP_CONFIG register with the 
value of 2’b00. 

In this basic mapping mode, all of the AxC interfaces use the same sample rate and 
sample width. The CPRI IP core supports sample rates of 3.84 × 106 through 
30.72 × 106 (3.84 × 106 × 8) samples per second, in increments of 3.84 × 106, and sample 
widths of 15 bits and 16 bits. The uplink and downlink sample rates are identical.

In this mode, the map_ac field of the CPRI_MAP_CNT_CONFIG register specifies the 
number of active data channels, that is, those that have a corresponding AxC 
container in the IQ data block of each basic frame. This number must be less than or 
equal to the N_MAP value you selected for Number of antenna/carrier interfaces in 
the parameter editor, which is the number of channels configured in the CPRI IP core 
instance. The map_n_ac field of the CPRI_MAP_CNT_CONFIG register holds the 
oversampling factor for the data channels. This value is an integer from 1 to 8. The 
sample rate—number of samples per second—is the product of 3.84 × 106 and the 
oversampling factor.

Advanced 1 Don’t Care
Advanced 1

Appendix D, Advanced 
AxC Mapping Modes

All 2’b01

Advanced 2 Don’t Care
Advanced 2

All 2’b10

Advanced 3 Don’t Care
Advanced 3

All 2’b11

Table 4–4. Determining the MAP Interface Mapping Mode (Part 2 of 2)

 Mapping mode(s) 
Parameter Value

Value Programmed in 
map_mode field of 
CPRI_MAP_CONFIG 

Register

Mapping 
Mode Mode Description
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In the basic mapping mode, AxC containers are packed in the IQ data block in the 
packed position (Option 1) illustrated in Section 4.2.7.2.3 of the CPRI V4.2 
Specification. Figure 4–7 shows how the AxC containers map to the individual active 
data channels. The oversampling factor is the number of 32-bit data words in each 
AxC container.

1 The CPRI IP core does not support AxC interface reordering. When the value of 
map_ac is less than N_MAP, the first map_ac AxC interfaces, of the existing N_MAP 
interfaces, are active. Note that an active AxC interface transmits and receives data on 
its data channel based on the values of the relevant map_rx_enable bit of the 
CPRI_IQ_RX_BUF_CONTROL register and the relevant map_tx_enable bit of the 
CPRI_IQ_TX_BUF_CONTROL register. Any data in an AxC container for an active but 
disabled channel is ignored, and an incoming AxC container designated from a 
disabled channel is ignored.

The map_15bit_mode field of the CPRI_MAP_CONFIG register specifies the sample width. 
The sample width is the number of significant bits —15 or 16—in each 16-bit half 
(originally, I- or Q-sample) of the 32-bit data word on the Avalon-ST data channel. In 
15-bit mode, the least significant bit in each half of the 32-bit word is ignored when 
received from the data channel on input signal mapN_tx_data[31:0], and is set to 0 
when transmitted on the data channel in output signal mapN_rx_data[31:0]. 
Therefore, bit 15 and bit 31 of the data word correspond to bit 14 of the I and Q 
samples, respectively; bit 1 and bit 17 of the data word correspond to bit 0 of the I and 
Q samples, respectively; and bits 0 and 16 of the data word are ignored. In 16-bit 
mode, bit 15 and bit 31 of the data word correspond to bit 15 of the I and Q samples, 
respectively, and bit 0 and bit 16 of the data word correspond to bit 0 of the I and Q 
samples, respectively. Figure 4–8 shows the bit correspondence for both sample 
widths.

Figure 4–7. CPRI Basic Mapping Mode
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You set the oversampling factor to match the frequency of your active data channels. 
The CPRI line rate determines the number of bits in the IQ data block of each basic 
frame. If your CPRI IP core has a high line rate and a low oversampling factor, it can 
accommodate a larger number of active data channels than if the line rate were lower 
or the oversampling factor higher. 

In 15-bit mode, inside the CPRI IP core, bits 0 and 16 of the Avalon-ST data are absent 
from the compact IQ data word representation. Therefore, despite the fact that in 
15-bit mode the IQ data goes out on the data channel in 32-bit words, formatted as 

Figure 4–8. Bit Correspondence Between IQ Sample and 32-Bit Avalon-ST Data

16-Bit Width IQ Sample:

Q: I:
15 1 0 15 2 1 0

Avalon-ST Data Word in AxC Container:

31 17 16 15 2 1 0

15-Bit Width IQ Sample:

Q: I:
14 0 14 2 1 0
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shown in Figure 4–8, the maximum number of active data channels is higher in 15-bit 
mode. Table 4–5 shows the correspondence between these frequency factors in 16-bit 
mode, and Table 4–6 shows the correspondence between these factors in 15-bit mode.

In 16-bit mode, the total number of bits in all the AxC containers in a basic frame is

2 × 16 × map_n_ac × map_ac

In 15-bit mode, the total number of bits in all the AxC containers in a basic frame is

2 × 15 × map_n_ac × map_ac

Table 4–5. Maximum Number of Active Data Channels in 16-Bit Mode

CPRI
Line Rate 

(Mbps)

Number of Bits
in

IQ Data Block

Maximum Number of Active Data Channels in 16-Bit Mode

Data Channel 
Bandwidth LTE 
(MHz)

2.5 5 10 15 20

Sample Rate
(106 Sample/Sec) 3.84 7.68 15.36 23.04 30.72

614.4 120 3 1 — — —

1228.8 240 7 3 2 1 —

2456.7 480 15 7 3 2 1

3072 600 18 9 4 3 2

4915.2 960 30 (1) 15 7 5 3

6144 1200 37 (1) 18 9 6 4

9830.4 1920 60 (1) 30 (1) 15 10 7

Note to Table 4–5:

(1) The maximum number of data channels supported by the CPRI IP core is 24. The numbers in the table that are larger than 24 are hypothetical; 
the CPRI IP core cannot implement them.

Table 4–6. Maximum Number of Active Data Channels in 15-Bit Mode

CPRI
Line Rate 

(Mbps)

Number of Bits
in

IQ Data Block

Maximum Number of Active Data Channels in 15-Bit Mode

Data Channel 
Bandwidth LTE 
(MHz)

2.5 5 10 15 20

Sample Rate
(106 Sample/Sec) 3.84 7.68 15.36 23.04 30.72

614.4 120 4 2 1 — —

1228.8 240 8 4 2 1 1

2456.7 480 16 8 4 2 2

3072 600 20 10 5 3 2

4915.2 960 32 (1) 16 8 5 4

6144 1200 40 (1) 20 10 6 5

9830.4 1920 64 (1) 32 (1) 16 10 8

Note to Table 4–6:

(1) The maximum number of data channels supported by the CPRI IP core is 24. The numbers in the table that are larger than 24 are hypothetical; 
the CPRI IP core cannot implement them.
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This value must be no larger than the number of bits in the IQ data block. The number 
of bits in an IQ data block depends on the CPRI line rate, as shown in Table 4–5 and 
Table 4–6. 

1 If the combination of CPRI line rate, map_n_ac value, and map_ac value requires more 
data bits than the number of data bits that fit in the IQ data block, the data for the first 
active data channels is transferred correctly, but the data for data channels beyond the 
number indicated in Table 4–5 or Table 4–6 is not transferred correctly.

The following CPRI IP core registers are ignored in basic mapping mode:

■ CPRI_MAP_TBL_CONFIG register (Table 7–33 on page 7–17)

■ CPRI_MAP_TBL_INDEX register (Table 7–34 on page 7–17)

■ CPRI_MAP_TBL_RX register (Table 7–35 on page 7–17)

■ CPRI_MAP_TBL_TX register (Table 7–36 on page 7–18)

Advanced AxC Mapping Modes
The CPRI IP core provides advanced AxC mapping modes to support the following 
mapping methods from the CPRI V4.2 Specification:

■ Method 1: IQ Sample Based, described in Section 4.2.7.2.5 of the CPRI V4.2 
Specification.

■ Method 3: Backward Compatible, described in Section 4.2.7.2.7 of the CPRI V4.2 
Specification.

In the advanced mapping modes, different data channels can use different sample 
rates, and the sample rates need not be integer multiples of 3.84 MHz. However, all 
data channels use the same sample width. 

Your CPRI IP core implements one of the advanced AxC mapping modes when you 
configure and program your CPRI IP core in any of the following ways:

■ If you select Advanced 1, Advanced 2, or Advanced 3 as the value for Mapping 
mode(s) in the CPRI parameter editor.

■ If you select All as the value for Mapping mode(s) in the CPRI parameter editor 
and you program the map_mode field of the CPRI_MAP_CONFIG register with the 
value of 2’b01, 2’b10, or 2’b11. 

For more information about the advanced AxC mapping modes in the Altera CPRI IP 
core, refer to Appendix D, Advanced AxC Mapping Modes. For information about 
how to program the individual advanced mapping modes, refer to Table 4–4 on 
page 4–13. 

MAP Receiver Interface
The CPRI IP core MAP receiver interface presents the IQ data that the CPRI IP core 
unloads from the CPRI frame received on the CPRI link. The MAP receiver 
implements an Avalon-ST interface protocol. Refer to “MAP Receiver Signals” on 
page 6–1 for details of the interface communication signals.
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The MAP receiver interface presents the IQ data on each antenna-carrier interface 
according to one of three different synchronization modes. The synchronization mode 
is determined by your selection in the CPRI parameter editor and by the value you 
program in the map_rx_sync_mode field of the CPRI_MAP_CONFIG register (Table 7–31 on 
page 7–15), as shown in Table 4–7.

Table 4–8 lists the clocks for the AxC interfaces in the different Rx synchronization 
modes.

You determine the AxC interface clocks when you turn the Enable MAP interface 
synchronization with core clock parameter on (SYNC_MAP = 1) or off (SYNC_MAP 
= 0) in the CPRI parameter editor before you generate your CPRI IP core.

MAP Receiver Interface Signals in Different Synchronization Modes
The different CPRI IP core MAP synchronization modes use different interface 
signals. Table 4–9 lists the MAP receiver interface signals used in each of these modes. 
Table notes indicate the correct interpretation of the different symbols.

Table 4–7. MAP Rx Synchronization Mode Determined by CPRI_MAP_CONFIG Register Bits

SYNC_MAP (1) map_rx_sync_mode
(register bit [2]) Rx Synchronization Mode

0 0 FIFO mode (page 4–20)

0 1 Synchronous buffer mode (page 4–21)

1 — (2) Internally-clocked mode (page 4–23)

Notes to Table 4–7:

(1) You determine the value of SYNC_MAP when you generate your CPRI IP core. Refer to Chapter 3, Parameter 
Settings.

(2) When SYNC_MAP has the value of 1, the value in the map_rx_sync_mode bit of the CPRI_MAP_CONFIG register 
is ignored.

Table 4–8. MAP Rx Interface Clocks Determined by Rx Synchronization Mode

Rx Synchronization Mode AxC Channel Clocks

FIFO mode Each AxC Rx interface is clocked by its own mapN_rx_clk clock 
driven by the application.Synchronous buffer mode

Internally-clocked mode Every AxC interface is clocked by the CPRI IP core clock, 
cpri_clkout.

Table 4–9. MAP Receiver Interface Signals by Synchronization Mode (1) (Part 1 of 2)

Signal Name Direction

Available in Synchronization Mode

FIFO Synchronous 
Buffer

Internally 
Clocked

map{23…0}_rx_clk Input v v — (2)

map{23…0}_rx_reset Input v v — (2)

map{23…0}_rx_ready Input v 1 (3) — (2), (4)

map{23…0}_rx_data[31:0] Output v v v
map{23…0}_rx_valid Output v — (2) v
map{23…0}_rx_resync Input — (2) v — (2)
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For descriptions of the signals in Table 4–9, refer to Table 6–1 on page 6–1 and to the 
following sections.

MAP Receiver in FIFO Mode
In FIFO mode, each data channel, or AxC interface, is clocked by an 
application-driven clock mapN_rx_clk, and has an output data-available signal, 
mapN_rx_valid. Each AxC interface N asserts its mapN_rx_valid signal when it has 
data available to send on this data channel—when the buffer level is above the 
threshold indicated in the CPRI_MAP_RX_READY_THR register. 

For details about the behavior of the individual signals in FIFO mode, refer to “MAP 
Receiver Signals” on page 6–1. Figure 4–9 shows the typical behavior of the MAP Rx 
signals in this synchronization mode.

When the application is ready to receive data on the data channel, it asserts the 
mapN_rx_ready signal. While the CPRI IP core asserts the mapN_rx_valid signal and 
the mapN_rx_ready signal is not asserted, the CPRI IP core holds the data value on 
mapN_rx_data[31:0]. The application must assert the mapN_rx_ready signal before the 
mapN Rx buffer overflows, to avoid data corruption. While the mapN_rx_ready signal 

map{23…0}_rx_start Output — (2) — (2) v
map{23…0}_rx_status_data
[2:0]

Output v v v
Notes to Table 4–9:

(1) A checkmark indicates the signal is used in a synchronization mode, and a dash indicates the signal is not used in 
that synchronization mode. 

(2) An entry with a dash indicates a signal that does not participate in the MAP receiver interface communication in 
this synchronization mode. The signal is either not present in the configuration or is ignored. An input signal that 
is ignored is ignored by the CPRI IP core. An output signal that is ignored should be ignored by the application. 
Refer to Table 6–1 on page 6–1 for information about the case that is relevant for each signal.

(3) A zero or one indicates the application must hold this input signal low or high, respectively. 
(4) Altera recommends that you tie the mapN_rx_ready signals high or low in your internally-clocked variation, rather 

than leave them floating.

Table 4–9. MAP Receiver Interface Signals by Synchronization Mode (1) (Part 2 of 2)

Signal Name Direction

Available in Synchronization Mode

FIFO Synchronous 
Buffer

Internally 
Clocked

Figure 4–9. MAP Receiver Interface in FIFO Mode

mapN_rx_clk

mapN_rx_ready

mapN_rx_valid

mapN_rx_data[31:0]
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is not yet asserted, the mapN Rx buffer continues to fill. When it overflows, the new 
data overwrites current data in the mapN Rx buffer. Each mapN Rx buffer is 
implemented as a circular buffer, so the data is overwritten starting at the current 
head of the mapN Rx buffer, that is, starting from the initial data not yet sent out on 
the data channel.

FIFO-based communication is simple but does not allow easy control of buffer delay. 
The delay through each mapN Rx buffer depends on your programmed threshold 
value and the application. Data is not sent to a data channel before the buffer 
threshold is reached, so the delay through the buffer depends on the fill level. Each 
AxC interface has the same buffer threshold, but each Rx buffer reaches that threshold 
independently. 

MAP Receiver in Synchronous Buffer Mode
In synchronous buffer mode, each AxC interface has a resynchronization signal, 
mapN_rx_resync. The application that controls the data channel asserts its 
resynchronization signal synchronously with the mapN_rx_clk clock. After the 
application asserts the resynchronization signal, it begins reading data on the 
mapN_rx_data[31:0] data bus for the individual AxC interface. 

In synchronous buffer mode, the application should ignore the mapN_rx_valid output 
signals and hold the mapN_rx_ready input signals high. The CPRI IP core does assert 
the mapN_rx_valid output signals in response to the mapN_rx_ready signals. If the 
application does not hold the mapN_rx_ready input signals high, the CPRI IP core 
MAP Rx interface does not function correctly.

For details about the behavior of the individual signals in synchronous buffer mode, 
refer to “MAP Receiver Signals” on page 6–1. 

Figure 4–10 shows the behavior of the MAP Rx signals in synchronous buffer mode. 
In this example, the CPRI line rate is 2457.6 Mbps. The cpri_rx_start signal is 
asserted for the duration of a single frame, and the CPRI line rate determines the 
duration of a basic frame in cpri_clkout cycles. At 2457.6 Mbps, a basic frame is 16 
cpri_clkout cycles. At this line rate, as shown in Table 4–2 on page 4–10, the 
cpri_clkout frequency is 61.44 MHz. The mapN_rx_clk frequency is 7.68 MHz 
(oversampling rate 2), approximately 0.125 times the cpri_clkout frequency.

Figure 4–10. MAP Receiver Interface in Synchronous Buffer Mode
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1 To ensure IP core control over the resynchronization signal timing, Altera 
recommends that your application trigger the mapN_rx_resync signal with the CPRI 
IP core output signal cpri_rx_start. The CPRI AUX interface asserts the 
cpri_rx_start signal according to the offset value specified in the 
user-programmable CPRI_START_OFFSET_RX register.

Asserting the resynchronization signal ensures correct alignment between the RF 
implementation and the CPRI basic frame at the appropriate offset from the start of 
the 10 ms radio frame. You control the mapN_rx_resync signals to ensure that the IP 
core accommodates your application-specific constraints.

Figure 4–11 shows the roles of the CPRI_START_OFFSET_RX and CPRI_MAP_OFFSET_RX 
registers in ensuring correct alignment.

The values programmed in the CPRI_START_OFFSET_RX register control the assertion of 
the cpri_rx_start signal. The values in the start_rx_offset_z, start_rx_offset_x, 
and start_rx_offset_seq fields specify a hyperframe number, basic frame number, 
and word number in the basic frame, respectively, within the 10 ms frame. 

The CPRI master transmitter loads the AxC container block on the CPRI link at a 
specific location in the 10 ms frame; the system programs the information for this 
location in the CPRI_START_OFFSET_RX register. The CPRI slave receiver learns the 
location of the AxC container block from the CPRI_START_OFFSET_RX register. 

For example, if the CPRI_START_OFFSET_RX register is programmed with the value 
0x00020001, the CPRI receiver asserts the cpri_rx_start signal at word index 2 of 
basic frame 1 of hyperframe 0 in the 10ms frame. The data channel application 
samples the cpri_rx_start signal, detects it is asserted, and then synchronizes the 
received IQ sample to the RX MAP AxC interface by asserting the mapN_rx_resync 
signal. Assertion of the mapN_rx_resync signal resets the read pointer of current 
antenna-carrier interface (mapN) Rx buffer to zero. The mapN_rx_data can safely be 
sampled by the data channel one cycle after the mapN_rx_resync signal is asserted.

The offset programmed in the CPRI_MAP_OFFSET_RX register tells the MAP receiver 
interface when to reset the write pointer of the Rx buffer: when the internal counters 
match the value in the CPRI_MAP_OFFSET_RX register, the write pointer resets. If the 
offset in this register has the value of zero, the write pointer resets at the start of every 
10 ms radio frame. After the MAP receiver block resets the write pointer, it begins 
transferring IQ data from the CPRI frame to the Rx buffer.

Figure 4–11. User-Controlled Delays to the AxC Data Channels in Rx Synchronous Buffer Mode

cpri_rx_start

cpri_rx_rfp / _hfp

mapN_rx_resync

CPRI_START_OFFSET_RX

CPRI_MAP_OFFSET_RX

sample 0 sample 1sample 2 sample 3 sample 4 sample 5 sample 6

sample 0 sample 1sample 2 sample 3 sample 4 sample 5 sample 6

Read from mapN Rx buffer in the first read cycle after the resync signal:

Write to mapN Rx buffer according to CPRI_MAP_OFFSET_RX value:
CPRI IP Core June 2014 Altera Corporation
User Guide



Chapter 4: Functional Description 4–23
MAP Interface
1 In advanced mapping modes, the K counter is reset to zero at the same time, so that it 
advances from zero with the transfer of the data to the MAP Rx buffer, tracking the 
packing of the CPRI data contents into the AxC container block.

Because the mapN Rx buffer should not be read before it is written, the offset 
specified in the CPRI_MAP_OFFSET_RX register must precede the offset specified in the 
CPRI_START_OFFSET_RX register. The CPRI IP core informs you of buffer overflow and 
underflow (in the CPRI_IQ_RX_BUF_STATUS register described in Table 7–48 on 
page 7–22, as reported in the mapN_rx_status_data output signals described in 
Table 6–1 on page 6–1), but it does not prevent them from occurring. Altera 
recommends that you implement a separate tracking protocol to ensure you do not 
overflow or underflow the mapN Rx buffer.

You set the values in the CPRI_START_OFFSET_RX and CPRI_MAP_OFFSET_RX registers to 
specify the timeslot in the 10 ms radio frame in which your application expects to 
sample the data on the antenna-carrier interface.

In synchronous buffer mode, because programmed offsets control the mapN Rx 
buffer pointers, the delay through each mapN Rx buffer can be quantified. 

1 In synchronous buffer mode, Altera recommends that you use sample rates that are 
integer multiples of 3.84 MHz, or for implementing the WiMAX protocol, that you use 
sample rates that provide the exact frequency required.

MAP Receiver in the Internally-Clocked Mode
In the internally-clocked mode, cpri_clkout drives the antenna-carrier interfaces, in 
contrast to the other two synchronization modes in which the antenna-carrier 
interfaces are clocked by the input mapN_rx_clk clocks. Each AxC interface has only a 
two-stage buffer, and data passes quickly from the MAP block out to the individual 
data channels. Each AxC interface has a ready output signal, mapN_rx_start. Each 
AxC interface asserts its ready signal when it first has data ready to transmit on this 
data channel. 

The CPRI IP core asserts the mapN_rx_start and mapN_rx_valid signals 
simultaneously, synchronously with the cpri_clkout clock, when it makes data 
available on the mapN_rx_data[31:0] data bus for the individual AxC interface. It 
may also assert mapN_rx_valid before valid data is available. In that case, it does not 
assert mapN_rx_start. In each 10 ms radio frame, for each antenna-carrier channel N, 
the application should ignore the mapN_rx_valid and mapN_rx_data signals until the 
CPRI IP core asserts the mapN_rx_start signal. Refer to Figure 4–12 for an example.

For details about the behavior of the individual signals in the internally-clocked 
mode, refer to “MAP Receiver Signals” on page 6–1. 

Figure 4–12 shows an example of the behavior of the MAP Rx signals in this 
synchronization mode in the basic mapping mode (map_mode = 2’b00). The example 
CPRI IP core is configured and programmed with the following features:

■ CPRI line rate is 1228.8 Mbps. Therefore the duration of a basic frame is 8 
cpri_clkout cycles. 

■ Three active antenna-carrier interfaces.
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■ In the CPRI_MAP_OFFSET_RX register, the cpri_rx_offset_z field has the value of 3 
and the cpri_rx_offset_x field has the value of 4. 

In Figure 4–12, the map0_rx_start signal pulses synchronously with the first rising 
edge of map0_rx_valid following the CPRI frame offset specified in the 
CPRI_MAP_OFFSET_RX register. The mapN_rx_valid signals are asserted in round-robin 
order, following the basic mapping mode. 

The internally-clocked mode is useful only with the basic mapping mode. The 
advantage of the advanced mapping modes is their support for different clocks on 
different antenna-carrier interfaces, a feature not available with the internally-clocked 
synchronization mode.

MAP Transmitter Interface
The MAP transmitter interface receives data from the data channels and passes it to 
the CPRI protocol interface to transmit on the CPRI link. The MAP transmitter 
implements an Avalon-ST interface protocol. Refer to “MAP Transmitter Signals” on 
page 6–3 for details of the interface communication signals. 

Figure 4–12. MAP Receiver Interface in the internally-Clocked Mode
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MAP transmitter communication on the individual data map interfaces coordinates 
the transfer of data according to one of three different synchronization modes. The 
synchronization mode is determined by your selection in the CPRI parameter editor 
and by the value you program in the map_tx_sync_mode field of the CPRI_MAP_CONFIG 
register (Table 7–31 on page 7–15), as shown in Table 4–10.

Table 4–11 lists the clocks for the AxC interfaces in the different Tx synchronization 
modes.

You determine the AxC interface clocks when you turn the Enable MAP interface 
synchronization with core clock parameter on (SYNC_MAP = 1) or off (SYNC_MAP 
= 0) in the CPRI parameter editor before you generate your CPRI IP core.

MAP Transmitter Interface Signals in Different Synchronization Modes
The different CPRI IP core MAP synchronization modes use different interface 
signals. Table 4–12 lists the MAP transmitter interface signals used in each of these 
modes. Table notes indicate the correct interpretation of the different symbols.

Table 4–10. MAP Tx Synchronization Mode Determined by CPRI_MAP_CONFIG Register Bits

SYNC_MAP (1) map_tx_sync_mode
(register bit [3]) Tx Synchronization Mode

0 0 FIFO mode (page 4–26)

0 1 Synchronous buffer mode (page 4–27)

1 — (2) Internally-clocked mode (page 4–29)

Notes to Table 4–10:

(1) You determine the value of SYNC_MAP when you generate your CPRI IP core. Refer to Chapter 3, Parameter 
Settings.

(2) When SYNC_MAP has the value of 1, the value in the map_tx_sync_mode bit of the CPRI_MAP_CONFIG register 
is ignored.

Table 4–11. MAP Tx Interface Clocks Determined by Tx Synchronization Mode

Tx Synchronization Mode AxC Channel Clocks

FIFO mode Each AxC Tx interface is clocked by its own mapN_tx_clk clock 
driven by the application.Synchronous buffer mode

Internally-clocked mode Every AxC interface is clocked by the CPRI IP core clock, 
cpri_clkout.

Table 4–12. MAP Transmitter Interface Signals by Synchronization Mode (1) (Part 1 of 2)

Signal Name Direction

Available in Synchronization Mode

FIFO Synchronous 
Buffer

Internally 
Clocked

map{23…0}_tx_clk Input v v — (2)

map{23…0}_tx_reset Input v v — (2)

map{23…0}_tx_valid Input v v v
map{23…0}_tx_data[31:0] Input v v v
map{23…0}_tx_ready Output v — (2) v
map{23…0}_tx_resync Input — (2) v — (2)
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For descriptions of the signals in Table 4–12, refer to Table 6–2 on page 6–4 and to the 
following sections.

MAP Transmitter in FIFO Mode
In FIFO mode, each data channel, or AxC interface, has an output ready signal, 
mapN_tx_ready. Each AxC interface asserts its ready signal when it is ready to receive 
data on this data channel for transmission to the CPRI protocol interface—when the 
buffer level is at or below the threshold indicated in the CPRI_MAP_TX_READY_THR 
register. 

After the CPRI IP core asserts the mapN_tx_ready signal, the application is expected to 
respond by asserting the mapN_tx_valid signal and presenting data on mapN_tx_data. 
In every mapN_tx_clk cycle immediately following a mapN_tx_clk cycle in which 
mapN_tx_ready is (becomes or remains) asserted, the application can present valid 
data on mapN_tx_data, as prescribed by the Avalon-ST specification with 
READY_LATENCY value 1.

For details about the behavior of the individual signals in FIFO mode, refer to “MAP 
Transmitter Signals” on page 6–3. Figure 4–13 shows the expected typical behavior of 
the MAP Tx signals in this synchronization mode.

FIFO-based communication is simple but does not allow easy control of buffer delay. 
The delay through each mapN Tx buffer depends on your programmed threshold 
value and the application. Data is not read from the mapN Tx buffer until the buffer 
threshold is reached, so the delay through the buffer depends on the fill level. Each 
AxC interface has the same buffer threshold, but each Tx buffer reaches that threshold 
independently. 

map{23…0}_tx_status_data
[2:0]

Output v v v
Notes to Table 4–12:

(1) A checkmark indicates the signal is used in a synchronization mode, and a dash indicates the signal is not used in 
that synchronization mode. 

(2) An entry with a dash indicates a signal that does not participate in the MAP receiver interface communication in 
this synchronization mode. The signal is either not present in the configuration or is ignored. An input signal that 
is ignored is ignored by the CPRI IP core. An output signal that is ignored should be ignored by the application. 
Refer to Table 6–2 on page 6–4 for information about the case that is relevant for each signal.

Table 4–12. MAP Transmitter Interface Signals by Synchronization Mode (1) (Part 2 of 2)

Signal Name Direction

Available in Synchronization Mode

FIFO Synchronous 
Buffer

Internally 
Clocked

Figure 4–13. MAP Transmitter Interface in FIFO Mode

mapN_tx_clk

mapN_tx_ready

mapN_tx_valid

mapN_tx_data[31:0]
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MAP Transmitter in Synchronous Buffer Mode
In the synchronized communication, called synchronous buffer mode, each AxC 
interface has an incoming resynchronization signal, mapN_tx_resync. Application 
software asserts this resynchronization signal synchronously with the mapN_tx_clk 
clock. When the application software asserts the resynchronization signal, it also 
asserts the mapN_tx_valid signal and begins sending valid data on the 
mapN_tx_data[31:0] data bus for the individual AxC interface. 

In synchronous buffer mode, the application should ignore the mapN_tx_ready output 
signals. However, it should assert the mapN_tx_valid input signals when sending 
valid data. The CPRI IP core holds the mapN_tx_ready output signals high. The 
application must assert the mapN_tx_valid input signals when or immediately after it 
asserts the mapN_tx_resync signals. However, if the application does not assert the 
mapN_tx_valid input signals in the same cycle as the mapN_tx_resync signals, and 
subsequently reasserts mapN_tx_resync while mapN_tx_valid is still high, data in 
transition through the MAP Tx interface buffer is lost.

1 Altera recommends that your application assert the mapN_tx_valid input signals 
when it asserts the mapN_tx_resync signals.

For details about the behavior of the individual signals in synchronous buffer mode, 
refer to “MAP Transmitter Signals” on page 6–3. 

Figure 4–14 shows the expected typical behavior of the MAP Tx signals in this 
synchronization mode. In this example, the CPRI line rate is 2457.6 Mbps. The 
cpri_tx_start signal is asserted for the duration of a single frame, and the CPRI line 
rate determines the duration of a basic frame in cpri_clkout cycles. At 2457.6 Mbps, a 
basic frame is 16 cpri_clkout cycles. At this line rate, as shown in Table 4–2 on 
page 4–10, the cpri_clkout frequency is 61.44 MHz. The mapN_tx_clk frequency is 
7.68 MHz (oversampling rate 2), approximately 0.125 times the cpri_clkout 
frequency.

1 To ensure IP core control over the resynchronization signal timing, Altera 
recommends that your application trigger the mapN_tx_resync signal with the CPRI 
IP core output signal cpri_tx_start. The CPRI AUX interface asserts the 
cpri_tx_start signal according to the offset value specified in the 
user-programmable CPRI_START_OFFSET_TX register.

Figure 4–14. MAP Transmitter Interface in Synchronous Buffer Mode

cpri_clkout

cpri_tx_start

mapN_tx_clk

mapN_tx_resync

mapN_tx_valid

mapN_tx_data[31:0]
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Asserting the resynchronization signal ensures correct alignment between the RF 
implementation and the CPRI basic frame at the appropriate offset from the start of 
the 10 ms radio frame. In addition to ensuring that application-specific constraints are 
accommodated, the system can set the CPRI_START_OFFSET_TX register to an offset that 
precedes the desired frame position in the CPRI transmission, in anticipation of the 
delays through the antenna-carrier interface Tx buffer and out to the CPRI Tx frame 
buffer. For information about these delays, refer to “Tx Path Delay” on page E–12. 

Figure 4–15 shows the roles of the CPRI_START_OFFSET_TX and CPRI_MAP_OFFSET_TX 
registers in ensuring correct alignment.

The values programmed in the CPRI_START_OFFSET_TX register control the assertion of 
the cpri_tx_start signal by the CPRI transmitter. The values in the 
start_tx_offset_z, start_tx_offset_x, and start_tx_offset_seq fields specify a 
hyperframe number, basic frame number, and word (sequence) number in the basic 
frame, respectively, within the 10 ms frame. 

The system source of the AxC payload transmits the AxC container block on the data 
channel to target a specific location in the 10 ms frame; the system programs the 
information for this location in the CPRI_START_OFFSET_TX and CPRI_MAP_OFFSET_TX 
registers. The CPRI transmitter learns the location of the AxC container block on the 
AxC interface from the CPRI_START_OFFSET_TX register. For example, if the 
CPRI_START_OFFSET_TX register is programmed with the value 0x000595FE, the CPRI 
transmitter must assert the cpri_tx_start signal at word index 5 of basic frame 254 of 
hyperframe 149 in the 10ms frame. Altera recommends that the data channel 
application sample the cpri_tx_start signal, and when it detects the cpri_tx_start 
signal is asserted, assert the mapN_tx_resync signal to indicate that the samples on 
mapN_tx_data can begin to fill the data words at the specified position in the CPRI 
frame. Assertion of the mapN_tx_resync signal resets the write pointer of the current 
antenna-carrier interface (mapN) Tx buffer to zero, so that the entire buffer is 
available to receive the data from the data channel. The data on mapN_tx_data[31:0] 
can safely be loaded in the mapN Tx buffer in the same cycle that the mapN_tx_resync 
signal is asserted. 

Figure 4–15. User-Controlled Delays in Accepting Data From the AxC Data Channels in Synchronous Buffer Mode

cpri_tx_start

cpri_tx_rfp

cpri_tx_sync_rfp

mapN_tx_resync

CPRI_START_OFFSET_TX

CPRI_MAP_OFFSET_TX

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6

Write to mapN Tx buffer in the first write cycle after the resync signal:

Read from mapN Tx buffer according to CPRI_MAP_OFFSET_TX value:
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On the CPRI side of the mapN Tx buffer, the MAP transmitter interface reads data 
from the mapN Tx buffer and sends it to the CPRI transmitter interface. The offset 
programmed in the CPRI_MAP_OFFSET_TX register tells the MAP transmitter interface 
when to reset the read pointer of the mapN Tx buffer and start transferring data from 
the buffer to the CPRI transmitter interface. The K counter is reset to zero at the same 
time, so that it advances from zero with the transfer of the data to the CPRI 
transmitter interface, tracking the packing of the AxC container block contents into 
the CPRI frame.

Because the mapN Tx buffer should not be read before it is written, the offset specified 
in the CPRI_START_OFFSET_TX register must precede the offset specified in the 
CPRI_MAP_OFFSET_TX register. The CPRI IP core informs you of buffer overflow and 
underflow (in the CPRI_IQ_TX_BUF_STATUS register described in Table 7–49 on 
page 7–22 and as reported in the mapN_tx_status_data output vector described in 
Table 6–2 on page 6–4), but it does not prevent them from occurring. Altera 
recommends that you implement a separate tracking protocol to ensure you do not 
overflow or underflow the mapN Tx buffer.

In synchronous buffer mode, because programmed offsets control the mapN Tx buffer 
pointers, the delay through each mapN Tx buffer can be quantified. 

MAP Transmitter in the Internally-clocked Mode
In the internally-clocked mode, each data channel, or AxC interface, has an output 
ready signal, mapN_tx_ready. Each AxC interface asserts its ready signal when it is 
ready to receive data on this data channel for transmission to the CPRI protocol 
interface—when the buffer level is at or below the threshold indicated in the 
CPRI_MAP_TX_READY_THR register. 

After the CPRI IP core asserts the mapN_tx_ready signal, the application is expected to 
respond by asserting the mapN_tx_valid signal and presenting data on mapN_tx_data. 
In every cpri_clkout cycle in which mapN_tx_ready is asserted, the application can 
present valid data on mapN_tx_data, as prescribed by the Avalon-ST specification with 
READY_LATENCY value 1.

For details about the behavior of the individual signals in the internally-clocked 
mode, refer to “MAP Transmitter Signals” on page 6–3. 
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Figure 4–16 shows an example of the behavior of the MAP Tx signals in this 
synchronization mode in the basic mapping mode (map_mode = 2’b00).

In the internally-clocked mode the delay in the AxC interface block from each data 
channel can be quantified, because this delay is determined solely by the value in the 
CPRI_MAP_OFFSET_TX register. 

Auxiliary Interface
The CPRI auxiliary interface enables multi-hop routing applications and provides 
timing reference information for transmitted and received frames. 

The auxiliary (AUX) interface allows you to connect CPRI IP core instances and other 
system components together by supporting a direct connection to a user-defined 
routing layer or custom mapping block. You implement this routing layer, which is 
not defined in the CPRI V5.0 Specification, outside the CPRI IP core. The AUX 
interface supports the transmission and reception of IQ data and timing information 
between an RE slave and an RE master, allowing you to define a custom routing layer 
that enables daisy-chain configurations of RE master and slave ports. Your custom 
routing layer determines the IQ sample data to pass to other REs to support multi-hop 
network configurations or to bypass the CPRI IP core MAP interface to implement 
custom mapping algorithms outside the IP core. 

Figure 4–16. MAP Transmitter Interface in the Internally-Clocked Mode
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The CPRI IP core implements the AUX receiver and AUX transmitter interfaces as 
separate Avalon-ST interfaces. The AUX transmitter receives data to be transmitted on 
the outgoing CPRI link, and the AUX receiver transmits data received from the 
incoming CPRI link.

f For information about the Avalon-ST interface, refer to Avalon Interface Specifications.

AUX Receiver Module
The AUX receiver module transmits data that the CPRI IP core received on the CPRI 
link to the outgoing AUX Avalon-ST interface. In addition, it provides detailed 
information about the current state in the Rx CPRI frame synchronization state 
machine. This information is useful for custom user logic, including frame 
synchronization across hops in multihop configurations.

The AUX interface receiver module provides the following data and synchronization 
lines: 

■ cpri_rx_sync_state—when set, indicates that Rx, HFN, and BFN 
synchronization have been achieved in CPRI receiver frame synchronization

■ cpri_rx_start—asserted for the duration of the first basic frame following the 
offset defined in the CPRI_START_OFFSET_RX register

■ cpri_rx_rfp and cpri_rx_hfp—synchronization pulses for start of 10 ms radio 
frame and start of hyperframe

■ cpri_rx_bfn and cpri_rx_hfn—current radio frame and hyperframe numbers

■ cpri_rx_x—index number of the current basic frame in the current hyperframe

■ cpri_rx_seq—index number of the current 32-bit word in the current basic frame

■ cpri_rx_aux_data—outgoing data port for sending data and control words 
received on the CPRI link out on the AUX interface

The output synchronization signals are derived from the CPRI frame synchronization 
state machine. These signals are all fields in the aux_rx_status_data bus. For 
additional information about the AUX receiver signals, refer to Table 6–3 on page 6–6.
June 2014 Altera Corporation CPRI IP Core
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Figure 4–17 shows the relationship between the synchronization pulses and numbers.

The AUX receiver presents data on the AUX interface in fixed 32-bit words. The 
mapping to 32-bit words depends on the CPRI IP core line rate. Figure 4–18 shows 
how the data received from the CPRI protocol interface module is mapped to the AUX 
Avalon-ST 32-bit interface. 

Figure 4–17. Synchronization Pulses and Numbers on the AUX Interfaces

cpri_{rx,tx}_rfp

cpri_{rx,tx}_bfn

cpri_{rx,tx}_hfp

cpri_{rx,tx}_hfn

cpri_{rx,tx}_x

cpri_{rx,tx}_seq 0 1 ... NUM_SEQ - 1

2 ...

...210

255

149

10

n n + 1 n + 2

Hyperframe

Radio Frame (10 ms)

Basic Frame

Figure 4–18. AUX Interface Data at Different CPRI Line Rates (Part 1 of 3)

614.4 Mbps
Line Rate:

Sequence number on AUX interface

0 1 2 3

[31:24]: #Z.X.0.0 (1) #Z.X.4.0 #Z.X.8.0 #Z.X.12.0

[23:16]: #Z.X.1.0 #Z.X.5.0 #Z.X.9.0 #Z.X.13.0

[15:8]: #Z.X.2.0 #Z.X.6.0 #Z.X.10.0 #Z.X.14.0

[7:0]: #Z.X.3.0 #Z.X.7.0 #Z.X.11.0 #Z.X.15.0
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1228.8 Mbps 
Line Rate:

Sequence number on AUX interface

0 1 2 ... 7

[31:24]: #Z.X.0.0 (1) #Z.X.2.0 #Z.X.4.0 ... #Z.X.14.0

[23:16]: #Z.X.0.1 (1) #Z.X.2.1 #Z.X.4.1 ... #Z.X.14.1

[15:8]: #Z.X.1.0 #Z.X.3.0 #Z.X.5.0 ... #Z.X.15.0

[7:0]: #Z.X.1.1 #Z.X.3.1 #Z.X.5.1 ... #Z.X.15.1

2457.6 Mbps 
Line Rate:

Sequence number on AUX interface

0 1 2 ... 15

[31:24]: #Z.X.0.0 (1) #Z.X.1.0 #Z.X.2.0 ... #Z.X.15.0

[23:16]: #Z.X.0.1 (1) #Z.X.1.1 #Z.X.2.1 ... #Z.X.15.1

[15:8]: #Z.X.0.2 (1) #Z.X.1.2 #Z.X.2.2 ... #Z.X.15.2

[7:0]: #Z.X.0.3 (1) #Z.X.1.3 #Z.X.2.3 ... #Z.X.15.3

3072.0 Mbps 
Line Rate:

Sequence number on AUX interface

0 1 2 ... 18 19

[31:24]: #Z.X.0.0 (1) #Z.X.0.4 (1) #Z.X.1.3 ... #Z.X.14.2 #Z.X.15.1

[23:16]: #Z.X.0.1 (1) #Z.X.1.0 #Z.X.1.4 ... #Z.X.14.3 #Z.X.15.2

[15:8]: #Z.X.0.2 (1) #Z.X.1.1 #Z.X.2.0 ... #Z.X.14.4 #Z.X.15.3

[7:0]: #Z.X.0.3 (1) #Z.X.1.2 #Z.X.2.1 ... #Z.X.15.0 #Z.X.15.4

4915.0 Mbps 
Line Rate:

Sequence number on AUX interface

0 1 2 ... 30 31

[31:24]: #Z.X.0.0 (1) #Z.X.0.4 (1) #Z.X.1.0 ... #Z.X.14.0 #Z.X.15.4

[23:16]: #Z.X.0.1 (1) #Z.X.0.5 (1) #Z.X.1.1 ... #Z.X.14.1 #Z.X.15.5

[15:8]: #Z.X.0.2 (1) #Z.X.0.6 (1) #Z.X.2.2 ... #Z.X.14.2 #Z.X.15.6

[7:0]: #Z.X.0.3 (1) #Z.X.0.7 (1) #Z.X.2.3 ... #Z.X.15.3 #Z.X.15.7

Figure 4–18. AUX Interface Data at Different CPRI Line Rates (Part 2 of 3)
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AUX Transmitter Module
The AUX transmitter module receives data on the incoming AUX Avalon-ST interface 
and sends it to the CPRI IP core physical layer to transmit on the CPRI link. In 
addition, it outputs CPRI link frame synchronization information, to enable 
synchronization of the AUX data. 

6144.0 Mbps 
Line Rate:

Sequence number on AUX interface

0 1 2 ... 38 39

[31:24]: #Z.X.0.0 (1) #Z.X.0.4 (1) #Z.X.0.8 (1) ... #Z.X.15.2 #Z.X.15.6

[23:16]: #Z.X.0.1 (1) #Z.X.0.5 (1) #Z.X.0.9 (1) ... #Z.X.15.3 #Z.X.15.7

[15:8]: #Z.X.0.2 (1) #Z.X.0.6 (1) #Z.X.1.0 ... #Z.X.15.4 #Z.X.15.8

[7:0]: #Z.X.0.3 (1) #Z.X.0.7 (1) #Z.X.1.1 ... #Z.X.15.5 #Z.X.15.9

9830.4 Mbps 
Line Rate:

Sequence number on AUX interface

0 1 2 3 ... 62 63

[31:24]: #Z.X.0.0 (1) #Z.X.0.4 (1) #Z.X.0.8 (1) #Z.X.0.12 (1) ... #Z.X.15.8 #Z.X.15.12

[23:16]: #Z.X.0.1 (1) #Z.X.0.5 (1) #Z.X.0.9 (1) #Z.X.0.13 (1) ... #Z.X.15.9 #Z.X.15.13

[15:8]: #Z.X.0.2 (1) #Z.X.0.6 (1) #Z.X.0.10 (1) #Z.X.0.14 (1) ... #Z.X.15.10 #Z.X.15.14

[7:0]: #Z.X.0.3 (1) #Z.X.0.7 (1) #Z.X.0.11 (1) #Z.X.0.15 (1) ... #Z.X.15.11 #Z.X.15.15

Note to Figure 4–18:

(1) Light blue table cells indicate control word bytes. White table cells indicate data word bytes.

Figure 4–18. AUX Interface Data at Different CPRI Line Rates (Part 3 of 3)
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The incoming data on the AUX interface must match the CPRI frame with a delay of 
exactly two cpri_clkout clock cycles. The cpri_tx_seq[5:0] value that you read at 
the AUX Tx interface is two cpri_clkout cycles ahead of the internal sequence 
number that tracks the CPRI frame. If you want your IQ sample to land at sequence 
number N of the CPRI frame, then you must present your sample at the AUX Tx 
interface when cpri_tx_seq[5:0] has the value of N+2. Figure 4–19 shows the 
expected timing on the incoming AUX connection in a variation with a CPRI line rate 
of 6144.4 Mbps. 

In Figure 4–19, the application presents data when cpri_tx_seq[5:0] has the value of 
4, and sets the value of cpri_tx_aux_mask, to ensure the data is loaded in the CPRI 
frame immediately following the control word. Because the CPRI line rate in this 
example is 6144.4 Mbps, the length of the control word is ten bytes. Therefore, the 
application presents the data when cpri_tx_seq[5:0] has the value of 4 to ensure the 
data is loaded in the CPRI frame at position 2.

In addition, to ensure the CPRI IP core transmits the incoming AUX data correctly on 
the CPRI link, you must format the incoming AUX data in the correct order to match 
the CPRI IP core internal data representation. If you connect two Altera CPRI IP cores 
through a routing layer, and your routing layer does not modify the data transmission 
order, then the correct order is guaranteed. However, if a different application 
transmits data to the CPRI IP core AUX interface, it must enforce the data order that 
the CPRI IP core expects. 

Incoming AUX data to the CPRI IP core appears on cpri_tx_aux_data[31:0], also 
called aux_tx_mask_data[64:32]. Byte [31:24] (64:56]) is transmitted first, and byte 
[7:0] (39:32]) is transmitted last: cpri_tx_aux_data[31:24] is byte 0 in the 
transmission order, and contains the least significant I- and Q-nibbles of the data 
sample. Figure 4–20 illustrates the required data order on this data bus.

Figure 4–19. Incoming AUX Link Synchronization

Note to Figure 4–19:

(1) The cpri_tx_aux_data and cpri_tx_aux_mask signals are fields in the aux_tx_mask_data input bus. Refer to Table 6–4 on page 6–7.

cpri_tx_seq[5:0]

internal tx_seq value[5:0] 

CPRI Frame 

210 3 4 3938

3638

Ctrl Ctrl {Ctrl,feed}

0 1 2 37 3839

  

cpri_tx_aux_mask[31:0] 

cpri_tx_aux_data[31:0] 

 (1)

 (1)

00000000 00000000 00000000 ffffffff ffffffff0000ffff

00000000 00000000

00000000

00000000 00000000 0000feed   

2 cpri_clkout cycles

Figure 4–20. Required Data Sample Order in aux_tx_mask_data[63:32] (cpri_tx_aux_data[31:0])
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The CPRI IP core passes the incoming AUX data through to the CPRI link 
unmodified. You must ensure that the incoming AUX data bits already include any 
CRC values expected by the application at the other end of the CPRI link.

The CPRI transmitter frame synchronization state machine provides the following 
data and synchronization signals on the AUX interface to enable the required precise 
frame timing:

■ cpri_tx_start—asserted for the duration of the first basic frame following the 
offset defined in the CPRI_START_OFFSET_TX register

■ cpri_tx_rfp and cpri_tx_hfp—synchronization pulses for start of 10 ms radio 
frame and start of hyperframe

■ cpri_tx_bfn and cpri_tx_hfn—current radio frame and hyperframe numbers

■ cpri_tx_x—index number of the current basic frame in the current hyperframe 

■ cpri_tx_seq—index number of the current 32-bit word in the current basic frame

■ cpri_tx_aux_data—incoming data port for data on the AUX link

■ cpri_tx_aux_mask—incoming bit mask for AUX link data that indicates bits that 
must be transmitted without changes to the CPRI link

The CPRI IP core layer 1 uses the cpri_tx_aux_mask to select the enabled bit 
values in the control transmit table. When mask bits are set, the corresponding 
data bits from the AUX interface fill the CPRI frame, overriding any 
internally-generated information. You must deassert all the mask bits during 
K28.5 character insertion in the outgoing CPRI frame (which occurs when Z=X=0). 
Otherwise, the CPRI IP core asserts an error signal cpri_tx_error on the 
following cpri_clkout clock cycle to indicate that the K28.5 character expected by 
the CPRI link protocol has been overwritten. You must also ensure you do not 
override synchronization counter values in the control word.

The AUX transmitter module also receives a synchronization pulse in an REC master. 
Application software can pulse the cpri_tx_sync_rfp input signal to resynchronize 
the 10 ms radio frame. Asserting this signal resets the frame synchronization machine 
in an REC master.

In response to the rising edge of its cpri_tx_sync_rfp input signal 
(aux_tx_mask_data[64]), a CPRI REC master IP core restarts the 10 ms radio frame. 
The rising edge of the cpri_tx_sync_rfp signal must be synchronous with the 
cpri_clkout clock. On the seventh cpri_clkout cycle following a cpri_tx_sync_rfp 
pulse, the cpri_tx_hfp and cpri_tx_rfp signals pulse, the cpri_tx_x and 
cpri_tx_hfn signals have the value 0, and the cpri_tx_bfn signal increments from its 
CPRI IP Core June 2014 Altera Corporation
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previous value. Figure 4–21 illustrates the behavior of the CPRI IP core signals in 
response to the cpri_tx_sync_rfp pulse.

For more information about the relationships between the synchronization pulses and 
numbers, refer to Figure 4–17 on page 4–32. For the mapping of data between the 
AUX interface and the CPRI link, refer to Figure 4–18 on page 4–32.

The cpri_tx_aux_data and cpri_tx_aux_mask signals are fields of the 
aux_tx_mask_data bus. The other signals described in the preceding list are fields of 
the aux_tx_status_data bus. For additional information about the AUX transmitter 
signals, refer to Table 6–4 on page 6–7.

Media Independent Interface to an External Ethernet Block
The media independent (MI) interface, or MII, allows the CPRI IP core to 
communicate directly with an external Ethernet MAC block, replacing the internal 
Ethernet MAC. You specify in the CPRI parameter editor whether to implement this 
interface or to use the Ethernet MAC block available with the CPRI IP core. The two 
options are mutually exclusive.

If you configure the CPRI IP core with the MII, you must implement the Ethernet 
MAC block outside the CPRI IP core. 

The MI interface is not a true media-independent interface, because it is clocked by 
the cpri_clkout clock (which drives the cpri_mii_txclk and cpri_mii_rxclk clock 
signals directly), whose frequencies do not match the usual 2.5 MHz and 25 MHz 
frequencies of the media-independent protocol specification. If you use this interface, 
your external Ethernet block must communicate with the CPRI IP core synchronously 
with the cpri_mii_txclk and cpri_mii_rxclk clocks.

The MII supports the bandwidth described in the CPRI V5.0 Specification in Table 12, 
Achievable Ethernet bit rates. 

Figure 4–21. CPRI REC Master Response to cpri_tx_sync_rfp Resynchronization Pulse
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MII Transmitter
The MII transmitter module receives data from the external Ethernet MAC block and 
writes it to the CPRI transmitter module, which transmits it on the CPRI link. It 
performs 4B/5B encoding on the incoming data nibbles before sending them to the 
CPRI transmitter module.

After the CPRI IP core achieves frame synchronization, the MII transmitter module 
can accept incoming data on the MII. The MII transmitter module asserts the 
cpri_mii_txrd signal to indicate it is ready to accept data from the external Ethernet 
MAC block. After the cpri_mii_txrd signal is asserted, the external Ethernet block 
asserts the cpri_mii_txen signal to indicate it is ready to provide data. The MII 
transmitter module deasserts the cpri_mii_txrd signal in the cycle following each 
cycle in which it receives data. It may remain deasserted for multiple cycles, to 
prevent buffer overflow. While the cpri_mii_txrd signal remains low, the external 
Ethernet block must maintain the data value on cpri_mii_txd.

During the first cpri_mii_txclk cycle in which cpri_mii_txen is asserted, the MII 
module inserts an Ethernet J symbol (5’b11000) in the buffer of data to be transmitted 
to the CPRI link; during the second cycle in which cpri_mii_txen is asserted, the MII 
module inserts an Ethernet K symbol (5’b10001) in this buffer. These two symbols 
indicate Ethernet start-of-packet. While the CPRI MII transmitter is inserting the J and 
K symbols, it ignores incoming data on cpri_mii_txd. Refer to Figure 4–22.

Typically, the external Ethernet block asserts cpri_mii_txen one clock cycle after 
cpri_mii_txrd is asserted. While the cpri_mii_txen signal remains asserted, the MII 
transmitter module reads data on the cpri_mii_txd input data bus. Following this 
data sequence, in the first two cpri_mii_txclk cycles in which the cpri_mii_txen 
signal is not asserted, the MII module inserts an Ethernet end-of-packet symbol—T 
followed by R. While the CPRI MII transmitter is inserting the T and R symbols, it 
ignores incoming data on cpri_mii_txd. Refer to Figure 4–22.

While cpri_mii_txen is asserted, the cpri_mii_txer input signal indicates that the 
current nibble on cpri_mii_txd is suspect. Therefore, if the MII transmitter module 
observes that both cpri_mii_txen and cpri_mii_txer are asserted in the same 
cpri_mii_txclk cycle, the MII module inserts an Ethernet HALT symbol (5’b00100). 
Figure 4–24 on page 4–41 provides an example in which the cpri_mii_txer signal is 
asserted, and shows how the error indication propagates to the MII receiver module 
on the CPRI link slave.
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Figure 4–22 illustrates the MII transmitter protocol with no input errors. The 
cpri_mii_txen signal remains asserted for the duration of the packet transfer. 
Although cpri_mii_txrd can be reasserted every other cycle during transmission of 
an Ethernet packet on cpri_mii_txd, this need not always occur. The CPRI MII 
transmitter can deassert cpri_mii_txrd for more than one cycle to backpressure the 
external Ethernet block. In that case, the external Ethernet block must maintain the 
data value on cpri_mii_txd until the cycle following reassertion of cpri_mii_txrd. 

If cpri_mii_txen is deasserted while cpri_mii_txrd is deasserted, and is not 
reasserted in the cycle following the reassertion of cpri_mii_txrd, then the CPRI MII 
transmitter inserts a T symbol in the packet; therefore, the external Ethernet block 
must reassert cpri_mii_txen in the cycle following reassertion of cpri_mii_txrd, 
during transmission of an Ethernet packet on cpri_mii_txd. 

For more information about the MII transmitter module, refer to “CPRI MII 
Transmitter Signals” on page 6–10.

MII Receiver
The MII receiver module receives data from the CPRI link by reading it from the CPRI 
receiver module. It performs 4B/5B decoding on the 5-bit data values before 
transmitting them as 4-bit data values on the MII.

After the CPRI IP core achieves frame synchronization, the MII receiver module can 
send data to the external Ethernet block. The MII receiver module transmits the K 
nibble to indicate start-of-frame on the MII. The J nibble of the start-of-frame is 
consumed by the CPRI IP core, and is not transmitted on the MII.

Figure 4–22. CPRI MII Transmitter Example

cpri_mii_txclk

cpri_mii_txrd

cpri_mii_txen

cpri_mii_txd[3:0]

cpri_mii_txer

decoded result
(conceptual)

txrd asserted
>1 cycle
without

txen response
      > IDLEs

No txen response
to 2 cycles
in which

txrd asserted

txrd is deasserted
an additional cycle

to backpressure the Ethernet block

Idle J K D0

D0

D1

D1

D2

D2

D3

D3

D4

D4

D5 T R Idle

D5

Ethernet packet

txen asserted
2 cycles in which
txrd is asserted

txen is asserted
>1 cycle

after
txrd assertion
June 2014 Altera Corporation CPRI IP Core
User Guide



4–40 Chapter 4: Functional Description
Media Independent Interface to an External Ethernet Block
The MII receiver module transmits the K nibble and then the data to the cpri_mii_rxd 
output data bus and asserts the cpri_mii_rxdv signal to indicate that the data 
currently on cpri_mii_rxd is valid. It sends the K nibble and the data to the 
cpri_mii_rxd output data bus on the rising edge of the cpri_mii_rxclk clock. During 
the first cpri_mii_rxclk cycle of every new data value on cpri_mii_rxd, the MII 
receiver module asserts the cpri_mii_rxwr signal. After the MII receiver module 
completes sending data to the external Ethernet block, it deasserts the cpri_mii_rxdv 
signal.

While frame synchronization is not achieved, the cpri_mii_rxer signal remains 
asserted and cpri_mii_rxdv remains deasserted. 

Figure 4–23 illustrates the MII receiver protocol. 

Figure 4–23. CPRI MII Receiver Example

cpri_mii_rxclk

cpri_mii_rxwr

cpri_mii_rxdv

cpri_mii_rxd[3:0]

reset

cpri_mii_rxer

D0 D1K D2 D3 D4 D5 D6 D7

Frame Synchronization
Achieved
CPRI IP Core June 2014 Altera Corporation
User Guide



Chapter 4: Functional Description 4–41
CPU Interface
Figure 4–24 shows an example timing diagram in which an input error is noted on the 
MII of a transmitting RE or REC master, and the data from the MII is transmitted on 
the CPRI link to a receiving RE slave. The timing diagram shows the MII signals on 
the transmitting master and the receiving slave. The data value captured on the MII 
transmitter module of the RE or REC master when cpri_mii_txer is asserted, is 
passed to the CPRI link as a 5-bit Ethernet HALT symbol (5’b00100). The RE slave MII 
receiver module decodes this symbol as an F (4’b1111) while the cpri_mii_rxer signal 
is asserted.

For more information about the MII receiver module, refer to “CPRI MII Receiver 
Signals” on page 6–10.

CPU Interface
Use the CPU interface to communicate the contents of the control word of a CPRI 
hyperframe — VSS, Ethernet, High-Level Data Link Controller (HDLC), and 
synchronization and timing information — and to access status and configuration 
information in the CPRI IP core registers. An on-chip processor such as the Nios II 
processor, or an external processor, can access the CPRI configuration address space 
using this interface. 

The CPU interface provides an Avalon-MM slave interface that accesses all registers in 
the CPRI IP core. The Avalon-MM slave executes transfers between the CPRI IP core 
and the user-defined logic in your design. 

f For information about the Avalon-MM interface, refer to Avalon Interface Specifications.

Figure 4–24. CPRI MII Signals on Transmitting RE or REC Master and on Receiving RE Slave
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Each of the three sources of input to the CPU interface communicates with the CPRI 
IP core by reading and writing registers through a single Avalon-MM port on the CPU 
interface. Arbitration among the different sources must occur outside the CPRI IP 
core.

If the CPRI IP core is configured with an MII, the application cannot access the IP 
core’s Ethernet registers through the CPU interface. However, if the HDLC block is 
configured, you can access the IP core’s HDLC registers whether or not the MII is 
configured.

For more information about the CPRI IP core registers, refer to Chapter 7, Software 
Interface.

Accessing the Hyperframe Control Words
When you turn on the Include Vendor Specific Space (VSS) access through CPU 
interface option, you can access the 256 control words in a hyperframe through the 
CPRI IP core CPU interface. The CPRI_CTRL_INDEX register (Table 7–7 on page 7–5) 
and the CPRI_RX_CTRL register (Table 7–8 on page 7–6) support your application in 
reading the incoming control words, and the CPRI_CONFIG register (Table 7–6 on 
page 7–4), CPRI_CTRL_INDEX register, and CPRI_TX_CTRL register (Table 7–9 on 
page 7–6) support the application in writing to outgoing control words. 

Register support provides you access to the full control word. Alternatively, in 
timing-critical applications, you can access the full control words through the CPRI IP 
core AUX interface. 

1 Altera recommends that you use the CPU interface to access the hyperframe control 
words only in applications that are not timing-critical.
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Table 4–13 summarizes the relevant register fields. For complete information, refer to 
the register tables in Chapter 7, Software Interface.

Recording and Retrieving the Incoming Control Words
A control receive table contains one entry for each of the 256 control words in the 
current hyperframe. To read a control word, your application must write the control 
word number X to the cpri_ctrl_index field of the CPRI_CTRL_INDEX register and 
then read the last received #Z.X control word from the CPRI_RX_CTRL register. Because 
the register can hold only 32 bits at a time, depending on the CPRI line rate, reading 

Table 4–13. Register Support for Control Word Access

Register Register 
Bits Field Name Description

CPRI_CTRL_INDEX
(Table 7–7)

[16] tx_control_insert

Control word 32-bit section transmit enable. This value is stored 
in the control transmit table with its associated entry. When you 
change the value of the cpri_ctrl_index field, the stored 
tx_control_insert value associated with the indexed entry 
appears in the tx_control_insert field. 

At the time the CPRI IP core can insert a control transmit table 
entry in the associated position in the outgoing hyperframe on 
the CPRI link, if the tx_control_insert bit associated with 
that entry has the value of 1, and the tx_ctrl_insert_en bit 
of the CPRI_CONFIG register is asserted, the IP core inserts the 
table entry in the hyperframe.

[9:8] cpri_ctrl_position

Sequence number for CPRI control word 32-bit section 
monitoring and insertion. The value in this field determines the 
32-bit section of the control receive and control transmit table 
entries that appear in the CPRI_RX_CTRL and CPRI_TX_CTRL 
registers. 

[7:0] cpri_ctrl_index

Index for CPRI control word monitoring and insertion. The value 
in this field determines the control receive and control transmit 
table entries that appear in the CPRI_RX_CTRL and 
CPRI_TX_CTRL registers. 

CPRI_RX_CTRL
(Table 7–8) [31:0] rx_control_data

Most recent received CPRI control word 32-bit section from 
CPRI hyperframe position Z.x, where x is the index in the 
cpri_ctrl_index field of the CPRI_CTRL_INDEX register. The 
cpri_ctrl_position field of the CPRI_CTRL_INDEX register 
indicates whether this is the first, second, third, or fourth such 
32-bit section.

CPRI_TX_CTRL
(Table 7–9) [31:0] tx_control_data

32-bit section of CPRI control word to be transmitted in CPRI 
hyperframe position Z.x, where x is the index in the 
cpri_ctrl_index field of the CPRI_CTRL_INDEX register. The 
cpri_ctrl_position field of the CPRI_CTRL_INDEX register 
indicates whether this is the first, second, third, or fourth such 
32-bit section.

CPRI_CONFIG
(Table 7–6) [0] tx_ctrl_insert_en

Master enable for insertion of control transmit table entries in 
CPRI hyperframe. This signal enables control words for which 
the tx_control_insert bit is high to be written to the CPRI 
frame. 
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the full control word may require multiple register accesses. Increment the value in 
the cpri_ctrl_position field of the CPRI_CTRL_INDEX register from zero to three to 
access the full control word when the CPRI line rate is 9.8304 Gbps, or from zero to 
two when the CPRI line rate is 6.144 Gbps, for example. Refer to “Control Word 
Retrieval Example” on page 4–47 for an example. 

Table 4–14 shows the positions of the control word bytes in CPRI_RX_CTRL[31:0]. Each 
control word nibble appears in the table as 0xF. For example, at the CPRI line rate of 
614.4 Mbps, when you access control receive table entry X by reading from the 
CPRI_RX_CTRL register, the 8-bit control word from hyperframe position #Z.X.0 is in 
bits [31:24] of the register. At the CPRI line rate of 1228.8 Mbps, the byte from position 
#Z.X.0.0 is in bits [31:24] of the register, and the byte from position #Z.X.0.1 is in bits 
[23:16] of the register. At the CPRI line rate of 3072.0 Mbps, when you access a control 
receive table entry by reading from the CPRI_RX_CTRL register, you must read twice. In 
the first read, you access the 32 bits of the control word from positions #Z.X.0.0 (in 
register bits [31:24]), #Z.X.0.1 (in register bits [23:16], #Z.X.0.2 (in register bits [15:8]), 
and #Z.X.0.3 (in register bits [7:0]). In the second read, you access the eight bits of the 
control word from position #Z.X.0.4 in bits [31:24] of the register. 

Writing the Outgoing Control Words
A control transmit table contains an entry for each of the 256 control words in the 
current hyperframe. Each control transmit table entry contains a control word and an 
enable bit. As the frame is created, if a control word entry is enabled, and the global 
tx_ctrl_insert_en bit in the CPRI_CONFIG register is set, the low-level transmitter 
writes the appropriate control transmit table entry to the CPRI frame’s control word. 

You write to a control transmit table entry through the CPRI_TX_CTRL register. This 
register access method requires that you write the control word in 32-bit sections. Use 
the cpri_ctrl_position field of the CPRI_CTRL_INDEX register to specify the 32-bit 
section you are currently writing to the CPRI_TX_CTRL register. Table 4–14 applies to 
the CPRI_TX_CTRL register as well as the CPRI_RX_CTRL register. Refer to Table 4–14 for 
control word byte location in the CPRI_TX_CTRL register and how to use the 
cpri_ctrl_position field. 

To write a control word in the control transmit table, perform the following steps:

1. Write the control word number X to the cpri_ctrl_index field of the 
CPRI_CTRL_INDEX register.

2. Reset the cpri_ctrl_position field of the CPRI_CTRL_INDEX register to the value of 
zero.

3. Write the first 32-bit section of the next intended #Z.X control word to the 
CPRI_TX_CTRL register, as shown in Table 4–14.

Table 4–14. Control Word Byte Positions in CPRI_RX_CTRL Register

cpri_ctrl_position
CPRI Line Rate (Mbps)

614.4 1228.8 2457.6 3072.0 4915.2 6144.0 9830.4

0 FF000000 FFFF0000 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

1 0 0 0 FF000000 FFFFFFFF FFFFFFFF FFFFFFFF

2 0 0 0 0 0 FFFF0000 FFFFFFFF

3 0 0 0 0 0 0 FFFFFFFF
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4. If the CPRI line rate is greater than 2.4576 Gbps, increment the 
cpri_ctrl_position field of the CPRI_CTRL_INDEX register to the value of 1 and 
write the second 32-bit section of the next intended #Z.X control word to the 
CPRI_TX_CTRL register.

5. If the CPRI line rate is greater than 4.9152 Gbps, increment the 
cpri_ctrl_position field of the CPRI_CTRL_INDEX register to the value of 2 and 
write the third 32-bit section of the next intended #Z.X control word to the 
CPRI_TX_CTRL register.

6. If the CPRI line rate is 9.8304 Gbps, increment the cpri_ctrl_position field of the 
CPRI_CTRL_INDEX register to the value of 3 and write the fourth 32-bit section of the 
next intended #Z.X control word to the CPRI_TX_CTRL register.

7. Set the tx_control_insert bit in the CPRI_CTRL_INDEX register to the value of one.

8. After you update the control transmit table, set the tx_ctrl_insert_en bit of the 
CPRI_CONFIG register to enable the CPRI IP core to write the values from the 
control transmit table to the control words in the outgoing CPRI frame. 

The tx_control_insert bit of the CPRI_CTRL_INDEX register enables or disables the 
transmission of the corresponding control transmit table entry in the CPRI frame. The 
tx_ctrl_insert_en bit of the CPRI_CONFIG register is the master enable: when it is set, 
the CPRI IP core writes all table entries with the tx_control_insert bit set into the 
CPRI frame.
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Control Word Order
The entries in the control receive and control transmit tables match the organization of 
control words in subchannels from the CPRI specification. Figure 4–25 shows this 
word order. The figure is Figure 15 of the CPRI V5.0 Specification.

Figure 4–25 illustrates how the 256 control words in the hyperframe are organized as 
64 subchannels of four control words each. The figure illustrates why the index X of a 
control word is Ns + 64 × Xs, where Ns is the subchannel index and Xs is the index of 
the control word within the subchannel.

Control Word Transmission Example
To write to the vendor-specific portion of the control word in a transmitted 
hyperframe, perform the following steps:

1. Identify the indices for the vendor-specific portion of the transmit control table, 
using the formula X = Ns + 64 × Xs. 

In the example, Ns = 16 and Xs = 0,1,2, and 3. Therefore, the indices to be written 
are 16, 80, 144, and 208.

2. For each value X in 16, 80, 144, and 208, perform the sequence of steps listed in 
“Writing the Outgoing Control Words” on page 4–44.

Figure 4–25. Illustration of Subchannels in a Hyperframe

Xs == 0 1 2 3

Ns == 0 0: K28.5 Synchronization and Timing 

1 1: HDLC link 65: HDLC 129: HDLC 193: HDLC

2 2: L1 In-band 66: L1 in-band 130: L1 in-band 194: P (20 = 0x14)

3 3: Reserved 67: Reserved

4 4: Ctrl_AxC ... ... ...

...

7 7: Ctrl_AxC 71: Ctrl_AxC 135: Ctrl_AxC 199: Ctrl_AxC

...

14 14: Reserved

15 15: Reserved 79: Reserved 143: Reserved 207: Reserved

16 Vendor-specific

...

19
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CPRI IP Core June 2014 Altera Corporation
User Guide



Chapter 4: Functional Description 4–47
CPU Interface
After you update the control transmit table with the control bytes, to insert the data in 
the next outgoing CPRI frame, make sure you set the tx_ctrl_insert_en field of the 
CPRI_CONFIG register to the value of 1 as specified in the instructions.

Control Word Retrieval Example
To retrieve the vendor-specific portion of a control word in the most recent received 
hyperframe, perform the following steps:

1. Identify the indices for the vendor-specific portion of the transmit control table, 
using the formula X = Ns + 64 × Xs. 

In the example, Ns = 16 and Xs = 0,1,2, and 3. Therefore, the indices to be read are 
16, 80, 144, and 208.

2. For each value X in 16, 80, 144, and 208, perform the following steps:

a. Write the value X to the cpri_ctrl_index field of the CPRI_CTRL_INDEX register.

b. Reset the cpri_ctrl_position field of the CPRI_CTRL_INDEX register to the 
value of zero.

c. In the following cpu_clk cycle, read the first 32-bit section of the control word 
in the CPRI_RX_CTRL register, as shown in Table 4–14.

d. If the CPRI line rate is greater than 2.4576 Gbps, increment the 
cpri_ctrl_position field of the CPRI_CTRL_INDEX register to the value of 1 and 
in the following cpu_clk cycle, read the second 32-bit section of the control 
word in the CPRI_RX_CTRL register.

e. If the CPRI line rate is greater than 4.9152 Gbps, increment the 
cpri_ctrl_position field of the CPRI_CTRL_INDEX register to the value of 2 and 
in the following cpu_clk cycle, read the third 32-bit section of the control word 
in the CPRI_RX_CTRL register.

f. If the CPRI line rate is 9.8304 Gbps, increment the cpri_ctrl_position field of 
the CPRI_CTRL_INDEX register to the value of 3 and in the following cpu_clk 
cycle, read the fourth 32-bit section of the control word in the CPRI_RX_CTRL 
register.

Accessing the Ethernet Channel
If you turn on the Include MAC block parameter, your CPRI IP core includes an 
internal Ethernet Media Access Controller (MAC). If you turn off this parameter, an 
MII is available for you to connect to your own external Ethernet MAC. In that case, 
the internal Ethernet MAC is not available and your application cannot access the 
Ethernet registers. If the internal Ethernet MAC is turned off, attempts to access these 
registers read zeroes and do not write successfully, as for a reserved register address.

The Ethernet MAC is responsible for processing the Ethernet frame. The Ethernet 
MAC unloads the Ethernet frame from the CPRI frame and stages it in the Ethernet 
registers, where it is accessible through the CPU interface. The Ethernet MAC also 
handles the flow of Ethernet data to the CPRI frame, by loading it from the Ethernet 
registers into the Ethernet space in the CPRI hyperframe.
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The CPRI specification dictates that a CPRI hyperframe that contains Ethernet data 
also contain a pointer to the start of that data in control byte Z.194.0. The pointer value 
0x0 indicates that no Ethernet channel is supported in the current hyperframe. A valid 
pointer holds a subchannel index value between 0x14 and 0x3F, inclusive. The length 
of the Ethernet data can extend beyond the end of the hyperframe; if a received 
Ethernet frame exceeds 1536 bytes, the Ethernet module resets, unless the 
rx_long_frame_en bit of the ETH_CONFIG_1 register is set.

The CPRI transmitter reads the pointer value from the tx_fast_cm_ptr field of the 
CPRI_CM_CONFIG register and writes it in CPRI control byte Z.194.0 in the outgoing 
CPRI hyperframe. The rx_fast_cm_ptr field of the CPRI_CM_STATUS register holds the 
current pointer value, determined during the software set-up sequence or by dynamic 
modification, in which the same new pointer value is received in CPRI control byte 
Z.194.0 four hyperframes in a row.

Software can configure the Ethernet channel by writing to the ETH_CONFIG_1 register 
through the CPRI IP core Avalon-MM CPU interface. For additional information 
about this register, refer to Chapter 7, Software Interface.

Transmitting Ethernet Traffic
To transmit an Ethernet frame, the CPRI IP core must load the frame in a Tx Ethernet 
buffer. Application software can direct the CPRI IP core to load the Ethernet frame in 
the Tx Ethernet buffer by reading and writing the following registers:

■ ETH_CONFIG_2 register at offset 0x20C (Table 7–54 on page 7–25)—Configure the 
CPRI IP core to automatically calculate the Frame check sequence and insert it at 
the end of the frame data, by setting the crc_enable field in bit 0 of this register.

■ ETH_TX_STATUS register at offset 0x204 (Table 7–52 on page 7–24)—Poll the 
tx_ready_block and tx_ready fields of this register. If the tx_ready field has a 
value of 1, you can load a 4-byte word to the Tx Ethernet buffer. If the 
tx_ready_block field has a value of 1, you can load a block of eight 4-byte entries 
to the Tx Ethernet buffer without polling the tx_block_ready or tx_ready bits 
between CPU write operations. 

■ ETH_TX_DATA register at offset 0x220 (Table 7–59 on page 7–26)—Load data in this 
register. To load a block of eight 4-byte entries to the Tx Ethernet buffer, you must 
execute eight CPU write operations to this register.

■ ETH_TX_CONTROL register at offset 0x21C (Table 7–58 on page 7–25)—Before you 
load the final word of an Ethernet frame in the ETH_TX_DATA register (or 
ETH_TX_DATA_WAIT register (Table 7–60 on page 7–26)), set the tx_eop field and 
write the tx_length field of this register to indicate how many bytes in the final 
word are padding.

The Ethernet Tx buffer holds 64 4-byte entries, for a total of 256 bytes. When 
transmitting Ethernet frames larger than the capacity of the Tx Ethernet buffer, you 
must ensure you do not overflow or underflow the buffer. If the Ethernet transmitter 
module writes data to the ETH_TX_DATA register when the Ethernet Tx buffer is not 
ready, the tx_abort bit is set in the ETH_TX_STATUS register and the current Ethernet 
packet is aborted. To prevent the Ethernet transmitter module from aborting a frame, 
you can write the data to the ETH_TX_DATA_WAIT register. The ETH_TX_DATA_WAIT 
register can accept data when the Ethernet Tx buffer is not ready for new data. 
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You must write each frame’s data to the ETH_TX_DATA register continuously. The 
Ethernet transmitter module ensures the correct bit order for transmission on the 
CPRI link. If the crc_enable field of the ETH_CONFIG_2 register has the value of 0, you 
must insert the CRC in the frame data, because the Ethernet receiver module checks 
CRC. In this case, you must reverse the bit order of the CRC bytes so that the most 
significant byte of the CRC is transmitted first. 

1 If you set the crc_enable field of the ETH_CONFIG_2 register to the value of 1, the Tx 
Ethernet automatically calculates the Frame check sequence and inserts it at the end of 
the Ethernet frame data in the Tx Ethernet buffer.

Software can set the tx_discard bit in the ETH_TX_CONTROL register, which in turn 
causes the tx_abort bit in the ETH_TX_STATUS register to be set. The Ethernet 
transmitter module can also set the tx_abort bit directly.

The Tx Ethernet controller reads the Tx Ethernet buffer after you set the tx_eop bit of 
the ETH_TX_CONTROL register and write the final word in the ETH_TX_DATA register. If 
you disable the store-and-forward feature by resetting the tx_st_fwd field of the 
ETH_FWD_CONFIG register at offset 0x244 (Table 7–64 on page 7–27), the Tx Ethernet 
controller also reads the Tx Ethernet buffer whenever the number of words in the Tx 
Ethernet buffer is above a programmable threshold. 

Interrupts

Software can enable interrupts by setting bits in the ETH_CONFIG_1 register at offset 
0x208 (Table 7–53 on page 7–24). The intr_en bit is the Ethernet global interrupt 
enable and intr_tx_en is the Ethernet Tx interrupt enable. If both of these two bits are 
set, software can use the status in the ETH_TX_STATUS register to generate interrupts. 
For example, using the tx_ready_block bit to generate an interrupt ensures that the 
CPU is interrupted only when a full 32-bit packet of data is ready to transfer to the 
Ethernet Tx buffer.

Receiving Ethernet Traffic
The Ethernet receiver module receives Ethernet data from the CPRI link by reading it 
from the Ethernet Rx buffer through an Ethernet register.

This section describes how the Ethernet receiver module performs MAC address 
filtering according to the ETH_CONFIG_1, ETH_ADDR_LSB, and ETH_ADDR_MSB registers, 
provides status information to the CPU interface in the ETH_RX_STATUS register, and 
allows the CPU interface to insert wait states in the Ethernet channel. 

For additional information about the Ethernet receiver registers, refer to Chapter 7, 
Software Interface.

MAC Address Filtering

To enable MAC address checking, set the mac_check bit of the ETH_CONFIG_1 register. 
If the mac_check bit is reset to the value of zero, the Ethernet receiver accepts all 
received packets.

You can enable the following three MAC address filters:

■ Unicast filtering: check that the destination MAC address is the address specified 
in the ETH_ADDR_LSB and ETH_ADDR_MSB registers. If the mac_check bit is not set, this 
filter is disabled.
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■ Multicast filtering: if the least significant bit of the first destination MAC address 
byte, the group address bit, is set to 1, use the ETH_HASH_TABLE register to 
determine whether to accept this destination MAC address. Because the hash 
algorithm might not filter the destination address as intended, you must 
implement full address validation in software if you enable multicast filtering. To 
enable multicast filtering, set the multicast_flt_en bit of the ETH_CONFIG_1 
register.

■ Broadcast filtering: accept all packets with destination MAC address 
0xFFFFFFFFFFFF, the Ethernet broadcast address. To enable broadcast filtering, set 
the broadcast_en bit of the ETH_CONFIG_1 register.

Ethernet Rx Buffer Status 

The CPRI IP core reports relevant Ethernet Rx buffer status to the CPU interface by 
updating the following fields of the ETH_RX_STATUS register:

■ The ETH_RX_STATUS rx_ready bit indicates that at least one word of data is 
available in the Ethernet Rx buffer and ready to be read.

■ The ETH_RX_STATUS rx_eop bit indicates that the next ready data word contains 
the end-of-packet byte.

■ The ETH_RX_STATUS rx_length field indicates the number of valid bytes in the 
end-of-packet word.

■ The ETH_RX_STATUS rx_abort bit indicates that the current received packet is 
aborted.

■ The ETH_RX_STATUS rx_ready_block bit indicates that the next block of packet 
data is ready to be read and does not contain the end-of-packet byte.

■ The ETH_RX_STATUS rx_ready_end bit indicates that the end-of-packet byte is 
ready in the Ethernet Rx buffer.

Software can set the ETH_RX_CONTROL rx_discard bit to abort the current received 
packet. The Ethernet receiver ensures that following read from the Ethernet Rx buffer 
is a start-of-packet word.

Ethernet Data Transfer

The next ready data word is available in the ETH_RX_DATA and ETH_RX_DATA_WAIT 
registers. If no Ethernet data word is ready, reading from the ETH_RX_DATA_WAIT 
register inserts wait states in the Ethernet channel. If no Ethernet data word is ready, 
reading from the ETH_RX_DATA register causes the rx_abort bit to be set. The CPU 
interface receiver module reads the Ethernet packet data one word at a time from one 
of these registers.

Accessing the HDLC Channel
If you turn on the Include HDLC block parameter, your CPRI IP core includes an 
internal High-Level Data Link Controller (HDLC) block. If you turn off this 
parameter, the internal HDLC block is not available and your application cannot 
access the HDLC registers. If the internal HDLC block is turned off, attempts to access 
these registers read zeroes and do not write successfully, as for a reserved register 
address.
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In the CPRI IP core, the HDLC block, or slow data link layer, passes HDLC data 
between the CPU interface and the CPRI receiver and transmitter interfaces to the 
CPRI link. The CPRI specification dictates that the HDLC channel rate is specified in 
the three lowest bits of control byte Z.66.0. The value 3’b000 indicates that no HDLC 
channel is supported in the current hyperframe. Table 4–15 shows the possible rate 
configurations.

The HDLC channel rate is determined during the software set-up sequence or by 
dynamic modification, in which the same new pointer value is received in CPRI 
control byte Z.66.0 four hyperframes in a row. The accepted receive rate is specified in 
the rx_slow_cm_rate field of the CPRI_CM_STATUS register, and the transmit rate is 
specified in the tx_slow_cm_rate field of the CPRI_CM_CONFIG register.

The CPU interface control for the HDLC channel is identical to the CPU interface 
control for the Ethernet channel, with the following exceptions:

■ HDLC register names replace ETH with HDLC

■ HDLC channel control has fewer configurations than the Ethernet channel control

■ HDLC channel control does not support address filtering

1 The CPRI IP core implements the CRCDT CRC-16 allowed by the HDLC specification, 
rather than the CRC-32.

CPRI Protocol Interface Layer (Physical Layer)
The physical layer of the CPRI protocol is also called layer 1. This layer controls the 
electrical characteristics of the CPRI link, the time-division multiplexing of the 
separate information flows in the protocol, and low-level signaling. The CPRI 
protocol interface module of the CPRI IP core incorporates Altera’s high-speed 
transceivers to implement layer 1. The transceivers are configured in deterministic 
latency mode, supporting the extended delay measurement requirements of the CPRI 
specification.

Table 4–15. HDLC Channel Bit Rates

Value in Z.66.0.0[2:0] HDLC Bit Rate
(Kbps)

Minimum CPRI Line Rate 
(Mbps)

000 — 614.4

001 240 614.4

010 480 614.4

011 960 1228.8

100 1920 2457.6

101 2400 3072.0

110

3840 4915.2

4800 6144.0

7680 9830.4

111 (1)

Note to Table 4–15:

(1) When Z.66.0.0[2:0] holds value 3’b111, the HDLC bit rate is the highest HDLC bit rate possible for the current CPRI 
line rate. You can derive that bit rate from the other entries in this table.
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This section describes features and blocks of the CPRI protocol interface module. 
Figure 4–26 shows a high-level block diagram of this module.

Features
The physical layer has the following features:

■ Frame synchronization

■ Transmitter and receiver with the following features:

■ High-speed data serialization and deserialization

■ Clock and data recovery (receiver)

■ 8B/10B encoding and decoding

■ Frame and control word assembly and delineation

■ Error detection

■ Deterministic latency

■ Software interface (status and control registers)

■ Error reporting

■ Clock decoupling

Physical Layer Architecture
Figure 4–26 shows the architecture of the physical layer.

Figure 4–26. Physical Layer High Level Block Diagram
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Ensuring the Physical Layer Routes Your Data as Expected
Layer 1 routes data from the MAP, Auxiliary, and CPU interfaces to the outgoing 
CPRI frame, and routes data from the CPRI frame to the MAP, Auxiliary, and CPU 
interfaces. To ensure the data is routed as you intend, observe the following 
guidelines:

■ To configure a CPRI IP core variation that supports only the AUX interface, in the 
CPRI parameter editor, set the number of antenna-carrier interfaces to the value of 
0.

■ To program a subset of the configured antenna-carrier channels as active 
antenna-carrier channels, set the map_ac field of the CPRI_MAP_CNT_CONFIG register 
to the appropriate number of channels. Refer to “Number of Antenna-Carrier 
Interfaces” on page 3–6. The combination of CPRI line rate, MAP interface sample 
width (programmed in the map_15bit_mode field of the CPRI_MAP_CONFIG register), 
and sampling rate (programmed in the map_n_ac field of the CPRI_MAP_CNT_CONFIG 
register) restricts the number of active antenna-carrier interfaces your CPRI IP core 
can support without data corruption. Refer to Table 4–5 and Table 4–6 on 
page 4–17. Programming these register fields affects how your AxC samples are 
packed in the data channels. You can program these register fields, and they have 
the same effect on the MAP interface, whether or not your CPRI IP core variation 
uses the AUX interface.

■ If your CPRI IP core variation and application support both an AUX interface and 
a MAP interface, use the cpri_tx_aux_mask mask signal (bits [31:0] of the 
aux_tx_mask_data[64:0] bus described in Table 6–4 on page 6–7) to override the 
MAP interface (data) and CPU interface (control words) write access to the CPRI 
frame data per data bit. The mask signal is a MUX select. Setting a bit in the mask 
ensures the corresponding data bit inserted in the outgoing CPRI frame is data 
from the AUX interface. Resetting a bit in the mask ensures the corresponding bit 
inserted in the outgoing CPRI frame is data from the MAP interface or control 
words from the CPU interface.

■ The AUX interface routes raw data. It passes control words unexamined as if they 
were data. Your application can separate the control and data words in the AUX 
stream if your application requires that they be separated.

■ When the source of the data for the CPRI frame is not the AUX interface, you must 
ensure you deassert the bits in cpri_tx_aux_mask to prevent AUX data from being 
inserted in the outgoing CPRI frame.

Receiver
The receiver in the low-level interface receives the input from the CPRI link, and 
performs the following tasks:

■ Converts the data to the main clock domain

■ Performs CPRI frame detection

■ Separates data and control words

■ Descrambles data at 4915.2 Mbps, 6144.0, and 9830.4 Mbps CPRI line rates 
(optional)
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■ Separates data for the MAP interface block, the AUX module, the Ethernet MAC 
block or the MII module, and the HDLC module.

■ Detects loss of signal (LOS), loss of frame (LOF), remote alarm indication (RAI), 
and service access point (SAP) defect indication (SDI) errors

High-Speed Transceiver
The high-speed transceiver on the CPRI IP core CPRI protocol interface is configured 
with the Altera ALTGX IP core in Arria II, Cyclone IV GX, and Stratix IV GX devices, 
with the Altera Deterministic Latency PHY IP core in Arria V, Cyclone V, and 
Stratix V GX devices and in some variations in Stratix V GT devices, and with the 
Altera Native PHY IP core in variations with a CPRI line rate of 9830.4 Mbps in 
Stratix V GT devices. 

The transceiver receiver implements 8B/10B decoding and the deterministic latency 
protocol. The deterministic latency protocol is designed to meet the 16.276 ns 
round-trip delay measurement accuracy requirements R21 and R21A of the CPRI 
specification.

f For information about the high-speed transceiver blocks, refer to volume 2 of the 
Arria II Device Handbook, to volume 2 of the Cyclone IV Device Handbook, or to volume 2 
and volume 3 of the Stratix IV Device Handbook.

f For information about the Altera Deterministic Latency PHY IP core and the Altera 
Native PHY IP core, refer to the Altera Transceiver PHY IP Core User Guide.

Rx Elastic Buffer
The low-level interface receiver converts data from the transceiver clock domain and 
data width to the main CPRI IP core clock domain and data width using a 
synchronization FIFO called the Rx elastic buffer. The Rx elastic buffer data output is 
clocked with the cpri_clkout clock. The Rx elastic buffer data input is synchronous 
with the rx_clkout clock from the transceiver. The width of an Rx elastic buffer entry 
is 32 bits, and the rx_clkout clock clocks the transceiver data, which is 8, 16, or 32 bits 
wide. For details, refer to “Clock Diagrams for the CPRI IP Core” on page 4–5.

The default depth of the Rx elastic buffer is 64 32-bit entries. For most systems, the 
default Rx elastic buffer depth is adequate to handle dispersion, jitter, and wander 
that can occur on the link while the system is running. However, the Receiver buffer 
depth parameter is available for cases in which additional depth is required.

1 Altera recommends that you set Receiver buffer depth to 4 in CPRI RE slave 
variations, specifying a depth of 16 32-bit entries.

You must realign and resynchronize the Rx elastic buffer after a dynamic CPRI line 
rate change. Resynchronizing the Rx elastic buffer resets its pointers. Program the 
CPRI_RX_DELAY_CTRL register to realign and resynchronize the Rx elastic buffer.

The Rx elastic buffer adds variable delay to the Rx path through the CPRI IP core. 
Refer to “Extended Rx Delay Measurement” on page E–6.
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Descrambling
If the tx_prot_version field of the CPRI_TX_PROT_VER register (Table 7–25 on 
page 7–12) holds the value 2, and the CPRI data rate is 4915.2 Mbps, 6144.0 Mbps, or 
9830.4 Mbps, the low-level CPRI receiver may need to descramble the incoming data, 
depending on the values in the CPRI_RX_SCR_SEED register. 

When the rx_scr_act_indication field of the CPRI_RX_SCR_SEED register (Table 7–27 
on page 7–13) is set, the low-level CPRI receiver descrambles the data words 
according to the CPRI V5.0 Specification, using the seed in the rx_scr_seed field of 
the CPRI_RX_SCR_SEED register. The seed value may be zero, indicating the incoming 
data is not scrambled.

Frame Synchronization
During frame synchronization, LOF is set to zero. LOS—the assertion of the gxb_los 
signal—resets the frame synchronization state machine. 

Figure 4–27 shows the frame synchronization state machine. If scrambling is 
configured in the CPRI link partner (based on the value at Z.2.0 in the incoming CPRI 
communication), additional actions and conditions apply on the state machine 
transitions, according to the CPRI V5.0 Specification. The CPRI IP core sets the values 
in the CPRI_RX_SCR_SEED register according to these conditions.
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Alarm Indications
The CPRI IP core can detect and report the following alarms:

■ Loss of signal (LOS)—the CPRI IP core reports this alarm in the rx_los field of the 
CPRI_STATUS register at offset 0x4 (Table 7–5 on page 7–3).

■ Loss of frame (LOF)—the CPRI IP core reports this alarm by resetting the rx_state 
field of the CPRI_STATUS register at offset 0x4 (Table 7–5 on page 7–3).

Your application detects the following alarms by reading the last received #Z.130.0 
control byte in the CPRI_RX_CTRL register:

■ Remote alarm indication (RAI)

■ Service access point (SAP) defect indication (SDI) errors

■ Reset requests received over the CPRI link

Figure 4–27. CPRI Frame Synchronization Machine (1)

Notes to Figure 4–27:

(1) If the tx_prot_version field of the CPRI_TX_PROT_VER register (Table 7–25 on page 7–12) holds the value 1, scrambling is not turned on. In this 
case, the conditions when Y is in 2..5 are ignored.

(2) LOS=1 returns the state machine to the XACQ1 state. This transition has highest priority.
(3) Condition B is: Received byte not K28.5 when Y=W=X=0 or for some k in 2..5, received byte(unscrambled) not 0x50 when W=X=0 and Y=k.

XACQ1

XACQ2

XSYNC1

XSYNC2

HFNSYNC

W=X=0 and LOS=0 and
(Received K28.5 Byte when Y=0

and
Received Scrambled 0x50 Byte when Y=2..5)

W=X=0 and LOS=0 and
(Received K28.5 Byte when Y=0

and
Received Scrambled 0x50 Byte when Y=2..5)

W=X=0 and LOS=0 and
(Received K28.5 Byte when Y=0

and
Received Scrambled 0x50 Byte when Y=2..5)

 

Received K28.5 Byte/
Set Y:=W:=X:=0

W=X=0 and LOS=0 and
(Received K28.5 Byte when Y=0

and
Received Scrambled 0x50 Byte when Y=2..5)

LOS=1

B

B

B    or
LOS=1

LOF=1

LOF=0

Power Up or Reset

B    or
LOS=1

(2)

(2)
(3)

(3)

(3)

(3)

(2)
CPRI IP Core June 2014 Altera Corporation
User Guide



Chapter 4: Functional Description 4–57
CPRI Protocol Interface Layer (Physical Layer)
The frame synchronization machine detects LOS and LOF directly. You can program 
your application to detect and respond to RAI and SDI errors as appropriate. Refer to 
“Accessing the Hyperframe Control Words” on page 4–42 for information about 
retrieving these alarms from the hyperframe control word.

The CPRI IP core handles incoming reset requests on the CPRI link by signalling the 
application to assert the reset signal to reset the IP core. The application reads the 
requests using the CPU interface. The following section describes the additional 
support the CPRI IP core provides to process this special command.

Reset Control Word
A CPRI IP core in master clocking mode can send a reset request through the CPRI 
link and a CPRI IP core in slave clocking mode can receive a reset request through the 
CPRI link. As required by the CPRI specification, the reset control information is sent 
in bit 0 of the CPRI hyperframe control word Z.130.0. This reset bit communicates 
both reset request and reset acknowledge. 

Table 4–16 lists the signals and register fields that determine the CPRI IP core’s 
response to a reset request received on the CPRI link and that determine whether it 
sends a reset request on the CPRI link.

A CPRI IP core in master mode transmits a reset request to the RE slave nodes to 
which it is connected under either of the trigger conditions shown in Table 4–16. The 
behavior of a CPRI IP core in slave mode that receives a reset request on the CPRI link 
depends on the same enable fields in its own CPRI_HW_RESET register. For reset 
acknowledgements, as for the original reset request conditions, if the reset_hw_en bit 
is asserted, the reset_gen_en bit is ignored.

The CPRI specification requires that the Z.130.0 reset bit must be detected by the CPRI 
partner in ten consecutive hyperframes before the CPRI partner confirms the reset 
request. The reset generation request is in effect while the condition that triggered the 
reset request remains in effect, until the reset acknowledge control bit is detected on 
the incoming CPRI link. 

To abort a reset request, set or reset a register field to negate the condition. Specifically, 
to abort a reset request made by asserting the reset_gen_force bit in the 
CPRI_HW_RESET register, set the reset_gen_en bit of the CPRI_HW_RESET register to 0. To 
abort a reset request made by asserting the hw_reset_assert input signal, set the 
reset_hw_en bit of the CPRI_HW_RESET register to 0.

Table 4–16. Conditions That Trigger a Reset Request or Enable a Reset Acknowledge on the CPRI Link

Register or Signal 
Name Register Bits Field Name Trigger Conditions for Sending Reset

Request (Master) or ACK (Slave)

CPRI_HW_RESET
(Table 7–12)

[0] reset_gen_en 1 —

[1] reset_gen_force 1 —

[3] reset_hw_en 0 1

hw_reset_assert
(Table 6–15)

— — — 1
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To acknowledge the reset request, the CPRI transmitter must send a reset 
acknowledge on the CPRI link, by setting the Z.130.0 reset bit in five consecutive 
outgoing hyperframes. If one of the acknowledgement conditions in Table 4–16 holds, 
the CPRI transmitter sends the reset acknowledge on the CPRI link. If the 
reset_out_en bit of the CPRI_HW_RESET register is set, the CPRI IP core asserts the 
external hw_reset_req signal until the reset occurs. This signal informs the 
application layer of the low-level reset request. 

After it transmits the five consecutive reset acknowledge bits, the CPRI transmitter 
sets the reset_gen_done and reset_gen_done_hold bits of its own CPRI_HW_RESET 
register. If the reset_hw_en bit is set and the hw_reset_req signal is asserted, you must 
set the hw_reset_assert signal, to tell the CPRI transmitter to send a reset 
acknowledge on the CPRI link.

For more information about the CPRI_HW_RESET register, refer to Table 7–12 on 
page 7–6. For more information about the hw_reset_assert input signal, refer to 
Table 6–15 on page 6–17.

After reset, your software must perform link synchronization and other initialization 
tasks. For information about the required initialization sequence following CPRI IP 
core reset, refer to Appendix A, Initialization Sequence.

Transmitter
The transmitter in the low-level interface transmits output to the CPRI link. This 
module performs the following tasks:

■ Assembles data and control words in proper output format 

■ Transmits standard frame sequence

■ Optionally scrambles the outgoing data transmission at 4915.2 Mbps, 
6144.0 Mbps, and 9830.4 Mbps CPRI line rates

■ Inserts the following control words in their appropriate locations in the outgoing 
hyperframe:

■ Synchronization control byte (K28.5) and filler bytes (D16.2) in the 
synchronization control word

■ Hyperframe number (HFN)

■ Basic frame number (BFN)

■ HDLC bit rate

■ Pointer to start of Ethernet data in current frame

■ 4B/5B-encoded fast C&M Ethernet frames 

■ Bit-stuffed slow C&M HDLC frames

■ Enabled control transmit table entries

■ Converts the data to the transceiver clock domain.

When no data is available to transmit on the CPRI link, the transmitter transmits the 
standard frame sequence with zeroed control words and all-zero data.
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Scrambling
When the tx_prot_version field of the CPRI_TX_PROT_VER register (Table 7–25 on 
page 7–12) holds the value 2, the low-level CPRI transmitter scrambles the data words 
according to the CPRI V5.0 Specification, using the seed in the tx_scr_seed field of 
the CPRI_TX_SCR_SEED register (Table 7–26 on page 7–13). 

Tx Elastic Buffer
The low-level interface transmitter converts data from the main CPRI IP core clock 
domain and data width to the transceiver clock domain and data width using a 
synchronization FIFO called the Tx elastic buffer. The Tx elastic buffer data input is 
clocked with the cpri_clkout clock, and the buffer data output is clocked with the 
tx_clkout clock from the transceiver. Data in the Tx elastic buffer is 32 bits wide, and 
the data bus to the transceiver is 8, 16, or 32 bits wide, depending on the target device 
family and the CPRI line rate. The CPRI IP core derives the cpri_clkout clock from 
the Tx output clock of the transceiver, divided as necessary to support the data width 
conversion to and from the 32-bit wide elastic buffers. Table 4–17 shows the data bus 
widths and clock divisors for the different device families and CPRI line rates. 

High-Speed Transceiver
The high-speed transceiver on the CPRI IP core CPRI protocol interface is configured 
with the Altera ALTGX IP core in Arria II, Cyclone IV GX, and Stratix IV GX devices, 
with the Altera Deterministic Latency PHY IP core in ArriaV, Cyclone V, and 
Stratix V GX devices and in some variations in Stratix V GT devices, and with the 
Altera Native PHY IP core in variations with a CPRI line rate of 9830.4 Mbps in 
Stratix V GT devices. 

The transceiver transmitter implements 8B/10B encoding and the deterministic 
latency protocol. It transforms the 16-bit parallel input data to the Arria II GX or 
Cyclone IV GX transmitter, or 32-bit parallel input data to the Arria II GZ, Arria V, 
Stratix IV GX, or Stratix V transmitter, to 8-bit data before 8B/10B encoding. The 10-
bit encoded data is then serialized and sent to the CPRI link differential output pins. 

The deterministic latency protocol is designed to meet the 16.276-ns round-trip delay 
measurement accuracy requirements R21 and R21A of the CPRI specification. 

Table 4–17. Transceiver Datapath Width and tx_clkout Divider

CPRI Line Rate
(Mbps) Device Family (1) Transceiver Datapath Width

(Bits) tx_clkout Divider

614.4 All 8 4

Greater than 614.4

Arria II GX, Cyclone IV GX 16 2

Arria II GZ, Arria V, 
Cyclone V, Stratix IV GX, and 
Stratix V

32 1

Note to Table 4–17:

(1) Arria V GT devices that target 9.830 Gbps do not have a tx_clkout divider after auto-rate negotiations. cpri_clkout is derived directly from 
the input clock usr_clk. The TX elastic buffer synchronizes between the transceiver PMA clock out and the user-derived clock usr_clk (or 
cpri_clkout).
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f For information about the high-speed transceiver blocks, refer to volume 2 of the 
Arria II Device Handbook, to volume 2 of the Cyclone IV Device Handbook, or to volume 2 
and volume 3 of the Stratix IV Device Handbook.

f For information about the Altera Deterministic Latency PHY IP core and the Altera 
Native PHY IP core, refer to the Altera Transceiver PHY IP Core User Guide.
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5. Testing Features
This chapter describes the following testing features of the CPRI IP core:

■ Loopback features

■ PRBS testing features

■ RE slave link synchronization without connecting to an REC master

Loopback Modes
The CPRI IP core supports multiple loopback modes to help you test your CPRI 
design. Figure 5–1 illustrates the supported loopback paths.The following sections 
describe these loopback modes.

External Loopback
The CPRI IP core supports an external loopback configuration on the CPRI link. You 
can use this configuration to test the full Tx and Rx paths from an application, through 
the CPRI link, and back to the application.

The CPRI testbenches provided in your CPRI IP installation configure the DUT in this 
loopback mode. Refer to Chapter 8, CPRI IP Core Demonstration Testbench.

To configure this loopback mode, you connect a CPRI REC master’s CPRI Tx interface 
to its CPRI Rx interface by physically connecting the CPRI IP core’s high-speed 
transceiver output pins to its high-speed transceiver input pins. As for any CPRI link, 
the connection medium must support the data rate requirements of the CPRI IP core. 
Altera recommends that you implement this type of loopback connection through an 
SFP cable.

By default, only an REC master can function correctly in a CPRI link external 
loopback configuration. However, Altera provides an L1 layer testing feature that 
supports RE slave testing in a CPRI link external loopback configuration. Refer to 
“Achieving Link Synchronization Without an REC Master” on page 5–4.

Figure 5–1. CPRI IP Core Supported Loopback Paths

Notes to Figure 5–1:

(1) External loopback mode to test a single CPRI REC master.
(2) Internal reverse loopback mode configured in an RE slave’s CPRI_PHY_LOOP register. 
(3) Internal reverse loopback mode configured in an RE slave’s CPRI_CONFIG register.
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PRBS Generation and Validation
Internal Reverse Loopback
The CPRI IP core supports two different internal reverse loopback paths that you can 
configure in software in a CPRI RE slave, and multiple loopback modes along those 
paths. The following sections describe these modes.

Physical Layer Loopback Mode
In the physical layer reverse loopback mode, a CPRI RE slave sends CPRI frames of 
incoming CPRI data and control words from the PHY module back through the PHY 
module in outgoing CPRI communication. The PHY reverse loopback path is labeled 
(2) in Figure 5–1.

In this mode, the PHY reverse loopback path is active whether or not frame 
synchronization has been achieved. The path includes 8B10B encoding and decoding, 
but only enough core CPRI functionality to handle the transition from the receiver 
clock domain to the transmitter clock domain.

You configure a CPRI RE slave in physical layer loopback mode by setting the 
loop_mode bit in the CPRI_PHY_LOOP register described in Table 7–13 on page 7–7. If 
this bit is set, the reverse loopback path through the CPRI Rx and Tx buffers is not 
active, irrespective of any setting that should activate that path.

Reverse Loopback Through CPRI Rx and Tx Buffers
The CPRI IP core provides support for an additional, more comprehensive testing 
loopback path in several different modes. The testing loopback modes activate a 
reverse loopback path that sends incoming CPRI communication from the CPRI Rx 
buffer back through the CPRI Tx buffer and the PHY module to the CPRI link in 
outgoing CPRI communication. This testing loopback path is labeled (3) in Figure 5–1.

Several loopback modes are available on this reverse loopback path. You can specify 
that full CPRI frames, including all incoming CPRI data and control words, are sent 
back in outgoing CPRI communication. You can also specify that only data be looped 
back, or that only certain categories of control words be looped back. In these modes, 
the CPRI RE slave generates the remainder of the outgoing CPRI frame content 
locally.

You configure a CPRI RE slave in testing loopback mode by setting the appropriate 
value in the loop_mode field of the CPRI_CONFIG register described in Table 7–6 on 
page 7–4. The register description includes the full encodings to specify the different 
loopback mode values.

PRBS Generation and Validation
The CPRI IP core supports generation and validation of several predetermined 
pseudo-random binary sequences (PRBS) for antenna-carrier interface and Rx and Tx 
path testing.

1 The MAP interface module generates and checks the PRBS. If you configure no 
antenna-carrier interfaces in your CPRI IP core, your IP core does not include a MAP 
block and therefore does not support PRBS testing.
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PRBS Generation and Validation
The value in the prbs_mode field of the CPRI_PRBS_CONFIG register (Table 7–44 on 
page 7–21) specifies whether the MAP interface module is in data mode or in PRBS 
mode, and the generated pattern for loopback mode. The value applies to all AxC 
interfaces. The following prbs_mode values are available:

■ 00: Indicates that data samples, and not a PRBS test pattern, are expected on the 
AxC interfaces. This value indicates the MAP interface module is not in PRBS 
mode.

■ 01: Indicates an incremental counter sequence, starting at zero at the start of a 
10 ms radio frame, and counting to 255 before rolling over. The counter value 
appears in both halves of the 32-bit data word.

■ 10: Indicates an inverted 223 – 1 PRBS sequence. Each pattern appears in both 
halves of the 32-bit data word.

The value 11 is reserved.

The CPRI_PRBS_STATUS register (Table 7–45 on page 7–21) records the PRBS error 
detection status for each AxC interface. 

You can perform PRBS testing with a single REC master across a CPRI link in 
loopback configuration, or across a CPRI link between two CPRI IP cores. To perform 
PRBS testing across a CPRI link between two CPRI IP cores, you must program the RE 
slave in reverse loopback mode and then program the REC master in PRBS mode. 

To perform PRBS testing across a CPRI link, perform the following steps:

1. In the CPRI slave, program one of these registers to set up an internal reverse 
loopback path:

■ Set the loop_mode field of the CPRI_PHY_LOOP register to the value of 1. This 
loopback mode and the register are described in “Loopback Modes” on 
page 5–1 and in Table 7–13 on page 7–7.

■ Set the loop_mode field of the CPRI_CONFIG register to the value of 2’b001 or 
2’b010. The value of 2’b001 specifies that all data and control words are looped 
back. The value of 2’b010 specifies that all data is looped back, and that the 
CPRI RE slave generates the outgoing control words locally. The PRBS pattern 
is restricted to the data words in the incoming CPRI frame, so either of these 
two loopback modes is adequate to send the full PRBS pattern back to the 
generating CPRI REC master. 

These loopback modes and the register are described in “Loopback Modes” on 
page 5–1 and in Table 7–6 on page 7–4.

2. In the CPRI master, program the prbs_mode field of the CPRI_PRBS_CONFIG register 
for your preferred PRBS pattern according to the information in this section and in 
Table 7–44 on page 7–21.

The internal loopback mode you select determines the extent of the Rx and Tx path 
testing in the RE slave IP core. For information about the two internal reverse 
loopback modes and the differences between them, refer to “Loopback Modes” on 
page 5–1.

To perform PRBS testing across a CPRI link in external loopback configuration, 
connect the CPRI IP core’s high-speed transceiver output to its high-speed transceiver 
input, and after the CPU interface is available for programming, perform step 2.
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Achieving Link Synchronization Without an REC Master
Figure 5–2 shows the three different loopback modes that support PRBS testing.

Achieving Link Synchronization Without an REC Master
Altera provides a self-synchronization testing feature that supports an RE slave in a 
CPRI link external loopback configuration. This feature is intended to work correctly 
only for Layer 1 testing.

By default, only an REC master can function correctly in a CPRI link external 
loopback configuration. An RE slave in external loopback configuration cannot 
achieve frame synchronization, because the CPRI Rx interface must lock on to the 
K28.5 character before the CPRI Tx interface can begin sending K28.5 characters. 
Therefore, no K28.5 character is ever transmitted on the RE slave loopback CPRI link. 

However, in an Altera RE slave CPRI IP core, you can specify that the CPRI Tx 
interface begin sending K28.5 characters before the CPRI Rx interface locks on to the 
K28.5 character from the CPRI link. This feature supports a CPRI RE slave in 
achieving frame synchronization without being connected to a CPRI master, and 
allows you to test your CPRI RE slave without the need for an additional CPRI IP core 
instance.

To use this testing feature in your CPRI RE slave, perform the following steps:

1. Connect your CPRI RE slave in a CPRI link external loopback configuration. (Refer 
to “External Loopback” on page 5–1).

2. Ensure that the cleanup PLL drives the gxb_pll_inclk input clock to your CPRI 
RE slave with a stable signal at the correct frequency, despite the absence of REC 
master input to drive the RE slave transceiver CDR and, consequently, the 
pll_clkout output signal of the RE slave. (Refer to Figure 4–2 on page 4–6 and 
Figure 4–4 on page 4–8).

3. Set the tx_enable_force bit of the CPRI_CONFIG register (Table 7–6 on page 7–4) to 
the value of 1. This step activates the self-synchronization testing feature.

4. Set the tx_enable bit of the CPRI_CONFIG register (Table 7–6 on page 7–4) to the 
value of 1. This step enables the CPRI IP core to start sending K28.5 symbols on the 
CPRI link.

Figure 5–2. CPRI IP Core Loopback Modes That Support PRBS Testing

Notes to Figure 5–2:

(1) External loopback mode to test a single CPRI REC master.
(2) Internal reverse loopback mode (physical layer loopback mode) configured in the RE slave’s CPRI_PHY_LOOP register. 
(3) Internal reverse loopback mode (testing loopback mode) configured in the RE slave’s CPRI_CONFIG register. 
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6. Signals
This chapter describes all the top-level signals of the Altera CPRI IP core. 

MAP Interface Signals
Table 6–1 and Table 6–2 list the signals used by the MAP interface modules of the 
CPRI IP core. The MAP interfaces are implemented as Avalon-ST interfaces. 

f Refer to the Avalon Interface Specifications for details about the Avalon-ST interface.

MAP Receiver Signals
The behavior of many of the MAP receiver interface signals depends on the CPRI IP 
core’s current MAP Rx synchronization mode. The mode is determined by your 
selection in the CPRI parameter editor and by the CPRI_MAP_CONFIG register 
(Table 7–31 on page 7–15), as shown in Table 4–7 on page 4–19.

“MAP Receiver Interface” on page 4–18 includes a description of signal handshaking 
in all three synchronization modes, and timing diagrams that illustrate the expected 
behavior of these signals.For a summary of signal availability in the different 
synchronization modes, refer to Table 4–9 on page 4–19.

Table 6–1 lists the MAP receiver interface signals.

Table 6–1. MAP Receiver Interface Signals (Part 1 of 3) 

Signal Direction Description

map{23…0}_rx_clk Input

Clock signal for each antenna-carrier interface. 

These clocks are not supported in the internally-clocked mode. In the 
interally-clocked mode, cpri_clkout clocks the antenna-carrier 
interfaces.

map{23…0}_rx_reset Input

Reset signal for each antenna-carrier interface in synchronous buffer 
mode and in FIFO mode. This reset is associated with the 
mapN_rx_clk clock.

These signals are not supported in the internally-clocked mode.

mapN_rx_reset can be asserted asynchronously, but must stay 
asserted at least one cycle of the associated clock and must be 
deasserted synchronously with that clock. Refer to Figure 4–6 on 
page 4–12 for a circuit that shows how to enforce synchronous 
deassertion of a reset signal.
CPRI IP Core
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MAP Interface Signals
map{23…0}_rx_ready Input

Read-ready signal for each antenna-carrier interface, in FIFO mode. 
Indicates to the CPRI IP core that the application is ready to receive 
data on the corresponding data channel in the next clock cycle. 
Asserted by the sink to mark ready cycles, which are cycles in which 
transfers can occur. If ready is asserted on cycle N, the cycle 
(N+READY_LATENCY) is a ready cycle. The MAP receiver interface in 
FIFO mode is designed for READY_LATENCY equal to 1.

In synchronous buffer mode, the application must hold the 
mapN_rx_ready signals high continuously.

In the internally-clocked mode, the CPRI IP core ignores this signal. 

map{23…0}_rx_data[31:0] Output

32-bit read data being transmitted on each antenna-carrier interface. 
Bits [15:0] are the I component of the IQ sample. Bits [31:16] are the Q 
component of the IQ sample.

In FIFO mode, data is valid as early as one mapN_rx_clk clock cycle 
after the application asserts the read-ready input signal 
mapN_rx_ready, but is only valid while the CPRI IP core asserts the 
mapN_rx_valid signal. 

In synchronous buffer mode, data is valid one mapN_rx_clk clock 
cycle after the application asserts the mapN_rx_resync signal. To 
ensure valid data in synchronous buffer mode, the application should 
only assert the mapN_rx_resync signal after the CPRI IP core asserts 
the cpri_rx_start signal. However, the CPRI IP core does not 
enforce this requirement.

In the internally-clocked mode, data is valid one cpri_clkout clock 
cycle after the CPRI IP core asserts the mapN_rx_start output signal, 
but is only valid while the CPRI IP core asserts the mapN_rx_valid 
signal.

map{23…0}_rx_valid Output

Valid signal for FIFO mode and for the internally-clocked 
synchronization mode. 

In FIFO mode, this signal is asserted when the mapN Rx buffer 
exceeds the threshold level in the map_rx_ready_thr field of the 
CPRI_MAP_RX_READY_THR register. Although each data channel has 
its own mapN_rx_valid signal, all data channels use the same 
map_rx_ready_thr threshold value. This signal qualifies all the other 
output signals of the MAP receiver interface. On every rising edge of 
the clock at which mapN_rx_valid is high, mapN_rx_data can be 
sampled.

In the internally-clocked mode, the CPRI IP core asserts each 
mapN_rx_valid signal one cpri_clkout clock cycle after it asserts 
the corresponding mapN_rx_start signal.

In synchronous buffer mode,the map{23...0}_rx_valid signals do 
not participate in data transfer synchronization, and the application 
should ignore these signals.

Table 6–1. MAP Receiver Interface Signals (Part 2 of 3) 

Signal Direction Description
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MAP Interface Signals
MAP Transmitter Signals
The behavior of many of the MAP transmitter interface signals depends on the CPRI 
IP core’s current TX synchronization mode. The mode is determined by your selection 
in the CPRI parameter editor and by the CPRI_MAP_CONFIG register (Table 7–31 on 
page 7–15), as shown in Table 4–10 on page 4–25.

“MAP Transmitter Interface” on page 4–24 includes a description of signal 
handshaking in all three synchronization modes, and timing diagrams that illustrate 
the expected behavior of these signals. For a summary of signal availability in the 
different synchronization modes, refer to Table 4–12 on page 4–25.

map{23…0}_rx_resync Input

Resynchronization signal for use in synchronous buffer mode. When 
this signal is asserted, the read pointer of the mapN Rx buffer is reset 
to zero. This signal is synchronous to the mapN_rx_clk clock.

To ensure valid data in synchronous buffer mode, the application 
should only assert the mapN_rx_resync signal after the CPRI IP core 
asserts the cpri_rx_start signal. However, the CPRI IP core does 
not enforce this requirement.

In FIFO mode the map{23...0}_rx_resync signals do not participate 
in data transfer synchronization, and the CPRI IP core ignores these 
signals. In the internally-clocked mode, these signals are not present.

map{23…0}_rx_start Output

In the internally-clocked mode, the CPRI IP core asserts each 
mapN_rx_start signal to indicate the start of valid data on the 
corresponding antenna-carrier interface (mapN_rx_data) in the 
current 10 ms radio frame. This signal is synchronous with the 
cpri_clkout clock. When it asserts mapN_rx_start, the CPRI IP 
core also asserts the mapN_rx_valid signal and transmits valid data 
on the corresponding antenna-carrier interface. 

In FIFO mode and in synchronous buffer mode, the 
map{23...0}_rx_start signals do not participate in data transfer 
synchronization, and the application should ignore these signals. 

map{23…0}_rx_status_data[2:0] Output

This vector contains the following status bits:

[2] cpri_map_rx_overflow: Rx FIFO overflow indicator for this 
antenna-carrier interface. This signal is synchronous to the 
cpri_clkout clock, and is asserted following a write to a full 
buffer. This signal reflects the value in the appropriate bit of the 
buffer_rx_overflow field of the CPRI_IQ_RX_BUF_STATUS 
register (Table 7–48 on page 7–22).

[1] cpri_map_rx_underflow: Rx FIFO underflow indicator for 
this antenna-carrier interface. This signal is synchronous to the 
cpri_clkout clock, and is asserted following a read from an 
empty buffer. This signal reflects the value in the appropriate bit 
of the buffer_rx_underflow field of the 
CPRI_IQ_RX_BUF_STATUS register (Table 7–48 on page 7–22).

[0] cpri_map_rx_en: Indicates that this antenna-carrier interface 
is enabled. The value is determined in the 
CPRI_IQ_RX_BUF_CONTROL register. Use this signal to disable 
external logic for inactive AxC interfaces and to map interface 
clock gating to save power.

Table 6–1. MAP Receiver Interface Signals (Part 3 of 3) 

Signal Direction Description
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MAP Interface Signals
Table 6–2 lists the MAP transmitter interface signals.

Table 6–2. MAP Transmitter Interface Signals (Part 1 of 2) 

Signal Direction Description

map{23…0}_tx_clk Input
Clock signal for each antenna-carrier interface. 

These clocks are not supported in the internally-clocked mode. In the 
interally-clocked mode, cpri_clkout clocks the antenna-carrier interfaces.

map{23…0}_tx_reset Input

Reset signal for each antenna-carrier interface in synchronous buffer mode 
and in FIFO mode. This reset is associated with the mapN_tx_clk clock.

These signals are not supported in the internally-clocked mode.

mapN_tx_reset can be asserted asynchronously, but must stay asserted at 
least one cycle of the associated clock, and must be deasserted 
synchronously with that clock. Refer to Figure 4–6 on page 4–12 for a circuit 
that shows how to enforce synchronous deassertion of a reset signal.

map{23…0}_tx_valid Input

Write-valid signal for each antenna-carrier interface. This signal qualifies all 
the other Avalon-ST input signals of the MAP transmitter interface. On every 
rising edge of the clock at which mapN_tx_valid is high, data is sampled by 
the CPRI IP core. 

In FIFO mode, the application can assert mapN_tx_valid in any 
mapN_tx_clk cycle immediately following a mapN_tx_clk cycle in which 
the CPRI IP core asserts the mapN_tx_ready signal for the corresponding 
antenna-carrier interface.

In synchronous buffer mode, the application must assert the 
mapN_tx_valid signal at the same time as or immediately after it asserts 
the mapN_tx_resync resynchronization signal. However, Altera 
recommends that the application assert these two signals simultaneously. 
Refer to “MAP Transmitter in Synchronous Buffer Mode” on page 4–27.

In the internally-clocked mode, the application must wait at least one 
cpri_clkout cycle after the IP core asserts mapN_tx_ready before 
asserting the mapN_tx_valid signal; READY_LATENCY is 1. 

map{23…0}_tx_data[31:0] Input

32-bit write data from each antenna-carrier interface. Data is valid starting 
one mapN_tx_clk clock cycle (cpri_clkout clock cycle in the 
internally-clocked mode) after the write-valid bit is asserted. Bits [15:0] are 
the I component of the IQ sample. Bits [31:16] are the Q component of the IQ 
sample.
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Auxiliary Interface Signals
Auxiliary Interface Signals
Table 6–3 through Table 6–4 list the signals on the CPRI IP core auxiliary interface. All 
the signals in Table 6–3 through Table 6–4 are clocked by the internal clock visible on 
the cpri_clkout port.

map{23…0}_tx_ready Output

Ready signal for each antenna-carrier interface. 

In FIFO mode, the ready signal is asserted when the mapN Tx buffer falls 
below the threshold level in the map_tx_ready_thr field of the 
CPRI_MAP_TX_READY_THR register. Although each data channel has its own 
mapN_tx_ready signal, all data channels use the same map_tx_ready_thr 
threshold value. Indicates that the CPRI IP core is ready to receive data on 
the data channel in the current clock cycle. Asserted by the Avalon-ST sink to 
mark ready cycles, which are the cycles in which transfers can take place. If 
ready is asserted on cycle N, the cycle (N+READY_LATENCY) is a ready cycle.

In the MAP transmitter interface in FIFO mode, READY_LATENCY is equal to 
0, so the cycle on which mapN_tx_ready is asserted is the ready cycle.

In the internally-clocked mode, the CPRI IP core asserts the ready signal one 
cycle before the antenna-carrier interface is ready to receive data on the data 
channel. In this mode, READY_LATENCY is equal to 1.

In synchronous buffer mode, the map{23...0}_tx_ready signals do not 
participate in data transfer synchronization, and the application should ignore 
these signals.

map{23…0}_tx_resync Input

Resynchronization signal for use in synchronous buffer mode. This signal is 
synchronous to the mapN_tx_clk clock.

In FIFO mode the map{23...0}_tx_resync signals do not participate in 
data transfer synchronization, and the CPRI IP core ignores these signals. In 
the internally-clocked mode, these signals are not present.

map{23…0}_tx_status_data Output

This vector contains the following status bits:

[2] cpri_map_tx_overflow: Tx FIFO overflow indicator for this 
antenna-carrier interface. This signal is synchronous to the 
cpri_clkout clock, and is asserted following a write to a full 
buffer. This signal reflects the value in the appropriate bit of the 
buffer_tx_overflow field of the CPRI_IQ_TX_BUF_STATUS 
register (Table 7–49 on page 7–22).

[1] cpri_map_tx_underflow: Tx FIFO underflow indicator for this 
antenna-carrier interface. This signal is synchronous to the 
cpri_clkout clock, and is asserted following a read from an empty 
buffer. This signal reflects the value in the appropriate bit of the 
buffer_tx_underflow field of the CPRI_IQ_TX_BUF_STATUS 
register (Table 7–49 on page 7–22).

[0] cpri_map_tx_en: Indicates that this antenna-carrier interface is 
enabled. The value is determined in the CPRI_IQ_TX_BUF_CONTROL 
register. Use this signal to disable external logic for inactive AxC 
interfaces and to map interface clock gating to save power.

Table 6–2. MAP Transmitter Interface Signals (Part 2 of 2) 

Signal Direction Description
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Auxiliary Interface Signals
AUX Receiver Signals
Table 6–3 lists the signals on the AUX receiver interface. For additional information 
about these signals, refer to “AUX Receiver Module” on page 4–31.

Table 6–3. AUX Receiver Interface Signals  

Signal Direction Bit Description

aux_rx_status_data
[75:0]

Output [75] cpri_rx_rfp: Synchronization pulse for start of 10 ms radio frame. The 
pulse occurs at the start of the radio frame on the CPRI receiver interface. 

[74]

cpri_rx_start: Indicates the start of the first basic frame on the AUX 
interface, and can be used by an AxC software application to trigger the 
AxC-specific resynchronization signal used in the MAP interface 
synchronous buffer mode. The cpri_rx_start signal is asserted at the 
offset defined in the CPRI_START_OFFSET_RX register. The count to the 
offset starts at the cpri_rx_rfp or cpri_rx_hfp pulse, depending on 
values set in the register. Refer to Table 7–39 on page 7–19. The signal is 
asserted for the duration of the basic frame. 

[73] cpri_rx_hfp: Synchronization pulse for start of hyperframe. The pulse 
occurs at the start of the hyperframe on the CPRI receiver interface. 

[72:61] cpri_rx_bfn: Current radio frame number.

[60:53] cpri_rx_hfn: Current hyperframe number. Value is in the range 0–149.

[52:45] cpri_rx_x: Index number of the current basic frame in the current 
hyperframe. Value is in the range 0–255.

[44:39]

cpri_rx_k: Sample counting K counter. Counts the basic frame position of 
the AxC Container Block for mapping IQ samples when map_mode field in 
the CPRI_MAP_CONFIG register has value 01 or 10. This signal is not used 
when map_mode value is 00.

[38:33]

cpri_rx_seq: Index number of the current 32-bit word in the current 
basic frame being transmitted on the AUX link.
Depending on the CPRI line rate, this signal has the following range:

■ 614.4 Mbps line rate: range is 0 –3

■ 1228.8 Mbps line rate: range is 0–7

■ 2457.6 Mbps line rate: range is 0–15

■ 3072.2 Mbps line rate: range is 0–19

■ 4915.2 Mbps line rate: 0–31

■ 6144.0 Mbps line rate: 0–39

■ 9830.4 Mbps line rate: 0–63

[32]
cpri_rx_sync_state: When set, indicates that Rx, HFN, and BFN 
synchronization have been achieved in CPRI receiver frame 
synchronization.

[31:0]
cpri_rx_aux_data: Data transmitted on the AUX link. Data is transmitted 
in 32-bit words. Byte [31:24] is transmitted first, and byte [7:0] is 
transmitted last.
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Auxiliary Interface Signals
AUX Transmitter Signals
Table 6–4 lists the signals on the AUX transmitter interface. For additional 
information about these signals, refer to “AUX Transmitter Module” on page 4–34.

Table 6–4.  AUX Transmitter Interface Signals (Part 1 of 2)

Signal Direction Bits Description

aux_tx_status_data
[43:0]

Output

[43]

cpri_tx_error: Indicates that in the previous cpri_clkout cycle, the 
cpri_tx_aux_mask[31:0] mask bits were not deasserted during K28.5 
character insertion in the outgoing CPRI frame (which occurs when 
Z=X=0). 

[42:37]

cpri_tx_seq: Index number of the current 32-bit word in the 
two-cycle-offset basic frame to be received on the AUX link.
Depending on the CPRI line rate, this signal has the following range:

■ 614.4 Mbps line rate: range is 0 –3

■ 1228.8 Mbps line rate: range is 0–7

■ 2457.6 Mbps line rate: range is 0–15

■ 3072.2 Mbps line rate: range is 0–19

■ 4915.2 Mbps line rate: 0–31

■ 6144.0 Mbps line rate: 0–39

■ 9830.4 Mbps line rate: 0–63

[36:31]

cpri_tx_k: Sample counting K counter. Counts the basic frame position 
of the AxC Container Block for mapping IQ samples when map_mode field 
in the CPRI_MAP_CONFIG register has value 01 or 10. This signal is not 
used when map_mode value is 00.

[30:23] cpri_tx_x: Index number of the current basic frame in the current 
hyperframe. Value is in the range 0–255.

[22:15] cpri_tx_hfn: Current hyperframe number. Value is in the range 0–149.

[14:3] cpri_tx_bfn: Current radio frame number.

[2] cpri_tx_hfp: Synchronization pulse for start of hyperframe. The pulse 
occurs at the start of the hyperframe on the CPRI transmitter interface.

[1]

cpri_tx_start: Indicates the start of the first basic frame on the AUX 
interface, and can be used by an AxC software application to trigger the 
AxC-specific resynchronization signal used in MAP synchronous buffer 
mode. The cpri_tx_start signal is asserted at the offset defined in the 
CPRI_START_OFFSET_TX register. The count to the offset starts at the 
cpri_tx_rfp or cpri_tx_hfp pulse, depending on values set in the 
register. Refer to Table 7–40 on page 7–20. The signal is asserted for the 
duration of the basic frame. 

[0]
cpri_tx_rfp: Synchronization pulse for start of 10 ms radio frame. The 
pulse occurs at the start of the radio frame on the CPRI transmitter 
interface. 
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Auxiliary Interface Signals
aux_tx_mask_data
[64:0]

Input

[64]

cpri_tx_sync_rfp: Synchronization input used in REC master to control 
the start of a new 10 ms radio frame. Asserting this signal resets the frame 
synchronization machine. The CPRI IP core uses the rising edge of the 
pulse for synchronization. For information about the CPRI IP core 
response to a pulse on this signal, refer to Figure 4–21 on page 4–37 and 
surrounding text.

[63:32]

cpri_tx_aux_data: Data received on the AUX link, aligned with 
cpri_tx_seq with a delay of two cpri_clkout cycles. Data is 
transmitted in 32-bit words. Byte [31:24] is transmitted first, and byte 
[7:0] is transmitted last.

[31:0]

cpri_tx_aux_mask: Bit mask for insertion of data from 
cpri_tx_aux_data in the outgoing CPRI frame. Assertion of a bit in this 
mask overrides insertion of data to the corresponding bit in the outgoing 
CPRI frame from any other source. Therefore, the mask bits must be 
deasserted during K28.5 character insertion in the outgoing CPRI frame, 
which occurs when Z=X=0. If you do not deassert the mask bits during 
K28.5 character insertion in the outgoing CPRI frame, the 
cpri_tx_error output signal is asserted in the following cpri_clkout 
cycle.

Table 6–4.  AUX Transmitter Interface Signals (Part 2 of 2)

Signal Direction Bits Description
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Extended Rx Status Signals
Table 6–5 lists the signals on the extended Rx status interface. All of these signals 
report on the status of the CPRI receiver frame synchronization machine.

Table 6–5.  Extended Rx Status Signals

Signal Direction Bits Description

extended_rx_status_data
[11:0]

Output

[11]
cpri_rx_los: CPRI receiver LOS indication (active high). This 
bit reflects the value in the rx_los field of the CPRI_STATUS 
register (Table 7–5 on page 7–3).

[10:8]
cpri_rx_lcv: Current CPRI receiver 8B/10B line code violation 
count in current clock cycle. This information enables CPRI link 
debug when the control word does not appear or is malformed.

[7]
cpri_rx_hfn_state: When set, indicates that hyperframe 
synchronization (HFN) has been achieved in CPRI receiver frame 
synchronization.

[6]
cpri_rx_bfn_state: When set, indicates that basic frame 
synchronization (BFN) has been achieved in CPRI receiver frame 
synchronization.

[5]

cpri_rx_freq_alarm: Frequency alarm. When set, indicates a 
frequency difference greater than four clock cycles between 
cpri_clkout and the recovered received clock from the CPRI 
receiver interface.

[4:2]

cpri_rx_cnt_sync: CPRI receiver frame synchronization state 
machine state number. Tracks the number of the current state in 
its state type. When the state machine is in state XACQ1, the 
value of cpri_rx_cnt_sync is 0; when the state is XACQ2, 
cpri_rx_cnt_sync has value 1; when the state is XSYNC1, 
cpri_rx_cnt_sync has value 0; and so on. Refer to 
Figure 4–27 on page 4–56.

[1:0]

cpri_rx_state: Indicates the type of state of the CPRI receiver 
frame synchronization state machine. The following values are 
defined:

00 - LOS state

01 - XACQ state

10 - XSYNC state

11 - HFNSYNC state

In the HFNSYNC state (cpri_rx_state has value 0x3 and 
cpri_rx_cnt_sync has value 0x1), Rx synchronization has 
been achieved, except for initialization of the hyperframe and 
basic frame numbers. You must wait for cpri_rx_hfn_state 
and cpri_rx_bfn_state to have value 1, indicating that the 
hyperframe number and basic frame number are initialized.
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CPRI MII Signals
Table 6–6 and Table 6–7 list the signals used by the CPRI MII module of the CPRI IP 
core. The CPRI MII is enabled if you turn off Include MAC block in the CPRI 
parameter editor. The CPRI MII signals are available only if you enable the CPRI MII. 
For information about the MII handshaking protocol implementation, refer to “Media 
Independent Interface to an External Ethernet Block” on page 4–37.

CPRI MII Receiver Signals
Table 6–6 lists the CPRI MII receiver signals. 

CPRI MII Transmitter Signals
Table 6–7 lists the CPRI MII transmitter signals. These signals are available if you 
exclude the MAC block from the CPRI IP core.

Table 6–6. CPRI MII Receiver Interface Signals

Signal Direction Description

cpri_mii_rxclk Output Clocks the MII receiver interface. The cpri_clkout clock drives this signal.

cpri_mii_rxwr Output
Ethernet write signal. Indicates the presence of a new K nibble or data value on 
cpri_mii_rxd[3:0]. This signal is asserted during the first cpri_mii_rxclk 
cycle in which the K nibble or a new data value appears on cpri_mii_rxd[3:0].

cpri_mii_rxdv Output Ethernet receive data valid. Indicates the presence of valid data or initial K nibble on 
cpri_mii_rxd[3:0].

cpri_mii_rxer Output

Ethernet receive error. Indicates an error in the current nibble of cpri_mii_rxd or 
indicates that the CPRI link is not initialized, and therefore an error might be 
present in the frame being transferred to the external Ethernet block. This signal is 
deasserted at reset, and asserted after reset until the CPRI IP core achieves frame 
synchronization. 

cpri_mii_rxd[3:0] Output
Ethernet receive nibble data. Data bus for data from the CPRI IP core to the 
external Ethernet block. All bits are deasserted during reset, and all bits are 
asserted after reset until the CPRI IP core achieves frame synchronization.

Table 6–7. CPRI MII Transmitter Interface Signals (Part 1 of 2) 

Signal Direction Description

cpri_mii_txclk Output Clocks the MII transmitter interface. The cpri_clkout clock drives this signal.

cpri_mii_txen Input

Valid signal from the external Ethernet block, indicating the presence of valid data on 
cpri_mii_txd[3:0]. This signal is also asserted while the CPRI MII transmitter 
block inserts J and K nibbles in the data stream to form the start-of-packet symbol. 
This signal is typically asserted one cycle after cpri_mii_txrd is asserted. After that 
first cycle following the assertion of cpri_mii_txrd, if cpri_mii_txen is not yet asserted, 
the CPRI MII transmitter module inserts Idle cycles until the first cycle in which 
cpri_mii_txen is asserted. If cpri_mii_txen is asserted and subsequently 
deasserted while cpri_mii_txrd remains asserted, the CPRI MII transmitter module 
inserts the end-of-packet sequence.

cpri_mii_txer Input Ethernet transmit coding error. When this signal is asserted, the CPRI IP core inserts 
an Ethernet HALT symbol in the data it passes to the CPRI link.
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CPU Interface Signals 
Table 6–8 lists the CPU interface signals. The CPU interface is implemented as an 
Avalon-MM interface.

f Refer to the Avalon Interface Specifications for details about the Avalon-MM interface.

cpri_mii_txd[3:0] Input
Ethernet transmit nibble data. The data transmitted from the external Ethernet block to 
the CPRI IP core, for transmission on the CPRI link. This input bus is synchronous to 
the rising edge of the cpri_clkout clock.

cpri_mii_txrd Output

Ethernet read request. Indicates that the MII block is ready to read data on 
cpri_mii_txd[3:0]. Valid data is recognized 2 cpri_mii_txclk cycles after 
cpri_mii_txen is asserted in response to cpri_mii_txrd. The cpri_mii_txrd 
signal remains asserted for 2 cpri_mii_txclk cycles following deassertion of 
cpri_mii_txen. Deasserting cpri_mii_txrd while cpri_mii_txen is still 
asserted backpressures the external Ethernet block.

Table 6–7. CPRI MII Transmitter Interface Signals (Part 2 of 2) 

Signal Direction Description

Table 6–8. CPU Interface Signals (Part 1 of 2)

Signal Direction Description

cpu_clk Input CPU clock signal.

cpu_reset Input

CPU peripheral reset. This reset is associated with the cpu_clk clock. 
cpu_reset can be asserted asynchronously, but must stay asserted at least 
one cpu_clk cycle and must be de-asserted synchronously with cpu_clk. 
Refer to Figure 4–6 on page 4–12 for a circuit that shows how to enforce 
synchronous deassertion of a reset signal.

cpu_irq Output Merged CPU interrupt indicator. This signal is the OR of all the bits in the 
vector cpu_irq_vector.

cpu_irq_vector[4:0] Output

This vector contains the following interrupt bits:

[0] cpu_irq_cpri: Interrupt bit from CPRI_INTR register. This signal is 
the OR of all three interrupt bits in the CPRI_INTR register.

[1] cpu_irq_eth_rx: Interrupt from the Ethernet receiver module.

[2] cpu_irq_eth_tx: Interrupt from the Ethernet transmitter module.

[3] cpu_irq_hdlc_rx: Interrupt from the HDLC receiver module.

[4] cpu_irq_hdlc_tx: Interrupt from the HDLC transmitter module.

cpu_address[13:0] Input
CPU word address. Corresponds to bits [15:2] of a byte address with LSBs 
2’b00. If you connect an Avalon-MM interface to the CPU interface, connect 
bits [15:2] of the incoming Avalon-MM address to cpu_address. 

cpu_write Input CPU write request.

cpu_read Input CPU read request.
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Physical Layer Signals
Table 6–9 through Table 6–14 list the input and output signals of the physical layer of 
the CPRI IP core. Refer to Figure 4–26 on page 4–52 for details of the I/O signals.

CPRI Data Signals
Table 6–9 lists the CPRI data link signals.

cpu_byteenable[3:0] Input

CPU data byteenable signal. Enables specific byte lanes during transfers on 
ports of width less than 32 bits. Each bit in the cpu_byteenable signal 
corresponds to a byte lane in cpu_writedata and cpu_readdata. The least 
significant bit of cpu_byteenable corresponds to the lowest byte of each 
data bus. The bit value 1 indicates an enabled byte lane, and the bit value 0 
indicates a disabled byte lane. Enabled byte lanes must be adjacent: valid 
values of cpu_byteenable include only a single sequence of 1’s. 

For more information, refer to the definition of the byteenable signal in the 
Avalon-MM specification in the Avalon Interface Specifications.

cpu_writedata[31:0] Input CPU write data.

cpu_readdata[31:0] Output CPU read data.

cpu_waitrequest Output Indicates that the CPU interface is busy executing an operation. When this 
signal is deasserted, the operation is complete and the data is valid.

Table 6–8. CPU Interface Signals (Part 2 of 2)

Signal Direction Description

Table 6–9. CPRI Protocol Interface 

Signal Direction Description

gxb_rxdatain Input Receive unidirectional serial data. This signal is connected over the CPRI link to the 
txdataout line of the transmitting device.

gxb_txdataout Output Transmit unidirectional serial data. This signal is connected over the CPRI link to the 
rxdatain line of the receiving device. 
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Layer 1 Clock and Reset Signals
Table 6–10 lists the layer 1 clock and reset signals.

Layer 1 Error Signal
Table 6–11 lists the layer 1 error signal for the CPRI IP core.

Autorate Negotiation Signals
Table 6–12 lists the autorate negotiation signals for the CPRI IP core. These output 
signals enable the autorate negotiation hardware and software outside the CPRI IP 
core to quickly monitor autorate negotiation status, and are implemented in all device 
families.

Table 6–10. CPRI Reference Clock and Main Reset Signals

Signal Direction Description

gxb_refclk Input

Transceiver reference clock. In master clocking mode, this clock generates the internal 
clock cpri_clkout for the CPRI IP core and custom logic. 

If the CPRI IP core is configured in master clocking mode, you must drive the gxb_refclk 
and gxb_pll_inclk input clocks from a common source.

reset Input

Transceiver reset. This reset is associated with the reconfig_clk clock. A reset controller 
module propagates this reset to the CPRI IP core cpri_clkout clock domain as well.

reset can be asserted asynchronously, but must stay asserted at least one clock cycle and 
must be de-asserted synchronously with the clock with which it is associated. Refer to 
Figure 4–6 on page 4–12 for a circuit that shows how to enforce synchronous deassertion 
of reset.

reset_done Output Indicates that the reset controller has completed the transceiver reset sequence.

Table 6–11. Layer 1 Error Signal

Signal Direction Description

gxb_los Input Loss of Signal (LOS) signal from small form-factor pluggable (SFP) module.
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In Cyclone IV GX devices, channel reconfiguration is enabled to support autorate 
negotiation. Table 6–13 lists the signals implemented in CPRI IP cores targeted to 
Cyclone IV GX devices to support scan-chain based reconfiguration.

Table 6–12. Autorate Negotiation Signals

Signal Direction Description

datarate_en Output
Indicates whether autorate negotiation is enabled. This signal reflects the value in the 
i_datarate_en field of the AUTO_RATE_CONFIG register described in Table 7–21 on 
page 7–11.

datarate_set[4:0] Output

CPRI line rate to be used in next attempt to achieve frame synchronization. This signal 
reflects the value currently in the i_datarate_set field of the AUTO_RATE_CONFIG 
register described in Table 7–21 on page 7–11.

The CPRI line rate is encoded in this field with the following values:

00001: 614.4 Mbps

00010: 1228.8 Mbps

00100: 2457.6 Mbps

00101: 3072.0 Mbps

01000: 4915.0 Mbps (not supported for Cyclone IV GX and Cyclone V GX devices)

01010: 6144.0 Mbps (not supported for Cyclone IV GX and Cyclone V GX devices)

10000: 9830.4 Mbps (supported only for Stratix V GX, Stratix V GT, Arria V GT, and
Arria V GZ devices)

Table 6–13. Scan-Chain Based Reconfiguration Interface Signals For CPRI Autorate Negotiation in Cyclone IV GX 
Devices

Signal Direction Description

pll_areset Input Resets the PLL. Signal must be asserted after PLL reconfiguration. Connect to the 
areset signal for the PLL.

pll_configupdate Input
When this signal is asserted, the PLL counters are updated with the contents of the 
scan chain. Signal is asserted for a single pll_scanclk cycle. Connect to the PLL 
reconfiguration scan chain configupdate signal.

pll_scanclk Input Clocks the shift registers in the PLL reconfiguration scan chain.The maximum 
frequency of this clock is 100 MHz.

pll_scanclkena Input Indicates scan data can be shifted in on the following pll_scanclk cycle. Connect 
to the PLL reconfiguration scan chain scanclkena signal.

pll_scandata Input Serial data scanned into the scan chain. Connect to the PLL reconfiguration scan 
chain scandata signal.

pll_reconfig_done Output Indicates PLL reconfiguration is complete.

pll_scandataout Output Output stream shifted out of the scan chain.
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Transceiver Signals
Table 6–14 lists the transceiver signals that are connected directly to the transceiver 
block. In many cases these signals must be shared by multiple transceiver blocks that 
are implemented in the same device.

Table 6–14. Transceiver Signals (Part 1 of 3)

Signal Direction Description

gxb_cal_blk_clk Input

The Arria II GX, Arria II GZ, Cyclone IV GX, and Stratix IV GX transceivers’ 
on-chip termination resistors are calibrated by a single calibration block. 
This circuitry requires a calibration clock. The frequency range of the 
gxb_cal_blk_clk is 10–125 MHz. For more information, refer to the 
Transceiver Architecture for Arria II Devices chapter in volume 2 of the 
Arria II Device Handbook, the Cyclone IV Transceivers Architecture chapter 
in volume 2 of the Cyclone IV Device Handbook, or the Stratix IV Transceiver 
Architecture chapter in volume 2 of the Stratix IV Device Handbook.

This signal is not present in Arria V, Cyclone V, and Stratix V variations.

gxb_pll_inclk Input

Input clock to the transceiver PLL. If the CPRI IP core is configured in 
master clocking mode, you must drive gxb_pll_inclk and gxb_refclk 
from a common source.

In slave clocking mode, the gxb_pll_inclk signal connects directly to the 
rx_cruclk input signal of the transceiver’s PLL.

reconfig_clk (1) Input
Reference clock for the dynamic reconfiguration controller. The frequency 
range for this clock is 100–125 MHz for Arria V, Cyclone V, and Stratix V 
variations, and 37.5–50 MHz for all other variations.

reconfig_to_xcvr[139:0] Input
Parallel transceiver reconfiguration bus from the Altera Transceiver 
Reconfiguration Controller to the transceiver in the CPRI IP core.

This signal is present only in Arria V, Cyclone V, and Stratix V variations.

reconfig_from_xcvr[91:0] Output
Parallel transceiver reconfiguration bus to the Altera Transceiver 
Reconfiguration Controller from the transceiver in the CPRI IP core.

This signal is present only in Arria V, Cyclone V, and Stratix V variations.

reconfig_togxb_s_tx
[3:0] (1) Input

Driven from an external dynamic reconfiguration block to the slave 
transmitter transceiver block. Supports the selection of multiple transceiver 
channels for dynamic reconfiguration.

This signal is not present in Arria V, Cyclone V, and Stratix V variations.

reconfig_togxb_s_rx
[3:0] (1) Input

Driven from an external dynamic reconfiguration block to the slave receiver 
transceiver block. Supports the selection of multiple transceiver channels 
for dynamic reconfiguration.

This signal is not present in Arria V, Cyclone V, and Stratix V variations.

reconfig_togxb_m[3:0] (1) Input

Driven from an external dynamic reconfiguration block to the master 
transceiver block. Supports the selection of multiple transceiver channels 
for dynamic reconfiguration.

This signal is not present in Arria V, Cyclone V, and Stratix V variations.

reconfig_fromgxb_s_tx
[16:0] ([4:0] for 
Cyclone IV GX devices)

Output

Driven to an external dynamic reconfiguration block from the slave 
transmitter transceiver block. The bus identifies the transceiver channel 
whose settings are being transmitted to the dynamic reconfiguration block.

This signal is not present in Arria V, Cyclone V, and Stratix V variations.
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reconfig_fromgxb_s_rx
[16:0] ([4:0] for 
Cyclone IV GX devices)

Output

Driven to an external dynamic reconfiguration block from the slave receiver 
transceiver block. The bus identifies the transceiver channel whose settings 
are being transmitted to the dynamic reconfiguration block.

This signal is not present in Arria V, Cyclone V, and Stratix V variations.

reconfig_fromgxb_m
[16:0] ([4:0] for 
Cyclone IV GX devices)

Output

Driven to an external dynamic reconfiguration block from the master 
transceiver block. The bus identifies the transceiver channel whose settings 
are being transmitted to the dynamic reconfiguration block.

This signal is not present in Arria V, Cyclone V, and Stratix V variations.

reconfig_busy Input

Indicates the busy status of the dynamic reconfiguration controller. After the 
device powers up, this signal remains low for the first reconfig_clk clock 
cycle. It is then asserted and remains high while the dynamic 
reconfiguration controller performs offset cancellation on all the receiver 
channels connected to the ALTGX_RECONFIG instance. This signal is 
deasserted when offset cancellation completes successfully.

This signal is not present in Arria V, Cyclone V, and Stratix V variations. 

reconfig_write Input

Indicates the user is writing to the dynamic reconfiguration controller to 
implement the autorate negotiation feature. Asserting this signal instructs 
the CPRI reset controller to perform the reset sequence for dynamic 
reconfiguration of the transceiver. For details about dynamic 
reconfiguration, refer to the relevant device handbook.If you are not using 
the autorate configuration feature, you must tie this input to 0. 

This signal is not present in Arria V, Cyclone V, and Stratix V variations. 

reconfig_done Input

Indicates the dynamic reconfiguration controller has completed the 
reconfiguration operation. Asserting this signal instructs the CPRI reset 
controller to complete the reset sequence for dynamic reconfiguration of the 
transceiver. For details about dynamic reconfiguration, refer to the relevant 
device handbook. If you are not using the autorate negotiation feature, you 
must tie this input to 0.

This signal is not present in Arria V, Cyclone V, and Stratix V variations. 

gxb_pll_locked Output Indicates the transceiver transmitter PLL is locked to the input reference 
clock. This signal is asynchronous.

gxb_rx_pll_locked Output Indicates the transceiver CDR is locked to the input reference clock. This 
signal is asynchronous.

gxb_rx_freqlocked Output
Transceiver clock data recovery (CDR) lock mode indicator. If this signal is 
high, the transceiver CDR is in lock-to-data (LTD) mode. If this signal is low, 
the transceiver CDR is in lock-to-reference clock (LTR) mode. 

gxb_powerdown Input

Transceiver block power down. This signal resets and powers down all 
analog and digital circuitry in the transceiver block, including physical 
coding sublayer (PCS), physical media attachment (PMA), clock multiplier 
unit (CMU) channels, and central control unit (CCU). This signal does not 
affect the gxb_refclk buffers and reference clock lines.

All the gxb_powerdown input signals of IP cores intended to be placed in 
the same quad must be tied together. The gxb_powerdown signal must be 
tied low or must remain asserted for at least 2 ms whenever it is asserted. 

This signal is not present in ArriaV, Cyclone V, and Stratix V variations.

gxb_rx_disperr[1:0] Output Transceiver 8B/10B disparity error indicator. If either bit is high, a disparity 
error was detected on the associated received code group.

Table 6–14. Transceiver Signals (Part 2 of 3)

Signal Direction Description
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In addition to customization of the transceiver through the transceiver parameter 
editor, you can use the transceiver reconfiguration block to dynamically modify the 
parameter interface. The dynamic reconfiguration block lets you reconfigure the 
following PMA settings:

■ Pre-emphasis

■ Equalization

■ Offset cancellation

■ VOD on a per channel basis 

1 You must configure the dynamic reconfiguration block in any CPRI design that 
targets an Arria II GX, Arria II GZ, Cyclone IV GX, or Stratix IV GX device.

f For more information about the transceiver reconfiguration block and about offset 
cancellation, refer to the appropriate device handbook.

Clock and Reset Interface Signals
Table 6–15 describes the CPRI IP core clock and reset signals not described in other 
sections with their associated modules.

gxb_rx_errdetect[1:0] Output

Transceiver 8B/10B code group violation or disparity error indicator. If either 
bit is high, a code group violation or disparity error was detected on the 
associated received code group. Use the gxb_rx_disperr signal to 
determine whether this signal indicates a code group violation or a disparity 
error. For details, refer to the relevant device handbook.

Note to Table 6–14:

(1) Refer to“Instantiating Multiple CPRI IP Cores” on page 2–9 for information about how to successfully combine multiple high-speed transceiver 
channels—whether in two CPRI IP core instances or in a CPRI IP core and in another component—in the same quad.

Table 6–14. Transceiver Signals (Part 3 of 3)

Signal Direction Description

Table 6–15. CPRI IP Core Clock and Reset Signals (Part 1 of 2)

Signal Direction Description 

clk_ex_delay Input Extended delay measurement clock. This clock must be driven from a 
common source with the transceiver reference clock.

reset_ex_delay Input

Reset for extended delay measurement block.This reset is associated with the 
clk_ex_delay clock. 

reset_ex_delay can be asserted asynchronously, but must stay asserted at 
least one clock cycle and must be de-asserted synchronously with the clock 
with which it is associated. Refer to Figure 4–6 on page 4–12 for a circuit that 
shows how to enforce synchronous deassertion of a reset signal. 

config_reset Input

Register reset. This reset is associated with the cpri_clkout clock.

config_reset can be asserted asynchronously, but must stay asserted at 
least one clock cycle and must be de-asserted synchronously with the clock 
with which it is associated. Refer to Figure 4–6 on page 4–12 for a circuit that 
shows how to enforce synchronous deassertion of a reset signal.
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pll_clkout Output Generated from transceiver clock data recovery circuit. Intended to connect to 
an external PLL for jitter clean-up.

cpri_clkout Output CPRI core clock. Provided for observation and debugging.

hw_reset_req Output

Hardware reset request detected from received reset control word. This signal 
is set after the received reset control word is set in ten consecutive basic 
frames, if the reset_out_en bit of the CPRI_HW_RESET register is set. This 
signal is cleared in reset. It can be used to inform the application layer of the 
low-level reset request.

hw_reset_assert Input

Indicates a reset request should be sent to the CPRI link partner on the CPRI 
link, using bit 0 of the CPRI hyperframe control word Z.130.0. If the 
reset_hw_en bit of the CPRI_HW_RESET register is set, the CPRI IP core 
sends the reset request on the CPRI link. The hw_reset_assert signal is 
detected on the rising edge of cpri_clkout.

usr_pma_clk Input

One of two extra clock signals required for CPRI IP core variations configured 
at 9830.4 Mbps that target an Arria V GT device.

The CPRI IP core requires that usr_pma_clk be driven from a common 
source with, and synchronized with, the driver of usr_clk. In master 
clocking mode, it must have a common source with the gxb_refclk signal, 
and in slave clocking mode, it must be driven from the cleanup PLL.

When the CPRI IP core runs at a CPRI line rate of 9830.4 Mbps, you must 
drive usr_pma_clk at 122.88 MHz. When the IP core participates in autorate 
negotiation, you must drive this clock at different frequencies for different 
target CPRI line rates. Refer to Appendix B, Implementing CPRI Link Autorate 
Negotiation for the required frequencies.

usr_clk Input

One of two extra clock signals required for CPRI IP core variations configured 
at 9830.4 Mbps that target an Arria V GT device. 

The CPRI IP core requires that usr_clk be driven from a common source 
with, and synchronized with, the driver of usr_pma_clk. it must have a 
common source with the gxb_refclk signal, and in slave clocking mode, it 
must be driven from the cleanup PLL.

When the CPRI IP core runs at a CPRI line rate of 9830.4 Mbps, you must 
drive usr_clk at 245.76 MHz. When the IP core participates in autorate 
negotiation, you must drive this clock at different frequencies for different 
target CPRI line rates. Refer to Appendix B, Implementing CPRI Link Autorate 
Negotiation for the required frequencies

Table 6–15. CPRI IP Core Clock and Reset Signals (Part 2 of 2)

Signal Direction Description 
CPRI IP Core June 2014 Altera Corporation
User Guide



June 2014 Altera Corporation
7. Software Interface
The Altera CPRI IP core supports the following sets of registers that control the CPRI 
IP core or query its status:

■ CPRI Protocol Interface Registers

■ MAP Interface and AUX Interface Configuration Registers

■ Ethernet Registers

■ HDLC Registers

All of the registers are 32 bits wide and their addresses are shown as hexadecimal 
values. The registers can be accessed only on a 32-bit (4-byte) basis. The addressing for 
the registers therefore increments by units of 4.

1 Reserved fields are labelled in the register tables. These fields are reserved for future 
use and your design should not write to or rely on a specific value being found in any 
reserved field or bit.

A remote device can access these registers only by issuing read and write operations 
through the CPU interface. 

Table 7–1 lists the access codes that describe the type of register bits.

Table 7–2 lists the CPRI IP core register address ranges.

Table 7–1. Register Access Codes

Code Description 

RC Read to clear 

RO Read-only 

RW Read/write 

UR0 Unused bits/read as 0

WO Write-only; read as 0

Table 7–2. CPRI IP Core Register Address Ranges

Address Range Interface

0x00–0x68 CPRI Protocol Interface Registers

0x100–0x1A4 MAP Interface and AUX Interface Configuration Registers

0xF4–0x1FC Reserved

0x200–0x24C Ethernet Registers

0x250–0x2FC Reserved

0x300–0x334 HDLC Registers
CPRI IP Core
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CPRI Protocol Interface Registers
This section lists the CPRI protocol interface registers. Table 7–3 provides a memory 
map for the CPRI protocol interface registers. Table 7–4 through Table 7–29 describe 
the CPRI protocol interface registers in the CPRI IP core.

Table 7–3. CPRI Protocol Interface Registers Memory Map

Address Name Expanded Name

0x0 CPRI_INTR Interrupt Control and Status

0x4 CPRI_STATUS CPRI Status

0x8 CPRI_CONFIG CPRI Configuration

0xC CPRI_CTRL_INDEX CPRI Control Word Index

0x10 CPRI_RX_CTRL CPRI Received Control Word

0x14 CPRI_TX_CTRL CPRI Transmit Control Word

0x18 CPRI_LCV CPRI Line Code Violation Counter

0x1C CPRI_RX_BFN CPRI Recovered Radio Frame Counter

0x20 CPRI_HW_RESET Hardware Reset From Control Word

0x24 CPRI_PHY_LOOP Physical Layer Loopback Control

0x28 CPRI_CM_CONFIG CPRI Control and Management Configuration

0x2C CPRI_CM_STATUS CPRI Control and Management Status

0x30 CPRI_RX_DELAY_CONTROL Receiver Delay Control

0x34 CPRI_RX_DELAY Receiver Delay

0x38 CPRI_ROUND_DELAY Round Trip Delay

0x3C CPRI_EX_DELAY_CONFIG Extended Delay Measurement Configuration

0x40 CPRI_EX_DELAY_STATUS Extended Delay Measurement Status

0x44 Reserved

0x48 AUTO_RATE_CONFIG Autorate Negotiation

0x4C CPRI_INTR_PEND Pending Interrupt Status

0x50 CPRI_N_LCV LCV Threshold

0x54 CPRI_T_LCV LCV Test Period

0x58 CPRI_TX_PROT_VER Tx Protocol Version

0x5C CPRI_TX_SCR_SEED Tx Scrambler Seed

0x60 CPRI_RX_SCR_SEED Rx Scrambler Support

0x64 CPRI_TX_BITSLIP Tx Bitslip

0x68 CPRI_AUTO_CAL Autocalibration

Table 7–4. CPRI_INTR—Interrupt Control and Status—Offset: 0x0 (Part 1 of 2)

Field Bits Access Function Default 

RSRV [31:6] UR0 Reserved. 31’h0

intr_los_lcv_en [5] RW los_lcv interrupt enable. 1’h0

RSRV [4:2] UR0 Reserved. 3’h0
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intr_hw_reset_en [1] RW
hw_reset interrupt enable. Controls whether a reset 
request received over the CPRI link raises an interrupt on 
the CPU IRQ line.

1’h0

intr_en [0] RW
CPRI protocol interface module interrupt enable. 

The Ethernet and HDLC modules have separate interrupt 
enable control bits.

1’h0

Table 7–4. CPRI_INTR—Interrupt Control and Status—Offset: 0x0 (Part 2 of 2)

Field Bits Access Function Default 

Table 7–5. CPRI_STATUS—CPRI Status—Offset: 0x4

Field Bits Access Function Default 

RSRV [31:12] UR0 Reserved. 20'h0

rx_rfp_hold [11] RC Radio frame pulse received. This bit is asserted every 10 ms. (1) 1’h0

rx_freq_alarm_
hold

[10] RC

CPRI receive clock is not synchronous with system clock 
(cpri_clkout). This alarm is asserted each time mismatches are found 
between the recovered CPRI receive clock and the system clock 
cpri_clkout. (1)

1’h0

rx_state_hold [9] RC Hold rx_state. (1) 1’h0

rx_los_hold [8] RC Hold rx_los. (1) 1’h0

RSRV [7:6] UR0 Reserved. 2'h0

los_lcv [5] RO

Loss of signal (LOS) detected. This alarm is asserted if excessive line 
code violations (LCVs) are detected, based on two counters and two 
programmable threshold values. The first counter counts up to the 
expected amount of time to CPRI link synchronization, during which the 
second counter does not count LCVs. The second counter counts LCVs 
up to the threshold—the number of LCVs after which this alarm is 
asserted. The CPRI_T_LCV register at offset 0x54 specifies the expected 
amount of time to CPRI link synchronization, and the CPRI_N_LCV 
register at offset 0x50 holds the threshold number of LCVs after which 
this alarm is asserted. 

1’h0

RSRV [4] UR0 Reserved. 1'h0

rx_bfn_state [3] RO Indicates BFN (Node B radio frame) synchronization has been achieved. 1’h0

rx_hfn_state [2] RO Indicates HFN synchronization has been achieved. 1’h0

rx_state [1] RO
When set, indicates that Rx HFN and BFN synchronization have been 
achieved in CPRI receiver frame synchronization. You can read this field 
to determine whether the Rx link is established.

1’h0

rx_los [0] RO Indicates either excessive 8B/10B violations (> 15) or incoming LOS 
signal on dedicated line from SFP optical module (gxb_los signal). 1’h0

Note to Table 7–5:

(1) This register field is a read-to-clear field. You must read the register twice to read the true value of the field after frame synchronization is 
achieved. If you observe this bit asserted during link initialization, read the register again after link initialization to confirm any errors.
June 2014 Altera Corporation CPRI IP Core
User Guide



7–4 Chapter 7: Software Interface
CPRI Protocol Interface Registers
Table 7–6. CPRI_CONFIG—CPRI Configuration—Offset: 0x8 (Part 1 of 2)

Field Bits Access Function Default

RSRV [31:7] UR0 Reserved. 26'h0

tx_enable_force [6] RW

Enables the RE slave testing feature described in “Achieving Link 
Synchronization Without an REC Master” on page 5–4. Specifies 
whether the CPRI RE slave should attempt to achieve link 
synchronization without a CPRI link connection to a CPRI master. 

1’b0—The RE slave self-synchronization testing feature is not 
activated.

1’b1—The RE slave self-synchronization testing feature is 
activated. This value is only valid if the CPRI IP core is configured 
in slave clocking mode. Refer to “Achieving Link Synchronization 
Without an REC Master” on page 5–4 for required conditions for 
this testing feature.

1’h0

tx_enable [5] RW Enable transmission on CPRI link. 1’h0

loop_mode [4:2] RW

Testing loopback mode. The reverse loopback paths specified in this 
register field include the transmission framing block, in contrast to 
the lower-level loopback path specified in the CPRI_PHY_LOOP 
register at offset 0x24. The loopback paths specified in this register 
field are only enabled after frame synchronization, and can only be 
activated in a CPRI RE slave. The following field values are defined:

000: No loopback.

001: Full CPRI frame loop. Incoming CPRI data and control words 
are sent back in outgoing CPRI communication.

010: IQ sample loop. Incoming CPRI data are sent back in 
outgoing CPRI communication; control words are generated 
locally.

011: Fast C&M loop. Incoming CPRI C&M control and data words 
are sent back in outgoing CPRI communication; remaining data 
and control words are generated locally.

100: Fast C&M and VSS loop. Incoming CPRI C&M and 
vendor-specific control words are sent back in outgoing CPRI 
communication; data and remaining control words are generated 
locally.

Note that this loopback mode is superseded by the 1-bit physical 
layer loop mode specified in the CPRI_PHY_LOOP register at 
offset 0x24. If both register fields hold non-zero values, the value 
in the CPRI_PHY_LOOP register takes precedence.

3'h0
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operation_mode [1] RW

Specifies whether the CPRI IP core is configured with slave clocking 
mode or with master clocking mode, according to the following 
values:

1’b0—The IP core is in master clocking mode.

1’b1—The IP core is in slave clocking mode.

The initial value of this bit is determined by the value you specify for 
the Operation mode parameter in the CPRI parameter editor. When 
you modify the value of this bit, you must ensure you connect the 
clocks in your design appropriately. Refer to “Clock Diagrams for the 
CPRI IP Core” on page 4–5. 

For information about how to modify the value of this field safely, 
refer to “Dynamically Switching Clock Mode” on page 4–9.

As 
specified 
in the 
CPRI 
parameter 
editor

tx_ctrl_insert_en [0] RW
Master enable for insertion of control transmit table entries in CPRI 
hyperframe. This signal enables control bytes for which the 
tx_control_insert bit is high to be written to the CPRI frame.

1'h0

Table 7–6. CPRI_CONFIG—CPRI Configuration—Offset: 0x8 (Part 2 of 2)

Field Bits Access Function Default

Table 7–7. CPRI_CTRL_INDEX—CPRI Control Word Index—Offset: 0xC

Field Bits Access Function Default

RSRV [31:17] UR0 Reserved. 15'h0

tx_control_insert [16] RW

Control word 32-bit section transmit enable. This value is stored in 
the control transmit table with its associated entry. When you 
change the value of the cpri_ctrl_index field, the stored 
tx_control_insert value associated with the indexed entry 
appears in the tx_control_insert field.

At the time the CPRI IP core can insert a control transmit table entry 
in the associated position in the outgoing hyperframe on the CPRI 
link, if the tx_control_insert bit associated with that entry has 
the value of 1, and the tx_ctrl_insert_en bit of the 
CPRI_CONFIG register is asserted, the IP core inserts the table entry 
in the hyperframe.

1'h0

RSRV [15:10] UR0 Reserved. 6'h0

cpri_ctrl_position [9:8] RW

Sequence number for CPRI control word 32-bit section monitoring 
and insertion. The value in this field determines the 32-bit section of 
the control receive and control transmit table entries that appear in 
the CPRI_RX_CTRL and CPRI_TX_CTRL registers. 

2'h0

cpri_ctrl_index [7:0] RW

Index for CPRI control word monitoring and insertion. The value in 
this field determines the control receive and control transmit table 
entries that appear in the CPRI_RX_CTRL and CPRI_TX_CTRL 
registers. 

8'h0
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Table 7–8. CPRI_RX_CTRL—CPRI Received Control Word—Offset: 0x10

Field Bits Access Function Default

rx_control_data [31:0] RW

Most recent received CPRI control word 32-bit section from 
CPRI hyperframe position Z.x, where x is the index in the 
cpri_ctrl_index field of the CPRI_CTRL_INDEX register. The 
cpri_ctrl_position field of the CPRI_CTRL_INDEX register 
indicates whether this is the first, second, third, or fourth such 
32-bit section.

32'h0

Table 7–9. CPRI_TX_CTRL—CPRI Transmit Control Word—Offset: 0x14

Field Bits Access Function Default

tx_control_data [31:0] RW

CPRI control word 32-bit section to be transmitted in CPRI 
hyperframe position Z.x, where x is the index in the 
cpri_ctrl_index field of the CPRI_CTRL_INDEX register. 
The cpri_ctrl_position field of the CPRI_CTRL_INDEX 
register indicates whether this is the first, second, third, or 
fourth such 32-bit section.

32'h0

Table 7–10. CPRI_LCV—CPRI Line Code Violation Counter—Offset: 0x18

Field Bits Access Function Default

RSRV [31:8] UR0 Reserved. 24'h0

cpri_lcv [7:0] RO

Number of line code violations (LCVs) detected in the 8B/10B 
decoding block in the transceiver. Enables CPRI link 
debugging. This register saturates at the value 255; after it 
reaches 255, it maintains this value until reset.

This counter is not used to determine whether the N_LCV 
threshold (Table 7–23 on page 7–12) is reached, because it 
includes LCVs that occur during initialization—before T_LCV 
(Table 7–24 on page 7–12) is reached—and because it 
saturates.

8’h0

Table 7–11. CPRI_BFN—CPRI Recovered Radio Frame Counter—Offset: 0x1C

Field Bits Access Function Default

RSRV [31:12] UR0 Reserved. 20'h0

bfn [11:0] RO Current BFN (node B radio frame number) number. Value 
obtained from BFN alignment state machine. 12’h0

Table 7–12. CPRI_HW_RESET—Hardware Reset From Control Word—Offset: 0x20 (Part 1 of 2)

Field Bits Access Function Default

RSRV [31:8] UR0 Reserved. 24'h0

reset_gen_done_hold [7] RC Hold reset_done. 1’h0

reset_gen_done [6] RO Indicates that a reset request or acknowledgement has been 
successfully sent on the CPRI link by the CPRI transmitter. 1'h0

reset_detect_hold [5] RC (1) Hold reset_detect. 1'h0
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For additional information about the CPRI_HW_RESET register, refer to “Reset 
Requirements” on page 4–11. 

reset_detect [4] RO Indicates that reset request has been detected in the incoming 
stream on the CPRI link by the CPRI receiver. 1'h0

reset_hw_en [3] RW

Enable generation of reset request or acknowledge by CPRI 
transmitter, as indicated by the hw_reset_assert input signal. 
This enable bit has higher priority than the reset_gen_en bit; if 
this enable bit is set, the reset_gen_force bit is ignored.

Note that when a CPRI RE slave detects a reset request in 
incoming CPRI communication, and the reset_hw_en bit is 
set, the user must assert the hw_reset_assert input signal to 
the CPRI RE slave, to force it to send a reset acknowledge by 
setting the reset bit in outgoing CPRI communication at 
Z.130.0. 

1'h0

reset_out_en [2] RW Enable reset output. 1'h0

reset_gen_force [1] RW Force generation of reset request or acknowledge by CPRI 
transmitter. 1'h0

reset_gen_en [0] RW

Enable generation of reset request or acknowledge by CPRI 
transmitter, as indicated by the reset_gen_force bit. This 
enable bit has lower priority than the reset_hw_en bit; if the 
reset_hw_en bit is set, this bit and the reset_gen_force bit 
are ignored.

1'h0

Note to Table 7–12:

(1) This register field is a read-to-clear field. You must read the register twice to read the true value of the field after frame synchronization is 
achieved. If you observe this bit asserted during link initialization, read the register again after link initialization to confirm any errors.

Table 7–12. CPRI_HW_RESET—Hardware Reset From Control Word—Offset: 0x20 (Part 2 of 2)

Field Bits Access Function Default

Table 7–13. CPRI_PHY_LOOP—Physical Layer Loopback Control—Offset: 0x24 (Part 1 of 2)

Field Bits Access Function Default

RSRV [31:5] UR0 Reserved. 27'h0

loop_resync [4] RC (1)

Indicates that reset resynchronization is detected. This bit is 
typically set when the CPRI receiver clock and cpri_clkout 
have different frequencies, as measured in the physical layer 
internal loopback path. 

1’h0

RSRV [3:1] UR0 Reserved. 2'h0
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loop_mode [0] RW

Physical layer loopback mode. The following values are 
defined:

0: No loopback.

1: Full CPRI frame loop. Incoming CPRI data and control 
words are sent back as-is in outgoing CPRI 
communication. This low-level reverse loopback path is 
active whether or not frame synchronization has been 
achieved; the path includes 8B/10B encoding and 
decoding, but only enough core CPRI functionality to 
handle the transition from the receiver clock domain to the 
transmitter clock domain.

This loopback mode takes precedence over the 3-bit 
loop_mode specified in the CPRI_CONFIG register at offset 
0x8: if this field has value 1, the 3-bit loop_mode value is 
ignored.

2'h0

Note to Table 7–13:

(1) This register field is a read-to-clear field. You must read the register twice to read the true value of the field after frame synchronization is 
achieved. If you observe this bit asserted during link initialization, read the register again after link initialization to confirm any errors.

Table 7–13. CPRI_PHY_LOOP—Physical Layer Loopback Control—Offset: 0x24 (Part 2 of 2)

Field Bits Access Function Default

Table 7–14. CPRI_CM_CONFIG—CPRI Control and Management Configuration—Offset: 0x28

Field Bits Access Function Default

RSRV [31:11] UR0 Reserved. 20'h0

tx_slow_cm_rate [10:8] RW Rate configuration for slow C&M (HDLC). To be inserted in 
CPRI control byte Z.66.0. 3’h0

RSRV [7:6] UR0 Reserved. 2'h0

tx_fast_cm_ptr [5:0] RW Pointer to first CPRI control word used for fast C&M 
(Ethernet). To be inserted in CPRI control byte Z.194.0. 8'h14

Table 7–15. CPRI_CM_STATUS—CPRI Control and Management Status—Offset: 0x2C (Part 1 of 2)

Field Bits Access Function Default

RSRV [31:12] UR0 Reserved. 20’h0

rx_slow_cm_rate_valid [11] RO Indicates that a valid slow C&M rate has been accepted. 1'h0
CPRI IP Core June 2014 Altera Corporation
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rx_slow_cm_rate [10:8] RO

Accepted receive slow C&M rate, as determined during 
the software set-up sequence, or by dynamic 
modification, in which the same new pointer value is 
received in incoming CPRI control byte Z.66.0 four 
hyperframes in a row.

The following values are defined:

000: No HDLC channel.

001: 240 Kbps

010: 480 Kbps

011: 960 Kbps

100: 1920 Kbps

101: 2400 Kbps

110: 3840, 4800, or 7680 Kbps, depending on the 
current CPRI line rate, as specified in Table 4–15 on 
page 4–51.

For information about compatible slow C&M rates and 
CPRI line rates, refer to Table 4–15 on page 4–51.

3’h0

RSRV [7] UR0 Reserved. 1'h0

rx_fast_cm_ptr_valid [6] RO Indicates that a valid fast C&M pointer has been accepted. 1'h0

rx_fast_cm_ptr [5:0] RO

Accepted receive fast C&M pointer, as determined during 
the software set-up sequence or by dynamic 
modification, in which the same new pointer value is 
received in incoming CPRI control byte Z.194.0 four 
hyperframes in a row. The value is between 0x24 and 
0x3F, inclusive.

6’h0

Table 7–15. CPRI_CM_STATUS—CPRI Control and Management Status—Offset: 0x2C (Part 2 of 2)

Field Bits Access Function Default

Table 7–16. CPRI_RX_DELAY_CTRL—Receiver Delay Control—Offset: 0x30

Field Bits Access Function Default

RSRV [31:17] UR0 Reserved. 15'h0

rx_buf_resync [16] RW

Force CPRI receiver buffer (Rx elastic 
buffer) realignment. Altera recommends 
that you resynchronize the Rx elastic 
buffer after a dynamic CPRI line rate 
change. Resynchronizing might lead to 
data loss or corruption.

1’h0

RSRV [15:WIDTH_RX_BUF] (1) UR0 Reserved. 0

rx_buf_int_delay [(WIDTH_RX_BUF-1):0] (1) RW

Initial buffer delay with which to align the 
Rx elastic buffer. After you modify the 
value of this field, you must set the 
rx_buf_resync bit to resynchronize the 
buffer.

2WIDTH_RX_BUF-1

Note to Table 7–16:

(1) WIDTH_RX_BUF is the value specified for the Receiver buffer depth parameter. This value is log2 of the depth of the Rx elastic buffer. By default, 
it is set to six, specifying a 64-entry buffer. Altera recommends that you set it to four, specifying a 16-entry buffer, in slave configurations.
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Table 7–17. CPRI_RX_DELAY—Receiver Delay—Offset: 0x34

Field Bits Access Function Default

RSRV [31:(WIDTH_RX_BUF+2)] (1) UR0 Reserved. 0

rx_buf_delay [(WIDTH_RX_BUF+1):2] (1) RO Current receive buffer fill level. Unit is 32-bit words. 
Maximum value is 2WIDTH_RX_BUF-1. 0

rx_byte_delay [1:0] RO
Current byte-alignment delay. This field is relevant 
for the Rx path delay calculation. Refer to “Rx Path 
Delay Components” on page E–4. 

2'h0

Note to Table 7–17:

(1) WIDTH_RX_BUF is the value specified for the Receiver buffer depth parameter. This value is log2 of the depth of the Rx elastic buffer. By default, 
it is set to six, specifying a 64-entry buffer. Altera recommends that you set it to four, specifying a 16-entry buffer, in slave configurations.

Table 7–18. CPRI_ROUND_DELAY—Round Trip Delay—Offset: 0x38

Field Bits Access Function Default

RSRV [31:20] UR0 Reserved. 12'h0

rx_round_trip_delay [19:0] RO Measured round trip delay from cpri_tx_rfp to 
cpri_rx_rfp. Unit is cpri_clkout clock periods. 20'h0

Table 7–19. CPRI_EX_DELAY_CONFIG—Extended Delay Measurement Configuration—Offset: 0x3C

Field Bits Access Function Default

RSRV [31:9] UR0 Reserved. 23'h0

ex_delay [8:0] RW

Integration period for Rx and Tx buffer extended delay measurement.

Program this field with the user-defined value N, where
M/N = clk_ex_delay period / cpri_clkout period. Refer to 
“Calculation Example: Rx Buffer Delay” on page E–8.

9'h0

Table 7–20. CPRI_EX_DELAY_STATUS—Extended Delay Measurement Status—Offset: 0x40

Field Bits Access Function Default

RSRV [31] UR0 Reserved. 1'h0

tx_ex_buf_delay [30:18] RO

Tx buffer extended delay measurement 
result. Unit is cpri_clkout clock periods. 
Refer to “Extended Tx Delay 
Measurement” on page E–14.

13’h0

RSRV [17] UR0 Reserved. 1'h0

ex_buf_delay_valid [16] RC
Indicates that the rx_ex_buf_delay and 
tx_ex_buf_delay fields have been 
updated.

1'h0

RSRV [15:(WIDTH_RX_BUF+9)] (1) UR0 Reserved. 0

rx_ex_buf_delay [(WIDTH_RX_BUF+8):0] (1) RO

Rx buffer extended delay measurement 
result. Unit is cpri_clkout clock periods. 
Refer to “Extended Tx Delay 
Measurement” on page E–14.

0

Note to Table 7–20:

(1) WIDTH_RX_BUF is the value specified for the Receiver buffer depth parameter. This value is log2 of the depth of the Rx elastic buffer. By default, 
it is set to six, specifying a 64-entry buffer. Altera recommends that you set it to four, specifying a 16-entry buffer, in slave configurations.
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Table 7–21. AUTO_RATE_CONFIG—Autorate Negotiation Register—Offset: 0x48  

Field Bits Access Function Default

RSRV [31:6] UR0 Reserved. 28’h0

i_datarate_en [5] RO

Indicates that autorate negotiation is enabled. (Value is 
1’b0 if autorate negotiation is not enabled; 1’b1 if 
autorate negotiation is enabled, in the CPRI parameter 
editor). Refer to Figure B–1 and Figure B–2 for an 
illustration of the autorate negotiation logic in the CPRI 
IP core and the autorate negotiation logic you must add 
to your design outside the CPRI IP core.

As specified in 
CPRI parameter 
editor

i_datarate_set [4:0] RW

CPRI line rate to be used in next attempt to achieve 
frame synchronization. You set the line rate in your 
implementation of the autorate negotiation hardware 
and software outside the CPRI IP core. Refer to 
Appendix B, Implementing CPRI Link Autorate 
Negotiation, for information about how to use the 
autorate negotiation logic implemented in the CPRI IP 
core.

Encode the CPRI line rate in this field with the following 
values:

00001: 614.4 Mbps

00010: 1228.8 Mbps

00100: 2457.6 Mbps

00101: 3072.0 Mbps

01000: 4915.0 Mbps (1)

01010: 6144.0 Mbps (1)

10000: 9830.4 Mbps (2)

4’h0

Notes to Table 7–21:

(1) This value is not valid for CPRI IP core variations that target a Cyclone IV GX device. This value is valid for CPRI IP variations that target an 
Arria II GX device only if that device is an I3 speed grade device.

(2) This value is valid only for CPRI IP core variations that target a device that supports this CPRI line rate.

Table 7–22. CPRI_INTR_PEND—Interrupt Pending Status—Offset: 0x4C (Part 1 of 2)

Field Bits Access Function Default 

RSRV [31:6] UR0 Reserved. 26’h0

los_lcv_pending [5] RW Indicates an los_lcv interrupt is pending (the interrupt 
occurred but is not yet serviced). 1’h0

RSRV [4:2] UR0 Reserved. 4’h0
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hw_reset_pending [1] RW

Indicates a hw_reset interrupt is pending (the interrupt 
occurred but is not yet serviced).

In an RE slave, this bit is set when a reset request is detected 
in incoming CPRI communication at Z.130.0, but neither the 
reset_gen_en bit nor the reset_hw_en bit in the 
CPRI_HW_RESET register is set (so that a reset acknowledge 
cannot be sent to the RE master), or when the CPRI RE slave 
sends a reset acknowledge on the outgoing CPRI link at 
Z.130.0.

In a master, this bit is set when a reset acknowledge is 
received on the incoming CPRI link at Z.130.0.

Software can count assertions of this bit to confirm the reset 
bit in Z.130.0 was asserted in ten consecutive hyperframes to 
complete a CPRI-compliant reset acknowledge.

Note that when a reset request is detected in incoming CPRI 
communication, and the reset_hw_en bit in the 
CPRI_HW_RESET register is set, the user must assert the 
hw_reset_assert input signal to the CPRI RE slave, to force 
it to send a reset acknowledge by setting the reset bit in 
outgoing CPRI communication at Z.130.0. After the reset bit is 
sent on the CPRI link, hw_reset_pending is asserted.

1’h1

RSRV [0] UR0 Reserved. 1’h0

Table 7–22. CPRI_INTR_PEND—Interrupt Pending Status—Offset: 0x4C (Part 2 of 2)

Field Bits Access Function Default 

Table 7–23. CPRI_N_LCV—LCV Threshold—Offset: 0x50 

Field Bits Access Function Default 

N_LCV [31:0] RW The number of LCVs that triggers the assertion of the 
cpri_rx_los signal. 32’h0

Table 7–24. CPRI_T_LCV—LCV Test Period—Offset: 0x54 

Field Bits Access Function Default 

T_LCV [31:0] RW
The number of bytes in the initialization period during which 
we do not yet count LCVs toward assertion of the 
cpri_rx_los signal.

32d’614400

Table 7–25. CPRI_TX_PROT_VER— Tx Protocol Version —Offset: 0x58 

Field Bits Access Function Default 

RSRV [31:8] UR0 Reserved. 24’h0

tx_prot_version [7:0] RW

Transmit protocol version to be mapped to Z.2.0 to indicate 
whether or not the current hyperframe transmission is 
scrambled. The value 1 indicates it is not scrambled and the 
value 2 indicates it is scrambled.

8’h01
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Table 7–26. CPRI_TX_SCR_SEED— Tx Scrambler Seed —Offset: 0x5C 

Field Bits Access Function Default 

RSRV [31] UR0 Reserved. 1’h0

tx_scr_seed [30:0] RW Transmitter scrambler seed. If the seed has value 0, the 
transmission is not scrambled. 31’h0

Table 7–27. CPRI_RX_SCR_SEED— Rx Scrambler Support —Offset: 0x60 

Field Bits Access Function Default 

rx_scr_act_indication [31] RO
Indicates that the incoming hyperframe is scrambled. The 
value 1 indicates that the incoming communication is 
scrambled, and the value 0 indicates that it is not scrambled.

1’h0

rx_scr_seed [30:0] RO Received scrambler seed. The receiver descrambles the 
incoming CPRI communication based on this seed. 31’h0

Table 7–28. CPRI_TX_BITSLIP— Tx Bitslip —Offset: 0x64 (1), (2), (3) (Part 1 of 2)

Field Bits Access Function Default 

RSRV [31:21] UR0 Reserved. 11’h0

rx_
bitslipboundaryselectout

[20:16] RO

Number of bits of delay (bitslip) detected at the receiver 
word-aligner. Value can change at frame synchronization, 
when the transceiver is resetting. Any K28.5 symbol position 
change that occurs when word alignment is activated 
changes the bitslip value.

5’h0

RSRV [15:9] UR0 Reserved. 7’h0

tx_bitslip_en [8] RW

Enable manual tx_bitslipboundaryselect updates. 
When this bit has the value of 0 in a CPRI RE slave, the CPRI 
RE slave determines the value in the 
tx_bitslipboundaryselect field, and adds 
tx_bitslipboundaryselect bits of delay in the 
transceiver transmitter to compensate for the variability in 
the Rx word aligner bitslip. The CPRI IP core ignores the 
value in the tx_bitslipboundaryselect field in a CPRI 
REC or RE master. When the tx_bitslip_en bit has the 
value of 1, the application can write a value to the 
tx_bitslipboundaryselect field to manually override the 
value the CPRI IP core would calculate. 

1’h0

RSRV [7:5] UR0 Reserved. 3’h0
June 2014 Altera Corporation CPRI IP Core
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tx_bitslipboundaryselect [4:0] RW

Number of bits of delay (bitslip) the CPRI IP core adds at the 
CPRI Tx link to compensate for the variability in the Rx word 
aligner bitslip. The purpose of this added delay is to ensure 
the variability in the round-trip delay through this CPRI RE 
slave remains compliant with the R-20 and R-21 
deterministic latency requirements of the CPRI specification 
V4.2. The device family and CPRI line rate determine the 
following maximum values for this field:

■ Maximum value for all CPRI variations with line rate 
614.4 Mbps and for all variations that target an Arria II GX 
or Cyclone IV GX device: 9 bits.

■ Maximum value for all other variations: 19 bits.

The latency differences from different Tx bitslip delay values 
are observable only with an oscilloscope. 

5’h0

Notes to Table 7–28:

(1) In variations that target an Arria V, Cyclone V, or Stratix V device, the Tx bitslip functionality is included in the Altera Transceiver PHY IP core 
that is generated as part of the CPRI variation.

(2) CPRI variations with master clocking mode (CPRI REC and RE masters) do not support the automatic bitslip calibration functionality controlled 
by this register.

(3) For information about the CPRI IP core Tx bitslip feature, refer to “Tx Bitslip Delay” on page E–14.

Table 7–28. CPRI_TX_BITSLIP— Tx Bitslip —Offset: 0x64 (1), (2), (3) (Part 2 of 2)

Field Bits Access Function Default 

Table 7–29. CPRI_AUTO_CAL— Autocalibration (1), (2) —Offset: 0x68 

Field Bits Access Function Default 

RSRV [31:30] UR0 Reserved. 2’h0

cal_pointer [29:26] RO
Number of autocalibration pipeline stages currently in use. 
Each such stage adds one cpri_clkout cycle of delay in the 
Rx path.

4’h3

cal_status [25:24] RO

Calibration status. Valid values are:

00: Calibration is turned off

01: Calibration is running or falied with cal_rtd value too 
low

10: Calibration is running or failed with cal_rtd value too 
high

11: Calibration is successful

2’h0

RSRV [23:21] UR0 Reserved. 3’h0

cal_en [20] RW
Indicates that calibration mode is enabled. When the value in 
this field is 1, autocalibration is turned on. When the value in 
this field is 0, autocalibration is turned off.

1’h0

cal_rtd [19:0] RW Desired round-trip delay value. Unit is cpri_clkout cycles. 20’h0

Notes to Table 7–29:

(1) CPRI variations with slave clocking mode (CPRI RE slaves) do not support the functionality controlled by this register. 
(2) For information about the CPRI IP core autocalibration feature, refer to “Dynamic Pipelining for Automatic Round-Trip Delay Calibration” on 

page E–19.
CPRI IP Core June 2014 Altera Corporation
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MAP Interface and AUX Interface Configuration Registers
This section lists the MAP interface configuration registers. Table 7–30 provides a 
memory map for the MAP interface configuration registers. Table 7–31 through 
Table 7–49 describe the MAP interface configuration registers in the CPRI IP core.

Table 7–30. MAP Interface Configuration Registers Memory Map

Address Name Expanded Name

0x100 CPRI_MAP_CONFIG CPRI Mapping Features Configuration

0x104 CPRI_MAP_CNT_CONFIG Basic UMTS/LTE Mapping Configuration

0x108 CPRI_MAP_TBL_CONFIG K Parameter Config for Advanced Table-Based Mapping

0x10C CPRI_MAP_TBL_INDEX Advanced Mapping Configuration Table Index

0x110 CPRI_MAP_TBL_RX Advanced Mapping Rx Configuration Table

0x114 CPRI_MAP_TBL_TX Advanced Mapping Tx Configuration Table

0x118 CPRI_MAP_OFFSET_RX MAP Rx Frame Offset

0x11C CPRI_MAP_OFFSET_TX MAP Tx Frame Offset

0x120 CPRI_START_OFFSET_RX Rx Start Frame Offset

0x124 CPRI_START_OFFSET_TX Tx Start Frame Offset

0x128 CPRI_MAP_RX_READY_THR CPRI Mapping Rx Ready Threshold

0x12C CPRI_MAP_TX_READY_THR CPRI Mapping Tx Ready Threshold

0x130 CPRI_MAP_TX_START_THR CPRI Mapping Tx Start Threshold

0x13C CPRI_PRBS_CONFIG PRBS Generation Pattern Configuration

0x140–0x144 CPRI_PRBS_STATUS PRBS Data Validation Status

0x150 CPRI_IQ_RX_BUF_CONTROL MAP Receiver FIFO Buffer Control

0x160 CPRI_IQ_TX_BUF_CONTROL MAP Transmitter FIFO Buffer Control

0x180–0x184 CPRI_IQ_RX_BUF_STATUS MAP Receiver FIFO Buffer Status

0x1A0–0x1A4 CPRI_IQ_TX_BUF_STATUS MAP Transmitter FIFO Buffer Status

Table 7–31. CPRI_MAP_CONFIG—CPRI Mapping Features Configuration—Offset: 0x100 (Part 1 of 2)

Field Bits Access Function Default

RSRV [31:6] UR0 Reserved. 27’h0

map_tx_start_mode [5] RW

Selection mode for start-up synchronization on the Tx side. This 
field is relevant only when the IP core is in FIFO mode (the Enable 
MAP interface synchronization with core clock parameter is 
turned off and the map_tx_sync_mode field has the value of 0). 
Values are:

0: The IP core aligns the first IQ sample it sends on the CPRI 
link with the existing start threshold. 

1: The IP core aligns the first IQ sample it sends on the CPRI 
link with the CPRI frame offset. 

1’h0
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map_15bit_mode [4] RW

15-bit sample width. Values are:

0: 2 × 16-bit sample width

1: 2× 15-bit sample width

The Altera CPRI IP core does not support the map_15bit_mode 
value of 0 in the Advanced 3 mapping mode. For more 
information, refer to Appendix D, Advanced AxC Mapping Modes.

1’h0

map_tx_sync_mode [3] RW

Tx MAP synchronization mode if Enable MAP interface 
synchronization with core clock is turned off. Values are:

0: FIFO mode

1: Synchronous buffer mode

1’h0

map_rx_sync_mode [2] RW

Rx MAP synchronization mode if Enable MAP interface 
synchronization with core clock is turned off. Values are:

0: FIFO mode

1: Synchronous buffer mode

1’h0

map_mode [1:0] RW/RO

AxC mapping mode. If you select All as the value for the Mapping 
mode(s) parameter in the CPRI IP core, this register field 
determines the current AxC mapping mode. If you select any 
other value for the Mapping mode(s) parameter, this register field 
is ignored (Read-only).

Register field values are:

2’h0

00: Basic mapping scheme (UMTS/LTE standard in which all 
MAP interfaces use the same sample rate, as described in 
the CPRI V4.2 Specification sections 4.2.7.2.2 and 
4.2.7.2.3).

01: CPRI V4.2 Specification section 4.2.7.2.5:
Method 1: IQ sample based.

New Method 1 implementation in the Quartus II software 
v11.1 release.

10: CPRI V4.2 Specification section 4.2.7.2.7:
Method 3: Backward compatible.

11: CPRI V4.2 Specification section 4.2.7.2.5:
Method 1: IQ sample based. 

This implementation is available in all pre-11.1 releases 
of the Altera CPRI IP core as advanced mapping mode 
2’b01.

Values 01, 10, and 11 indicate advanced AxC mapping modes in 
which each MAP interface can implement a different channel rate 
and radio standard.

Table 7–31. CPRI_MAP_CONFIG—CPRI Mapping Features Configuration—Offset: 0x100 (Part 2 of 2)

Field Bits Access Function Default

Table 7–32. CPRI_MAP_CNT_CONFIG—Basic UMTS/LTE Mapping Configuration—Offset: 0x104 (1) (Part 1 of 2)

Field Bits Access Function Default

RSRV [31:13] UR0 Reserved. 19’h0

map_ac [12:8] RW Number of active data channels (antenna-carrier interfaces). 5’h0

RSRV [7:5] UR0 Reserved. 3’h0
CPRI IP Core June 2014 Altera Corporation
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map_n_ac [4:0] RW Oversampling factor on each active data channel. 5’h0

Note to Table 7–32:

(1) This register applies only to map_mode 00, in which each antenna-carrier interface has the same sample rate.

Table 7–32. CPRI_MAP_CNT_CONFIG—Basic UMTS/LTE Mapping Configuration—Offset: 0x104 (1) (Part 2 of 2)

Field Bits Access Function Default

Table 7–33. CPRI_MAP_TBL_CONFIG—K Parameter Config for Advanced Table-Based Mapping—Offset: 0x0108 (1)

Field Bits Access Function Default

RSRV [31:WIDTH_K] UR0 Reserved. 0

K [WIDTH_K-1:0] RW Number of basic frames in AxC container block. 0

Note to Table 7–33:

(1) This register applies only to map_mode 01, 10, or 11, the advanced mapping modes.

Table 7–34. CPRI_MAP_TBL_INDEX—Advanced Mapping Configuration Table Index—Offset: 0x10C (1)

Field Bits Access Function Default

RSRV [31:11] UR0 Reserved. 21’h0

map_conf_index [10:0] RW

Index for configuring antenna-carrier interface information 
in the advanced mapping Rx and Tx tables. The value in this 
field determines the table entries that appear in the 
CPRI_MAP_TBL_RX and CPRI_MAP_TBL_TX registers.

11’h0

Note to Table 7–34:

(1) This register applies only to map_mode 01, 10, or 11, the advanced mapping modes.

Table 7–35. CPRI_MAP_TBL_RX—Advanced Mapping Rx Configuration Table—Offset: 0x110 (1) (Part 1 of 2)

Field Bits Access Function Default

RSRV [31:29] UR0 Reserved. 3’h0

width [28:24] RW

Width of IQ sample in timeslot. Specified as 1/2 the 
number of bits in the IQ sample.

This field is used in 15-bit mode with advanced mapping 
mode 01 and in 16-bit mode with all advanced mapping 
modes. In 15-bit mode with advanced mapping modes 10 
and 11, you must set this field to the value of 15 to indicate 
the full 30 bits of the 32-bit timeslot.

5'h0

RSRV 23:21] UR0 Reserved. 3’h0

position [20:16] RW

Starting bit position of IQ sample in timeslot. Specified as 
1/2 the bit position number.

This field is used in 15-bit mode with advanced mapping 
mode 01 and in 16-bit mode with all advanced mapping 
modes. In 15-bit mode with advanced mapping modes 10 
and 11, you must set this field to the offset of the next 
available bit for your 30-bit sample in the current 32-bit 
timeslot.

5'h0

RSRV [15:WIDTH_N_MAP+8] UR0 Reserved. 0

ac [WIDTH_N_MAP +7:8] RW AxC interface number. 0

RSRV [7:1] UR0 Reserved. 7'h0
June 2014 Altera Corporation CPRI IP Core
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enable [0] RW Enable mapping of IQ sample into current timeslot. 1'h0

Note to Table 7–35:

(1) Currently configurable entry in the advanced mapping Rx table. This register applies only to map_mode 01, 10, or 11, the advanced mapping 
modes.

Table 7–35. CPRI_MAP_TBL_RX—Advanced Mapping Rx Configuration Table—Offset: 0x110 (1) (Part 2 of 2)

Field Bits Access Function Default

Table 7–36. CPRI_MAP_TBL_TX—Advanced Mapping Tx Configuration Table—Offset: 0x114 (1)

Field Bits Access Function Default

RSRV [31:29] UR0 Reserved. 3’h0

width [28:24] RW

Width of IQ sample in timeslot. Specified as 1/2 the 
number of bits in the IQ sample.

This field is used in 15-bit mode with advanced mapping 
mode 01 and in 16-bit mode with all advanced mapping 
modes. In 15-bit mode with advanced mapping modes 10 
and 11, you must set this field to the value of 15 to indicate 
the full 30 bits of the 32-bit timeslot.

5'h0

RSRV 23:21] UR0 Reserved. 3’h0

position [20:16] RW

Starting bit position of IQ sample in timeslot. Specified as 
1/2 the bit position number.

This field is used in 15-bit mode with advanced mapping 
mode 01 and in 16-bit mode with all advanced mapping 
modes. In 15-bit mode with advanced mapping modes 10 
and 11, you must set this field to the offset of the next 
available bit for your 30-bit sample in the current 32-bit 
timeslot.

5'h0

RSRV [15:WIDTH_N_MAP+8] UR0 Reserved. 0

ac [WIDTH_N_MAP +7:8] RW AxC interface number. 0

RSRV [7:1] UR0 Reserved. 7'h0

enable [0] RW Enable mapping of IQ sample into current timeslot. 1'h0

Note to Table 7–36:

(1) Currently configurable entry in the advanced mapping Tx table. This register applies only to map_mode 01, 10, or 11, the advanced mapping 
modes.

Table 7–37. CPRI_MAP_OFFSET_RX—MAP Rx Frame Offset (1), (2)—Offset: 0x118 (Part 1 of 2)

Field Bits Access Function Default

RSRV [31:17] UR0 Reserved. 15'h0

map_rx_hf_resync [16] RW Enables synchronization every hyperframe instead of every radio 
frame. When asserted, the map_rx_offset_z field is ignored. 1’h0

map_rx_offset_z [15:8] RW Hyperframe number for start of MAP receiver AxC container block 
write to each enabled mapN Rx buffer. 8’h0
CPRI IP Core June 2014 Altera Corporation
User Guide



Chapter 7: Software Interface 7–19
MAP Interface and AUX Interface Configuration Registers
map_rx_offset_x [7:0] RW Basic frame number for start of MAP receiver AxC container block 
write to each enabled mapN Rx buffer. 8’h0

Notes to Table 7–37:

(1) In synchronous buffer mode, the offset specified in this register must precede (be less than) the offset specified in the CPRI_START_OFFSET_RX 
register described in Table 7–39. For an explanation of this requirement and an overview of the considerations in determining the value in this 
register, refer to “MAP Receiver in Synchronous Buffer Mode” on page 4–21 and to “Rx Path Delay” on page E–3. If your register values do not 
comply with this requirement, your CPRI IP core will experience data corruption on the active data channels in the synchronous buffer 
synchronization mode.

(2) This register does not participate in data transfer synchronization on the antenna-carrier interfaces in FIFO mode.

Table 7–37. CPRI_MAP_OFFSET_RX—MAP Rx Frame Offset (1), (2)—Offset: 0x118 (Part 2 of 2)

Field Bits Access Function Default

Table 7–38. CPRI_MAP_OFFSET_TX—MAP Tx Frame Offset (1), (2)—Offset: 0x11C

Field Bits Access Function Default

RSRV [31:17] UR0 Reserved. 15'h0

map_tx_hf_resync [16] RW Enables synchronization every hyperframe instead of every radio 
frame. When asserted, the map_tx_offset_z field is ignored. 1’h0

map_tx_offset_z [15:8] RW

Hyperframe number for start of read of MAP transmitter AxC 
container block from each enabled mapN Tx buffer. The CPRI IP 
core reads the data from the mapN Tx buffer and routes it to the 
CPRI frame buffer to be prepared for transmission on the CPRI link.

8’h0

map_tx_offset_x [7:0] RW

Basic frame number for start of read of MAP transmitter AxC 
container block from each enabled mapN Tx buffer. The CPRI IP 
core reads the data from the mapN Tx buffer and routes it to the 
CPRI frame buffer to be prepared for transmission on the CPRI link.

8’h0

Notes to Table 7–38:

(1) In synchronous buffer mode, the offset specified in this register must follow (be greater than) the offset specified in the 
CPRI_START_OFFSET_TX register described in Table 7–40. For an explanation of this requirement and an overview of the considerations in 
determining the value in this register, refer to “MAP Transmitter in Synchronous Buffer Mode” on page 4–27 and to “Tx Path Delay” on 
page E–12. If your register values do not comply with this requirement, your CPRI IP core will experience data corruption on the active data 
channels in the synchronous buffer synchronization mode.

(2) This register does not participate in data transfer synchronization on the antenna-carrier interfaces in FIFO mode.

Table 7–39. CPRI_START_OFFSET_RX—Rx Start Frame Offset (1), (2)—Offset: 0x120 (Part 1 of 2)

Field Bits Access Function Default

RSRV [31:25] UR0 Reserved. 7'h0

start_rx_hf_resync [24] RW
Enables synchronization every hyperframe instead of every 
radio frame. When asserted, the start_rx_offset_z field is 
ignored.

1’h0

RSRV [23:22] UR0 Reserved. 2'h0

start_rx_offset_seq [21:16] RW Sequence number for start of cpri_rx_start 
synchronization output. 6’h0

start_rx_offset_z [15:8] RW Hyperframe number for start of cpri_rx_start 
synchronization output. 8’h0
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start_rx_offset_x [7:0] RW Basic frame number for start of cpri_rx_start 
synchronization output. 8’h0

Notes to Table 7–39:

(1) In synchronous buffer mode, the offset specified in this register must follow (be greater than) the offset specified in the CPRI_MAP_OFFSET_RX 
register described in Table 7–37. For an explanation of this requirement and an overview of the considerations in determining the value in this 
register, refer to “MAP Receiver in Synchronous Buffer Mode” on page 4–21 and to “Rx Path Delay” on page E–3. If your register values do not 
comply with this requirement, your CPRI IP core will experience data corruption on the active data channels in the synchronous buffer 
synchronization mode.

(2) This register does not participate in data transfer synchronization on the antenna-carrier interfaces in FIFO mode or in the internally-clocked 
mode.

Table 7–39. CPRI_START_OFFSET_RX—Rx Start Frame Offset (1), (2)—Offset: 0x120 (Part 2 of 2)

Field Bits Access Function Default

Table 7–40. CPRI_START_OFFSET_TX—Tx Start Frame Offset (1), (2)—Offset: 0x124

Field Bits Access Function Default

RSRV [31:25] UR0 Reserved. 7'h0

start_tx_hf_resync [24] RW
Enables synchronization every hyperframe instead of every 
radio frame. When asserted, the start_tx_offset_z field is 
ignored.

1’h0

RSRV [23:22] UR0 Reserved. 2'h0

start_tx_offset_seq [21:16] RW Sequence number for start of cpri_tx_start 
synchronization output. 6’h0

start_tx_offset_z [15:8] RW Hyperframe number for start of cpri_tx_start 
synchronization output. 8’h0

start_tx_offset_x [7:0] RW Basic frame number for start of cpri_tx_start 
synchronization output. 8’h0

Notes to Table 7–40:

(1) In synchronous buffer mode, the offset specified in this register must precede (be less than) the offset specified in the CPRI_MAP_OFFSET_TX 
register described in Table 7–38. For an explanation of this requirement and an overview of the considerations in determining the value in this 
register, refer to “MAP Transmitter in Synchronous Buffer Mode” on page 4–27 and to “Tx Path Delay” on page E–12. If your register values do 
not comply with this requirement, your CPRI IP core will experience data corruption on the active data channels in the synchronous buffer 
synchronization mode.

(2) This register does not participate in data transfer synchronization on the antenna-carrier interfaces in FIFO mode or in the internally-clocked 
mode.

Table 7–41. CPRI_MAP_RX_READY_THR—CPRI Mapping Rx Ready Threshold—Offset: 0x128

Field Bits Access Function Default

RSRV [31:4] UR0 Reserved. 28’h0

map_rx_ready_thr [3:0] RW

Threshold for assertion of the mapN_rx_valid signal in FIFO 
mode, for all data channels N. The mapN_rx_valid signal is 
asserted only when the MAP Rx buffer for data channel N fills 
beyond this threshold value. All the MAP Rx buffers have the same 
depth, 16.

4’h8
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Table 7–42. CPRI_MAP_TX_READY_THR—CPRI Mapping Tx Ready Threshold—Offset: 0x12C

Field Bits Access Function Default

RSRV [31:4] UR0 Reserved. 28’h0

map_tx_ready_thr [3:0] RW

Threshold for assertion of the mapN_tx_ready signal in FIFO 
mode, for all data channels N. The mapN_tx_ready signal is 
asserted only after the Map Tx buffer for data channel N empties to 
a level below this threshold value. All the MAP Tx buffers have the 
same depth, 16.

4’h8

Table 7–43. CPRI_MAP_TX_START_THR—CPRI Mapping Tx Start Threshold—Offset: 0x130

Field Bits Access Function Default

RSRV [31:4] UR0 Reserved. 28’h0

map_tx_start_thr [3:0] RW

In FIFO mode, threshold for starting transmission from the MAP Tx 
buffers for all data channels N to the CPRI transmitter interface. 
Data transmission from each MAP Tx buffer starts only after that 
MAP Tx buffer fills beyond this threshold value. All the MAP Tx 
buffers have the same depth, 16. 

This register does not participate in data transfer coordination in 
synchronous buffer mode or in the internally-clocked 
synchronization mode.

4’h7

Table 7–44. CPRI_PRBS_CONFIG—PRBS Generation Pattern Configuration—Offset: 0x13C

Field Bits Access Function Default

RSRV [31:2] UR0 Reserved. 30'h0

prbs_mode [1:0] RW

PRBS loopback and pattern mode. Values are:

00: Normal mode (IQ samples, no loopback)

01: Counter sequence (internal loopback path)

10: PRBS 223-1 inverted (internal loopback path)

11: Reserved

The PRBS mode is common to all antenna-carrier 
interfaces.

2'h0

Table 7–45. CPRI_PRBS_STATUS—PRBS Data Validation Status—Offset: 0x140–0x144 (1)

Field Bits Access Function Default

PRBS_error [(N_MAP+15):16] RC Indicates PRBS error detected on the 
corresponding antenna-carrier interfaces. 16'h0

PRBS_valid [(N_MAP-1):0]] RC Indicates a valid PRBS pattern on the 
corresponding antenna-carrier receiver interfaces. 16'h0

Note to Table 7–45:

(1) If this CPRI IP core has more than 16 antenna-carrier interfaces (N_MAP > 16), the status for antenna-carrier interfaces 0 through 15 is in the 
register at offset 0x140, and the status for antenna-carrier interfaces 16 and up is in the register at offset 0x144. The maximum number of 
antenna-carrier interfaces in the CPRI IP core is 24.
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Ethernet Registers
This section lists the Ethernet registers. Table 7–50 provides a memory map for the 
Ethernet registers. Table 7–51 through Table 7–66 describe the Ethernet registers in the 
CPRI IP core.

Table 7–46. CPRI_IQ_RX_BUF_CONTROL—MAP Receiver FIFO Buffer Control—Offset: 0x150

Field Bits Access Function Default

RSRV [31:N_MAP] UR0 Reserved. 0

map_rx_enable [(N_MAP-1):0]] RW

Enables or disables the corresponding 
antenna-carrier receiver interfaces. The 
bits of this field propagate to the 
corresponding cpri_map_rx_en output 
signals.

(N_MAP)’h7F
(all 1s)

Table 7–47. CPRI_IQ_TX_BUF_CONTROL—MAP Transmitter FIFO Buffer Control—Offset: 0x160

Field Bits Access Function Default

RSRV [31:N_MAP] UR0 Reserved. 0

map_tx_enable [(N_MAP-1):0]] RW

Enables or disables the corresponding 
antenna-carrier transmitter interfaces. 
The bits of this field propagate to the 
corresponding cpri_map_tx_en output 
signals.

(N_MAP)’h7F
(all 1s)

Table 7–48. CPRI_IQ_RX_BUF_STATUS—MAP Receiver FIFO Buffer Status—Offset: 0x180–0x184 (1), (2)

Field Bits Access Function Default

buffer_rx_underflow [(N_MAP+15):16] RC Indicates MAP Rx buffer underflow in the 
corresponding antenna-carrier interfaces. 16'h0

buffer_rx_overflow [(N_MAP-1):0]] RC Indicates MAP Rx buffer overflow in the 
corresponding antenna-carrier interfaces. 16'h0

Notes to Table 7–48:

(1) If this CPRI IP core has more than 16 antenna-carrier interfaces (N_MAP > 16), the status for antenna-carrier interfaces 0 through 15 is in the 
register at offset 0x180, and the status for antenna-carrier interfaces 16 and up is in the register at offset 0x184. The maximum number of 
antenna-carrier interfaces in the CPRI IP core is 24.

(2) This register does not participate in data transfer synchronization on the antenna-carrier interfaces in the internally-clocked mode.

Table 7–49. CPRI_IQ_TX_BUF_STATUS—MAP Transmitter FIFO Buffer Status—Offset: 0x1A0–0x1A4 (1), (2)

Field Bits Access Function Default

buffer_tx_underflow [(N_MAP+15):16] RC Indicates MAP Tx buffer underflow in the 
corresponding antenna-carrier interfaces. 16'h0

buffer_tx_overflow [(N_MAP-1):0]] RC Indicates MAP Tx buffer overflow in the 
corresponding antenna-carrier interfaces. 16'h0

Notes to Table 7–49:

(1) If this CPRI IP core has more than 16 antenna-carrier interfaces (N_MAP > 16), the status for antenna-carrier interfaces 0 through 15 is in the 
register at offset 0x1A0, and the status for antenna-carrier interfaces 16 and up is in the register at offset 0x1A4. The maximum number of 
antenna-carrier interfaces in the CPRI IP core is 24.

(2) This register does not participate in data transfer synchronization on the antenna-carrier interfaces in the internally-clocked mode.
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1 If you turn off the Include MAC block parameter, your application cannot access the 
Ethernet registers. In that case, attempts to access these registers read zeroes and do 
not write successfully, as for a Reserved register address.

For more information about these registers, refer to “Accessing the Ethernet Channel” 
on page 4–47.

Table 7–50. CPRI Ethernet Registers Memory Map

Address Name Expanded Name

0x200 ETH_RX_STATUS Ethernet Receiver Module Status

0x204 ETH_TX_STATUS Ethernet Transmitter Module Status

0x208 ETH_CONFIG_1 Ethernet Feature Configuration 1

0x20C ETH_CONFIG_2 Ethernet Feature Configuration 2

0x210 ETH_RX_CONTROL Ethernet Rx Control

0x214 ETH_RX_DATA Ethernet Rx Data

0x218 ETH_RX_DATA_WAIT Ethernet Rx Data With Wait-State Insertion

0x21C ETH_TX_CONTROL Ethernet Tx Control

0x220 ETH_TX_DATA Ethernet Tx Data

0x224 ETH_TX_DATA_WAIT Ethernet Tx Data With Wait-State Insertion

0x228 Reserved

0x22C ETH_MAC_ADDR_MSB Ethernet MAC Address MSB (16 bits)

0x230 ETH_MAC_ADDR_LSB Ethernet MAC Address LSB (32 bits)

0x234 ETH_HASH_TABLE Ethernet Multicast Filtering Hash Table

0x238–0x240 Reserved

0x244 ETH_FWD_CONFIG Ethernet Forwarding Configuration

0x248 ETH_CNT_RX_FRAME Ethernet Receiver Module Frame Counter

0x24C ETH_CNT_TX_FRAME Ethernet Transmitter Module Frame Counter

Table 7–51. ETH_RX_STATUS—Ethernet Receiver Module Status—Offset: 0x200 (Part 1 of 2)

Field Bits Access Function Default

RSRV [31:7] UR0 Reserved. 25'h0

rx_ready_block [6] RO Indicates that an 8-word block of Ethernet data is available to be 
transmitted on the Ethernet channel. 1’h0

rx_ready_end [5] RO Indicates the end-of-packet (EOP) is available in the Ethernet Rx 
buffer, ready to be transmitted on the Ethernet channel. 1’h0

rx_length [4:3] RO

Length of the final word in the packet. Values are:

00: 1 valid byte

01: 2 valid bytes

10: 3 valid bytes

11: 4 valid bytes

2’h0

rx_abort [2] RO Indicates the current Ethernet Rx packet is aborted. 1’h0
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rx_eop [1] RO Indicates that the next ready data word contains the end-of-packet 
byte. 1’h0

rx_ready [0] RO Indicates that at least one 32-bit word of Ethernet data is available in 
the Ethernet Rx buffer and ready to be read. 1’h0

Table 7–51. ETH_RX_STATUS—Ethernet Receiver Module Status—Offset: 0x200 (Part 2 of 2)

Field Bits Access Function Default

Table 7–52. ETH_TX_STATUS—Ethernet Transmitter Module Status—Offset: 0x204

Field Bits Access Function Default

RSRV [31:3] UR0 Reserved. 29'h0

tx_ready_block [2] RO Indicates that the Ethernet Tx module is ready to receive an 8-word 
block of data. 1’h0

tx_abort [1] RO Indicates the current Ethernet Tx packet is aborted. 1’h0

tx_ready [0] RO Indicates that the Ethernet Tx module is ready to receive at least one 
32-bit word of data. 1’h0

Table 7–53. ETH_CONFIG_1—Ethernet Feature Configuration 1—Offset: 0x208 (Part 1 of 2)

Field Bits Access Function Default

RSRV [31:20] UR0 Reserved. 11'h0

intr_tx_ready_block_en [19] RW
Indicates an interrupt is generated when 
tx_ready_block is asserted, if intr_en and 
intr_tx_en are asserted.

1’h0

intr_tx_abort_en [18] RW Indicates an interrupt is generated when tx_abort is 
asserted, if intr_en and intr_tx_en are asserted. 1’h0

intr_tx_ready_en [17] RW Indicates an interrupt is generated when tx_ready is 
asserted, if intr_en and intr_tx_en are asserted. 1’h0

intr_rx_ready_block_en [16] RW
Indicates an interrupt is generated when 
rx_ready_block is asserted, if intr_en and 
intr_rx_en are asserted.

1’h0

intr_rx_ready_end_en [15] RW Indicates an interrupt is generated when rx_ready_end is 
asserted, if intr_en and intr_rx_en are asserted. 1’h0

intr_rx_abort_en [14] RW Indicates an interrupt is generated when rx_abort is 
asserted, if intr_en and intr_rx_en are asserted. 1’h0

intr_rx_ready_en [13] RW Indicates an interrupt is generated when rx_ready is 
asserted, if intr_en and intr_rx_en are asserted. 1’h0

intr_tx_en [12] RW Ethernet Tx interrupt enable. 1’h0

intr_rx_en [11] RW Ethernet Rx interrupt enable. 1’h0

intr_en [10] RW Ethernet global interrupt enable. 1’h0

rx_long_frame_en [9] RW Enable reception of Rx Ethernet frames longer than 1536 
bytes. 1’h0

rx_preamble_abort_en [8] RW Indicates that Rx frames with an illegal preamble nibble 
before the SFD are discarded. 1’h0

broadcast_en [7] RW Enable reception of Ethernet broadcast packets. 1’h0

multicast_flt_en [6] RW Enable reception of multicast Ethernet packets allowed by 
the hash function. 1’h0
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mac_check [5] RW Enable check of Rx Ethernet MAC address. 1’h0

length_check [4] RW Indicates that a length check is performed on Rx packets, 
and those with length less than 64 bytes are discarded. 1’h0

mac_reset [3] RW Reset the Ethernet MAC. 1’h1

RSRV [2] RO Reserved. 1’h0

little_endian [1] RW Indicates that the Ethernet channel receive and transmit 
data is formatted in little endian byte order. 1’h0

RSRV [0] RO Reserved. 1'h0

Table 7–53. ETH_CONFIG_1—Ethernet Feature Configuration 1—Offset: 0x208 (Part 2 of 2)

Field Bits Access Function Default

Table 7–54. ETH_CONFIG_2—Ethernet Feature Configuration 2—Offset: 0x20C

Field Bits Access Function Default

RSRV [31:1] UR0 Reserved. 31'h0

crc_enable [0] RW Enables insertion of Ethernet frame check sequence (FCS) at the end 
of the Ethernet frame. 1'h0

Table 7–55. ETH_RX_CONTROL—Ethernet Rx Control—Offset: 0x210

Field Bits Access Function Default

RSRV [31:1] RO Reserved. 31'h0

rx_discard [0] WO Indicates that the Ethernet receiver module should discard the 
current Ethernet Rx frame. 1'h0

Table 7–56. ETH_RX_DATA—Ethernet Rx Data—Offset: 0x214

Field Bits Access Function Default

rx_data [31:0] RO Ethernet Rx frame data. 1'h0

Table 7–57. ETH_RX_DATA_WAIT—Ethernet Rx Data with Wait-State Insertion—Offset: 0x218

Field Bits Access Function Default

rx_data [31:0] RO Ethernet Rx frame data. 1'h0

Table 7–58. ETH_TX_CONTROL—Ethernet Tx Control—Offset: 0x21C (Part 1 of 2)

Field Bits Access Function Default

RSRV [31:4] UR0 Reserved. 28'h0

tx_length [3:2] WO

Length of the final word in the packet. Values are:

00: 1 valid byte

01: 2 valid bytes

10: 3 valid bytes

11: 4 valid bytes

This field is valid when the tx_eop bit is asserted.

2’h0
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tx_discard [1] WO Indicates that the Ethernet transmitter module should discard the 
current Ethernet Tx frame. 1'h0

tx_eop [0] WO
Indicates that the next data word to be written to the ETH_TX_DATA 
or ETH_TX_DATA_WAIT register contains the end-of-packet byte for 
this Tx packet.

1’h0

Table 7–58. ETH_TX_CONTROL—Ethernet Tx Control—Offset: 0x21C (Part 2 of 2)

Field Bits Access Function Default

Table 7–59. ETH_TX_DATA—Ethernet Tx Data—Offset: 0x220

Field Bits Access Function Default

tx_data [31:0] RW
Ethernet Tx frame data. If the tx_ready bit of the ETH_TX_READY 
register is zero when tx_data is loaded, the Ethernet transmitter 
module aborts the packet.

32'h0

Table 7–60. ETH_TX_DATA_WAIT—Ethernet Tx Data with Wait-State Insertion—Offset: 0x224

Field Bits Access Function Default

tx_data [31:0] RW
Ethernet Tx frame data. If the Ethernet transmitter module writes 
Ethernet data to this register, it waits until data is ready, unless the 
CPU times out the operation.

1'h0

Table 7–61. ETH_ADDR_MSB—Ethernet MAC Address MSB—Offset: 0x22C

Field Bits Access Function Default

RSRV [31:16] UR0 Reserved. 16'h0

mac[47:32] [15:0] RW Most significant bits (16 bits) of local Ethernet MAC 
address. 16'h0

Table 7–62. ETH_ADDR_LSB—Ethernet MAC Address LSB—Offset: 0x230

Field Bits Access Function Default

mac[31:0] [31:0] RW Least significant bits (32 bits) of local Ethernet MAC 
address. 32'h0

Table 7–63. ETH_HASH_TABLE—Ethernet Multicast Filtering Hash Table—Offset: 0x234

Field Bits Access Function Default

hash [31:0] RW

32-bit hash table for multicast filtering. If the group 
address bit of the destination MAC address is set, and 
multicast address filtering is enabled, this register 
filters the packets to be accepted and discarded, as 
follows:

If every bit set in this register is also set in the lower 32 
bits of the destination MAC address, the packet is 
accepted. Otherwise, the packet is discarded.

32'h0
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This section lists the HDLC registers. Table 7–67 provides a memory map for the 
HDLC registers. Table 7–68 through Table 7–81 describe the HDLC registers in the 
CPRI IP core.

1 If you turn off the Include HDLC block parameter, your application cannot access the 
HDLC registers. In that case, attempts to access these registers read zeroes and do not 
write successfully, as for a Reserved register address.

For more information about these registers, refer to “Accessing the HDLC Channel” 
on page 4–50.

Table 7–64. ETH_FWD_CONFIG—Ethernet Forwarding Configuration—Offset: 0x244

Field Bits Access Function Default

RSRV [31:17] UR0 Reserved. 15’h0

tx_start_thr [16:1] RW
Transmit start threshold. If store-and-forward mode is disabled, 
transmission to the CPRI link starts when this number of 32-bit 
words are stored in the Tx buffer.

16’h0004

tx_st_fwd [0] RW
Transmit store-and-forward mode. In store-and-forward mode, a 
full packet is stored in the Tx buffer before transmission starts. 
Packets longer than the Tx buffer are aborted.

1'h0

Table 7–65. ETH_CNT_RX_FRAME—Ethernet Receiver Module Frame Counter—Offset: 0x248

Field Bits Access Function Default

eth_cnt_rx_frame [31:0] RO Number of frames received from the CPRI receiver. 32'h0

Table 7–66. ETH_CNT_TX_FRAME—Ethernet Transmitter Module Frame Counter—Offset: 0x24C

Field Bits Access Function Default

eth_cnt_tx_frame [31:0] RO Number of frame transmitted to the CPRI transmitter. 32'h0

Table 7–67. CPRI HDLC Registers Memory Map (Part 1 of 2)

Address Name Expanded Name

0x300 HDLC_RX_STATUS HDLC Receiver Module Status

0x304 HDLC_TX_STATUS HDLC Transmitter Module Status

0x308 HDLC_CONFIG_1 HDLC Feature Configuration 1

0x30C HDLC_CONFIG_2 HDLC Feature Configuration 2

0x310 HDLC_RX_CONTROL HDLC Rx Control

0x314 HDLC_RX_DATA HDLC Rx Data

0x318 HDLC_RX_DATA_WAIT HDLC Rx Data With Wait-State Insertion

0x31C HDLC_TX_CONTROL HDLC Tx Control

0x320 HDLC_TX_DATA HDLC Tx Data

0x324 HDLC_TX_DATA_WAIT HDLC Tx Data With Wait-State Insertion

0x328 HDLC_RX_EX_STATUS HDLC Rx Additional Status
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0x32C HDLC_CONFIG_3 HDLC Feature Configuration 3

0x330 HDLC_CNT_RX_FRAME HDLC Receiver Module Frame Counter

0x334 HDLC_CNT_TX_FRAME HDLC Transmitter Module Frame Counter

Table 7–67. CPRI HDLC Registers Memory Map (Part 2 of 2)

Address Name Expanded Name

Table 7–68. HDLC_RX_STATUS—HDLC Receiver Module Status—Offset: 0x300

Field Bits Access Function Default

RSRV [31:7] UR0 Reserved. 25'h0

rx_ready_block [6] RO Indicates that an eight-word block of HDLC data is available in the 
HDLC Rx buffer to be transmitted on the HDLC channel. 1’h0

rx_ready_end [5] RO Indicates the end-of-packet (EOP) is available in the HDLC Rx buffer, 
ready to be transmitted on the HDLC channel. 1’h0

rx_length [4:3] RO

Length of the final word in the packet. Values are:

00: 1 valid byte

01: 2 valid bytes

10: 3 valid bytes

11: 4 valid bytes

2’h0

rx_abort [2] RO Indicates the current HDLC Rx packet is aborted. 1’h0

rx_eop [1] RO Indicates that the next ready data word contains the end-of-packet 
byte. 1’h0

rx_ready [0] RO Indicates that at least one 32-bit word of HDLC data is available in the 
HDLC Rx buffer. 1’h0

Table 7–69. HDLC_TX_STATUS—HDLC Transmitter Module Status—Offset: 0x304

Field Bits Access Function Default

RSRV [31:3] UR0 Reserved. 29'h0

tx_ready_block [2] RO Indicates that the HDLC Tx module is ready to receive an 8-word block 
of data. 1’h0

tx_abort [1] RO Indicates the current HDLC Tx packet is aborted. 1’h0

tx_ready [0] RO Indicates that the HDLC Tx module is ready to receive at least one 
32-bit word of data. 1’h0

Table 7–70. HDLC_CONFIG—HDLC Feature Configuration 1—Offset: 0x308 (Part 1 of 2)

Field Bits Access Function Default

RSRV [31:20] UR0 Reserved. 11'h0

intr_tx_ready_block_en [19] RW
Indicates an interrupt is generated when 
tx_ready_block is asserted, if intr_en and 
intr_tx_en are asserted.

1’h0

intr_tx_abort_en [18] RW Indicates an interrupt is generated when tx_abort is 
asserted, if intr_en and intr_tx_en are asserted. 1’h0

intr_tx_ready_en [17] RW Indicates an interrupt is generated when tx_ready is 
asserted, if intr_en and intr_tx_en are asserted. 1’h0
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intr_rx_ready_block_en [16] RW
Indicates an interrupt is generated when 
rx_ready_block is asserted, if intr_en and 
intr_rx_en are asserted.

1’h0

intr_rx_ready_end_en [15] RW Indicates an interrupt is generated when rx_ready_end is 
asserted, if intr_en and intr_rx_en are asserted. 1’h0

intr_rx_abort_en [14] RW Indicates an interrupt is generated when rx_abort is 
asserted, if intr_en and intr_rx_en are asserted. 1’h0

intr_rx_ready_en [13] RW Indicates an interrupt is generated when rx_ready is 
asserted, if intr_en and intr_rx_en are asserted. 1’h0

intr_tx_en [12] RW HDLC Tx interrupt enable. 1’h0

intr_rx_en [11] RW HDLC Rx interrupt enable. 1’h0

intr_en [10] RW HDLC global interrupt enable. 1’h0

rx_long_frame_en [9] RW Enable reception of Rx HDLC frames longer than 1536 
bytes. 1’h0

RSRV [8:5] UR0 Reserved. 4’h0

length_check [4] RW Indicates that a length check is performed on Rx packets, 
and those with length less than 64 bytes are discarded. 1’h0

RSRV [3:2] UR0 Reserved. 2’h0

little_endian [1] RW Indicates that the HDLC channel receive and transmit data 
is formatted in little endian byte order. 1’h0

RSRV [0] UR0 Reserved. 1'h0

Table 7–70. HDLC_CONFIG—HDLC Feature Configuration 1—Offset: 0x308 (Part 2 of 2)

Field Bits Access Function Default

Table 7–71. HDLC_CONFIG_2—HDLC Feature Configuration 2—Offset: 0x30C

Field Bits Access Function Default

RSRV [31:1] UR0 Reserved. 31'h0

crc_enable [0] RW Enables insertion of HDLC CRC at the end of the HDLC frame. 1'h0

Table 7–72. HDLC_RX_CONTROL—HDLC Rx Control—Offset: 0x310

Field Bits Access Function Default

RSRV [31:1] RO Reserved. 31'h0

rx_discard [0] WO Indicates that the HDLC receiver module should discard the current 
HDLC Rx frame. 1'h0

Table 7–73. HDLC_RX_DATA—HDLC Rx Data—Offset: 0x314

Field Bits Access Function Default

rx_data [31:0] RO
HDLC Rx frame data. If the HDLC receiver module takes HDLC data 
from this register, if data is not ready when the module expects it, the 
HDLC receiver module aborts the packet.

1'h0
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Table 7–74. HDLC_RX_DATA_WAIT—HDLC Rx Data with Wait-State Insertion—Offset: 0x318

Field Bits Access Function Default

rx_data [31:0] RO
HDLC Rx frame data. If the HDLC receiver module takes HDLC data 
from this register, it inserts wait states on the HDLC channel until 
data is ready, unless the CPU times out the operation.

1'h0

Table 7–75. HDLC_TX_CONTROL—HDLC Tx Control—Offset: 0x31C

Field Bits Access Function Default

RSRV [31:4] UR0 Reserved. 28'h0

tx_length [3:2] RW

Length of the final word in the packet. Values are:

00: 1 valid byte

01: 2 valid bytes

10: 3 valid bytes

11: 4 valid bytes

This field is valid when the tx_eop bit is asserted.

1’h0

tx_discard [1] WO Indicates that the HDLC transmitter module should discard the 
current HDLC Tx frame. 1'h0

tx_eop [0] RW
Indicates that the next data word to be written to the HDLC_TX_DATA 
or HDLC_TX_DATA_WAIT register contains the end-of-packet byte for 
this Tx packet.

1’h0

Table 7–76. HDLC_TX_DATA—HDLC Tx Data—Offset: 0x320

Field Bits Access Function Default

tx_data [31:0] RW
HDLC Tx frame data. If the HDLC transmitter module writes HDLC 
data to this register, if data is not ready when the module expects it, 
the HDLC transmitter module aborts the packet.

1'h0

Table 7–77. HDLC_TX_DATA_WAIT—HDLC Tx Data with Wait-State Insertion—Offset: 0x324

Field Bits Access Function Default

tx_data [31:0] RW
HDLC Tx frame data. If the HDLC transmitter module writes HDLC 
data to this register, it waits until data is ready, unless the CPU times 
out the operation.

1'h0

Table 7–78. HDLC_RX_EX_STATUS—HDLC Rx Additional Status—Offset: 0x328

Field Bits Access Function Default

RSRV [31:7] UR0 Reserved. 25'h0

CRC_error [6] RC Indicates that an HDLC frame with a CRC error was received. 1'h0

RSRV [5:0] UR0 Reserved. 6'h0
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Table 7–79. HDLC_CONFIG_3—HDLC Feature Configuration 3—Offset: 0x32C

Field Bits Access Function Default

RSRV [31:17] UR0 Reserved. 15’h0

tx_start_thr [16:8] RW
Transmit start threshold. If store-and-forward mode is disabled, 
transmission to the CPRI link starts when this number of 32-bit 
words are stored in the Tx buffer.

9’h004

RSRV [7:2] UR0 Reserved. 5’h0

rx_crc_en [1] RW Indicates that CRC checking is enabled. 1'h0

tx_st_fwd [0] RW
Transmit store-and-forward mode. In store-and-forward mode, a 
full packet is stored before transmission starts. Packets longer 
than the Tx buffer are aborted.

1'h0

Table 7–80. HDLC_CNT_RX_FRAME—HDLC Receiver Module Frame Counter—Offset: 0x330

Field Bits Access Function Default

hdlc_cnt_rx_frame [31:0] RO Number of frames received from the CPRI receiver. 32'h0

Table 7–81. HDLC_CNT_TX_FRAME—HDLC Transmitter Module Frame Counter—Offset: 0x334

Field Bits Access Function Default

hdlc_cnt_tx_frame [31:0] RO Number of frame transmitted to the CPRI transmitter. 32'h0
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8. CPRI IP Core Demonstration Testbench
The Altera CPRI IP core includes a demonstration testbench. Depending on your 
CPRI IP core variation, the testbench exercises the data interfaces of the IP core or 
demonstrates autorate negotiation. In some cases your CPRI IP core may include both 
types of testbench.

This chapter describes the testbench that exercises the data interfaces of the IP core. 
For information about the testbench that demonstrates autorate negotiation, refer to 
Appendix C, CPRI Autorate Negotiation Testbench.

The non-autorate negotiation testbench exercises the interfaces you configure in your 
CPRI IP core. It provides an example of how to use the Avalon-MM and Avalon-ST 
interfaces to generate and process CPRI transactions using the MII, MAP, and AUX 
interfaces. The testbench demonstrates HDLC communication in CPRI IP cores that 
instantiate an HDLC block.

1 The testbench is available only if you turn on Generate Example Design when 
prompted during generation of the CPRI IP core. Refer to “Specifying Parameters” on 
page 2–2.

Testbenches are available only for certain CPRI IP core variations. However, the 
Quartus II software provides the identical Generate Example Design prompt in all 
cases.

The non-autorate negotiation testbench exercises only certain synchronization and 
mapping modes. Therefore, certain CPRI IP core instances do not simulate 
successfully with the generated testbench. To ensure your CPRI variation has a 
testbench you can simulate, set the following values in the CPRI parameter editor:

■ Operation mode must have the value of Master.

■ If the IP core variation has a MAP interface, Mapping mode must have the value 
of All or Basic.

■ If the IP core variation has a MAP interface, Enable MAP interface 
synchronization with core clock must be turned off.

Table 8–1 lists the interface configurations the testbench exercises.

Table 8–1. Testbench Supported Interface Configurations

Interface Supported Mode

CPU Single-cycle read and write transactions.

MAP

Basic, FIFO mode only.

SYNC_MAP == 0 (a prerequisite for FIFO mode).

Sampling rate of 3.84 Mbps.

16-bit mode on MAP interface.

Twenty-four or fewer channels.

AUX Supports AUX data masking (to allow simultaneous communication 
on the AUX, CPU, MAP and MI interfaces).
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To generate a testbench that demonstrates autorate negotiation, you must turn on 
Enable auto-rate negotiation and Include MAC block, but turn off Include HDLC 
block and set Number of antenna-carrier interfaces to the value of zero. For 
information about the testbench that supports auto-rate negotiation, refer to 
Appendix C, CPRI Autorate Negotiation Testbench.

The non-autorate negotiation testbench demonstrates the following functions:

■ Writing to the registers

■ Frame synchronization process

■ Transmission and reception of CPRI link data on the AUX interface and on any 
additional data interfaces you configure in the CPRI parameter editor

The testbench initializes the CPRI IP core and sends the generated data to the CPRI IP 
core interfaces listed in Table 8–1. The CPRI IP core’s high-speed transceiver output is 
looped back to its high-speed transceiver input. The testbench module provides 
clocking, reset, and initialization control, and processes to write to and read from the 
IP core’s interfaces. The testbench communicates with the CPRI IP core HDLC block 
through the IP core’s CPU interface. The initialization process requires that the 
testbench module write to the CPRI IP core registers through its CPU interface.

MII Supports enabling of IP core insertion of Ethernet HALT symbol by 
asserting the cpri_mii_txer input signal to the IP core.

HDLC

The HDLC bit rate is 480 Kbps by default. You can change the HDLC 
bit rate by programming the tx_slow_cm_rate field of the 
CPRI_CM_CONFIG register. To program this register field, you must 
edit the generated testbench file to include the register write 
operation.

Table 8–1. Testbench Supported Interface Configurations

Interface Supported Mode

Figure 8–1. CPRI IP Core Demonstration Testbench

Note to Figure 8–1:

(1) CPU and HDLC transactions occur on the Avalon-MM CPU interface of the CPRI IP core.

rxdatain

txdataout

CPRI
IP Core

MAP_N

CPRI
Link

Avalon-MM
Interface

AUX

Altera
Testbench

gxb_txdataout

Avalon-ST
Rx Interface

Avalon-ST
Tx AUX Interface

aux_tx_status_data,
aux_rx_status_data

aux_tx_mask_data Avalon-ST
Rx AUX Interface

Avalon-ST
Tx Interface

MII Interface

gxb_rxdatain

CPU Interface

Reference Clock
CPRI IP Core June 2014 Altera Corporation
User Guide



Chapter 8: CPRI IP Core Demonstration Testbench 8–3
Test Sequence
Test Sequence
The non-autorate negotiation testbench starts by resetting the CPRI IP core. Table 8–2 
lists the frequencies of the clock inputs to the CPRI IP core. 

After coming out of the reset state, the CPRI IP core performs the frame 
synchronization process to establish frame synchronization. 

The testbench then performs the following actions:

■ Sends a predetermined data sequence to the AUX interface, and checks that the 
data appears on the outgoing AUX interface after loopback through the CPRI link.

■ If the IP core includes at least one antenna-carrier interface, the testbench 
generates a sequence of 32-bit words and sends the data sequence to each 
antenna-carrier interface that is enabled.

If at least one antenna-carrier interface is enabled, the testbench then checks that 
the data sent to the mapN interfaces appears on the outgoing antenna-carrier 
interface data channels, after loopback through the CPRI link.

■ If the IP core includes the MI interface, the testbench sends a predetermined data 
sequence to the MII, and checks that the data appears as expected on the outgoing 
MII after loopback through the CPRI link. 

This test also checks the MII handling of the input error indication signal. The 
signal is asserted during parts of the incoming data sequence, and the expected 
output data reflects the correct handling of data in this case. 

■ If the IP core includes an HDLC block, the testbench programs a predetermined 
sequence of data transactions for HDLC communication through the CPU 
interface, and checks that the responses appear as expected in the CPRI IP core 
HDLC registers after data transaction loopback through the CPRI link.

The testbench performs self-checking and outputs the pass/fail results to your 
simulator session or transcript. In addition, the testbench includes simulator files that 
allow you to observe the signals in and out of the CPU interface, AUX interface, 
antenna-carrier interfaces, and MII if relevant.

Table 8–2. Clock Frequencies for CPRI IP Core Under Test

Clock Frequency (MHz)

gxb_refclk

The testbench sets the gxb_refclk frequency according to the 
Transceiver reference clock frequency parameter value in CPRI 
IP core variations that target a 28-nm device, and according to 
Table 4–2 on page 4–10 in all other variations.

cpu_clk
the testbench sets the cpu_clk frequency to match the 
frequency of the output clock cpri_clkout. Refer to Table 4–2 on 
page 4–10.

clk_ex_delay 30.96

mapN_tx_clk
mapN_rx_clk

3.84

reconfig_clk
The testbench sets the reconfig_clk frequency to 100 MHz in 
CPRI IP core variations that target a 28-nm device, and to 50 
MHz in all other variations.
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Reset, Frame Synchronization, and Initialization
The reset sequence is simple—all of the reset signals for the CPRI IP core, except 
gxb_powerdown, are asserted at the beginning of the simulation, are kept high for 500 
gxb_refclk clock cycles, and are then deasserted. The following reset signals are 
asserted:

■ reset

■ reset_ex_delay

■ cpu_reset

■ config_reset

■ mapN_tx_reset for N={0...23}

■ mapN_rx_reset for N={0...23}

Next, the testbench performs basic programming of the CPRI IP core internal 
registers, to allow CPRI communication. Table 8–3 shows the registers that the 
testbench programs. For a full description of each register, refer to Chapter 7, Software 
Interface.

Table 8–3. Testbench Register Settings

Register 
Address Register Name Description Value

0x0058 CPRI_TX_PROT_VER

Set the CPRI protocol version. If the IP core is configured with CPRI 
line rate 3.072 Gbps or lower, the testbench sets this register to the 
value of 0x1 to indicate the transmissions are not scrambled. If the 
IP core is configured with CPRI line rate greater than 3.072 Gbps, 
the testbench sets this register to the value of 0x2 to indicate 
outgoing transmissions are scrambled. 

0x00000001 
or 
0x00000002 
depending 
on the CPRI 
line rate

0x005C CPRI_TX_SCR_SEED
Set the scrambling seed. This register is ignored when 
transmissions are not scrambled. 0x0000000F

0x003C CPRI_EX_DELAY_CONFIG For extended delay measurement, set the N value to decimal 127. 0x0000007F

0x0008 CPRI_CONFIG
Enable CPRI control word insertion, set the CPRI IP core to use 
master clocking mode, set loop_mode to No internal loopback, and 
enable transmission on the CPRI link.

0x00000021

0x0100 CPRI_MAP_CONFIG
If the IP core is configured with a MAP interface, set map_mode to 
basic mapping scheme, set MAP transmiter and receiver 
synchronization mode to FIFO mode, and use 16-bit sample width. 

0x00000000

0x0104 CPRI_MAP_CNT_CONFIG

If the IP core is configured with a MAP interface, set number of 
active data channels and set the oversampling factor to 1 (sampling 
rate is 3.84 MHz). The value depends on the configured number of 
antenna-carrier interfaces.

Depends on 
configured 
values

0x0308 HDLC_CONFIG
If the IP core is configured with an HDLC block, set the HDLC 
communication to little endian format and turn off various other 
HDLC block capabilities.

0x00000000

0x030C HDLC_CONFIG_2
If the IP core is configured with an HDLC block, enable CRC 
insertion in the HDLC frames the IP core transmits. 0x00000001

0x032C HDLC_CONFIG_3
If the IP core is configured with an HDLC block, set the HDLC TX 
logic in store-and-forward mode. 0x00000001
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When frame synchronization completes, the value on the cpri_rx_state output port 
(bits [1:0] of the extended_rx_status_data bus) is 0x3 and the value on the 
cpri_rx_cnt_sync port (bits [4:2] of the extended_rx_status_data bus) is 0x1. 
Following the appearance of these values, the value of the cpri_rx_hfn_state output 
signal transitions to value 1, and then value of the cpri_rx_bfn_state output signal 
transitions to value 1. When these values appear in the waveform display, the CPRI 
link is up and ready to receive and send data.

Running the Testbench
This section describes how to run the CPRI IP core non-autorate negotiation 
testbench. For information about how to run the autorate negotiation testbench, refer 
to Appendix C, CPRI Autorate Negotiation Testbench.

To run the CPRI IP core non-autorate negotiation testbench, perform the following 
steps:

1. In the Quartus II software, create a project using the New Project Wizard on the 
File menu. 

2. Generate your CPRI IP core variation. When you are prompted to generate an 
example design, you must turn on Generate Example Design and click Generate.

3. Close your Quartus II project.

4. Open the project <variation>_testbench/altera_cpri/generate_sim.qpf.

5. On the Tools menu, click Tcl Scripts and select generate_sim_verilog.tcl or 
generate_sim_vhdl.tcl to generate a Verilog (.vo) or VHDL (.vho) simulation 
model.

6. To compile and run the testbench, perform one of the following steps:

■ To compile and run the testbench using the Mentor Graphics ModelSim or 
Aldec Riveria-PRO simulator, follow these steps:

i. Start a simulator session.

ii. In the simulator, change directory to the working directory subdirectory 
<variation>_testbench/altera_cpri/cpri_testbench/<simulator>_sim.

iii. Type do compile.tcl

■ To compile and run the testbench using the Synopsys VCS or Cadence NCSIM 
simulator, change directory to the working directory subdirectory 
<variation>_testbench/altera_cpri/cpri_testbench/<simulator>_sim and type 
sh compile.sh.

The input to and subsequent output data from each of the AUX, mapN, and MI 
interfaces is visible in the waveform for testbenches that have the relevant interface.
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A. Initialization Sequence
This appendix describes the most basic initialization sequence for an Altera CPRI IP 
core.

To initialize the CPRI IP core, perform the following steps:

1. To configure the Altera FPGA with your design, download your .sof file to the 
FPGA.

2. Perform the following two actions simultaneously:

■ Perform a global CPRI IP core reset by asserting the following reset signals 
simultaneously, holding them asserted for at least three cycles of the slowest 
associated clock, and deasserting each as soon as possible thereafter:

■ config_reset

■ cpu_reset

■ reset

■ reset_ex_delay

■ mapN_rx_reset, for the appropriate values of N

■ mapN_tx_reset, for the appropriate values of N

■ To reset, power down, and power back up the high-speed transceiver in 
variations that include an ALTGX IP core, assert the gxb_powerdown signal. This 
signal is not available in variations that target an Arria V, Cyclone V, or 
Stratix V device. 

3. Write the value 0x21 to the CPRI_CONFIG register (0x8). This CPRI_CONFIG register 
setting enables the CPRI IP core to start sending K28.5 symbols on the CPRI link.

4. Observe the cpri_rx_state output signal as it transitions from value 0x0 to value 
0x2 to value 0x3. When it has value 0x3, and the cpri_rx_cnt_sync output signal 
has value 0x1, the CPRI IP core CPRI receiver interface is in the HFNSYNC state. 
The cpri_rx_state output signal appears on extended_rx_status_data[1:0] and 
the cpri_rx_cnt_sync output signal appears on extended_rx_status_data[4:2].

5. Observe the cpri_rx_hfn_state output signal as it transitions to value 1. When it 
has value 1, the hyperframe number is initialized. The cpri_rx_hfn_state output 
signal appears on extended_rx_status_data[7].

6. Observe the cpri_rx_bfn_state output signal as it transitions to value 1. When it 
has value 1, the basic frame number is initialized. The cpri_rx_bfn_state output 
signal appears on extended_rx_status_data[6].

The CPRI IP core can now receive and transmit data on the CPRI link, on the 
antenna-carrier interfaces, and on the auxiliary AUX interface.

To access the registers, the system requires an Avalon-MM master, for example a 
Nios II processor. The Avalon-MM master can program these registers.
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B. Implementing CPRI Link Autorate
Negotiation
The CPRI IP core supports autorate negotiation. This feature allows you to specify 
that the CPRI IP core should determine the CPRI line rate at startup dynamically, by 
stepping down to successively slower line rates if the low-level receiver cannot 
achieve frame synchronization with the current line rate. You can provide input to the 
low-level CPRI protocol interface receiver to implement this capability in your design, 
with the help of logic connected outside the CPRI IP core. 

If you configure your CPRI IP core for autorate negotiation, the IP core includes two 
output status signals and a register to collect the status information, in addition to the 
internal support to change CPRI line rate according to your design’s input to the 
transceiver dynamic reconfiguration block. In Cyclone IV GX designs, the external 
logic must also provide line rate information to the ALTPLL_RECONFIG IP core 
connected to the transceiver.

This appendix describes the steps you must follow and the external logic you must 
include in your design to implement CPRI line rate auto-negotiation.

Design Implementation
To use the autorate negotiation feature, you must perform the following actions:

■ In the CPRI parameter editor, enable autorate negotiation.

■ In the CPRI parameter editor, set the transceiver to run at the highest CPRI line 
rate this device family supports.

■ Include additional external data and logic in your design, such as the following 
required data and logic:

■ Input data to the ALTGX_RECONFIG IP core, or Altera Transceiver 
Reconfiguration Controller for Arria V, Cyclone V, and Stratix V devices, for 
each CPRI line rate to be checked. Refer to Figure B–1 and Figure B–2.

■ Logic to modify the frequency of the usr_pma_clk and usr_clk input clocks in 
Arria V GT variations configured with a CPRI line rate of 9.8304 Gbps. Refer to 
“Autorate Negotiation From 9.8304 Gbps in Arria V GT Variations” on 
page B–4.

■ In Arria V GX and Arria V GT variations, if autorate negotiation involves a CPRI 
line rate of 4915.2 Mbps or higher, you must configure the Transceiver 
Reconfiguration Controller to perform duty cycle calibration. Refer to Dynamic 
Reconfiguration in Arria V Devices.

■ For Cyclone IV GX devices, you must implement logic to perform autorate 
negotiation by reconfiguring the transceiver directly, using the required 
ALTGX_RECONFIG IP core. Refer to Figure B–1 and Figure B–2.

In Cyclone IV GX devices, autorate negotiation is implemented by performing 
scan-chain based PLL reconfiguration of the MPLL associated with the relevant 
transceiver channel. Designs that target a Cyclone IV GX device therefore require an 
ALTPLL_RECONFIG IP core to perform PLL reconfiguration of the MPLL.
CPRI IP Core
User Guide

http://www.altera.com.my/literature/hb/arria-v/av_53007.pdf
http://www.altera.com.my/literature/hb/arria-v/av_53007.pdf


B–2 Appendix B: Implementing CPRI Link Autorate Negotiation
Design Implementation
f For information about the Cyclone IV GX transceiver blocks and MPLLs, refer to 
volume 2 of the Cyclone IV Device Handbook. For information about the 
ALTPLL_RECONFIG IP core, refer to the Phase-Locked Loops Reconfiguration 
(ALTPLL_RECONFIG) IP core User Guide.

Figure B–1 and Figure B–2 show example autorate negotiation logic block diagrams 
for CPRI IP cores in slave clocking mode and master clocking mode, respectively. The 
diagrams show all the potential CPRI line rates for an Arria II GX, Arria II GZ, 
Arria V GX, or Stratix IV GX device. However, if you remove the options for the two 
highest CPRI line rates, the examples are functional for Cyclone IV GX and 
Cyclone V GX devices. If you add an option for the 9.8 Gbps CPRI line rate, the 
example is functional for a Stratix V, Arria V GT, or Arria V GZ device. The examples 
clarify the functionality provided by the CPRI IP core, and the logic and data you 
must configure in your design outside the CPRI IP core.

Figure B–1. Autorate Negotiation in Slave Clocking Mode

Notes for Figure B–1:

(1) Optional clock switching logic determines the value of gxb_refclk, depending on the desired transceiver frequency setting.
(2) You must reset the cleanup PLL configuration for different incoming and outgoing clock frequencies when the CPRI line rate changes.
(3) The number of ROMs and the rate requirements are design dependent.
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Configuring the CPRI IP Core for Autorate Negotiation
To ensure that the CPRI IP core implements autorate negotiation correctly, while 
configuring your CPRI IP core, enable autorate negotiation and set the CPRI line rate 
to the maximum line rate the device family supports.

Running Autorate Negotiation
After your CPRI IP core is configured on the device, the autorate negotiation logic you 
configured in your design outside the CPRI IP core must perform certain steps to 
activate the autorate negotiation support logic in the CPRI IP core. This section 
describes these steps.

To start autorate negotiation in your CPRI IP core, in addition to its own initialization 
outside the CPRI IP core, your hardware and software must perform the following 
steps:

1. Confirm that the i_datarate_en bit of the AUTO_RATE_CONFIG register is set to 1. 
The AUTO_RATE_CONFIG register is described in Table 7–21 on page 7–11. You can 
read this value on the datarate_en output signal.

Figure B–2. Autorate Negotiation in Master Clocking Mode

Notes for Figure B–2:

(1) Optional clock switching logic determines the value of gxb_refclk, depending on the desired transceiver frequency setting.
(2) The number of ROMs and the rate requirements are design dependent.
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Autorate Negotiation From 9.8304 Gbps in Arria V GT Variations
2. Set the logic that feeds the gxb_refclk input to the CPRI IP core to the correct 
value for the next CPRI line rate at which you want to try to achieve frame 
synchronization.

3. Configure the ALTGX_RECONFIG IP core, or the Altera Transceiver 
Reconfiguration Controller for Arria V, Cyclone V, and Stratix V variations, with 
the .mif file for the desired CPRI line rate. In Arria V, Cyclone V, and Stratix V 
variations, alternatively, you can perform direct writes in streamer-based 
reconfiguration mode.

4. For a Cyclone IV GX device, configure the ALTPLL_RECONFIG IP core with the 
.mif file for the desired CPRI line rate, by performing the following steps:

a. Assert the write_from_rom input signal to the ALTPLL_RECONFIG IP core. The IP 
core busy output signal is asserted and remains asserted while the IP core 
writes to the scan cache.

b. After the IP core busy output signal is deasserted, assert the IP core reconfig 
signal. While PLL reconfiguration is in progress, the busy signal is again 
asserted.

c. After the CPRI IP core pll_reconfig_done signal is deasserted, assert the IP 
core reset_rom_address signal.

5. Set the i_datarate_set field of the AUTO_RATE_CONFIG register to the correct value 
for the next CPRI line rate at which you want to try to achieve frame 
synchronization.

6. Confirm the field is set by monitoring the datarate_set output signal.

7. Optionally, to enable confirmation of frame synchronization at the new CPRI line 
rate, reset the tx_enable bit of the CPRI_CONFIG register to 0.

The frame synchronization machine shown in Figure 4–27 on page 4–56 attempts 
to achieve frame synchronization at the specified CPRI line rate.

8. If you reset the tx_enable bit of the CPRI_CONFIG register in step 7, after 
extended_rx_status_data[1:0] changes value to 0x1, set the tx_enable bit of the 
CPRI_CONFIG register. 

The value 0x3 on the extended_rx_status_data[1:0] signal confirms that the 
CPRI receiver has achieved frame synchronization. 

Autorate Negotiation From 9.8304 Gbps in Arria V GT Variations
CPRI IP core variations that target an Arria V GT variation and that are configured 
with the CPRI line rate of 9.8304 Gbps have additional requirements for autorate 
negotiation.

In these variations, you must modify the frequency at which you drive the usr_clk 
and usr_pma_clk input clocks to the IP core. The frequency depends on your target 
CPRI line rate. These input clocks are not present in variations that target other 
devices or that are configured in the CPRI parameter editor with different CPRI line 
rates.
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Autorate Negotiation From 9.8304 Gbps in Arria V GT Variations
Table B–1 lists the frequencies at which you must drive the usr_clk and usr_pma_clk 
input clocks in these CPRI IP core variations.

If your CPRI IP core Arria V GT variation is configured with the 9.8304 Gbps CPRI 
line rate, it cannot negotiate down to a CPRI line rate of 0.6144 Gbps.

Table B–1. usr_ck and usr_pma_clk Frequencies at Different Target CPRI Line Rates

Target CPRI Line Rate (Gbps)
Frequency (MHz)

usr_clk usr_pma_clk

9.8304 245.76 122.88

6.144 153.6 76.8

4.9152 122.88 61.44

3.0720 76.8 153.6

2.4576 61.44 122.88

1.2288 30.72 61.44
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C. CPRI Autorate Negotiation Testbench
The CPRI IP core supports an autorate negotiation testbench. The testbench 
implements the external logic described in Appendix B, Implementing CPRI Link 
Autorate Negotiation and demonstrates autorate negotiation between the 0.6144 
Gbps and the 1.2288 Gbps CPRI line rates or between the 6.144 Gbps and the 9.8304 
Gbps line rates, depending on the CPRI IP core variation.

1 The autorate negotiation testbench requires that you compile with two different data 
rates, to generate the .mif files for two CPRI line rates, before you can simulate. This 
chapter includes instructions to generate the required .mif files and simulate the 
testbench.

The autorate negotiation testbench is available only for certain CPRI IP core 
variations. To generate this testbench, you must turn on Enable auto-rate negotiation 
and Include MAC block, but turn off Include HDLC block and set Number of 
antenna-carrier interfaces to the value of zero. Refer to Table C–3 on page C–5.

The autorate negotiation testbench demonstrates the following CPRI IP core 
functions:

■ Writing to the registers

■ Frame synchronization process

■ Autorate negotiation of CPRI line rate

Table C–1 lists the figures that show the autorate negotiation testbenches for the 
various device families.

Table C–1. Figures Illustrating Autorate Negotiation Testbench for Different CPRI IP Core Variations

CPRI IP Core Description Figure

Stratix IV GX variation Figure C–1

Cyclone IV GX variation Figure C–2

Arria V, Cyclone V, or Stratix V variation Figure C–3

Arria V GT variation configured at CPRI line rate of 9.8 Gbps Figure C–4
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Figure C–1. CPRI IP Core Autorate Negotiation Demonstration Testbench for Stratix IV GX Variations

rxdatain

txdataout

Reference Clock

cpri_clkout

CPRI
DUT

CPRI
Link

Avalon-MM
Interface

Altera
Testbench

gxb_txdataout

gxb_rxdatain

CPU Interface

tb_altera_cpri_autorate

altgx_reconfig

ROM_614M

ROM_1288M

Figure C–2. CPRI IP Core Autorate Negotiation Testbench for Cyclone IV GX Variations
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Figure C–3. CPRI IP Core Default Autorate Negotiation Testbench for 28-nm Device Variations
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Figure C–4. CPRI IP Core Autorate Negotiation Testbench for Arria V GT 9.8 Gbps Variations
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Test Sequence
The testbench starts by resetting the CPRI IP core. Table C–2 lists the frequencies of 
the clock inputs to the CPRI IP core.

After the CPRI IP core comes out of the reset state, the testbench programs the 
CPRI_CONFIG register and various other IP core registers for the appropriate 
functionality. The CPRI IP core starts the frame synchronization process to detect the 
presence of a partner and establish frame synchronization. 

When frame synchronization completes, the value on the cpri_rx_state output port 
(bits [1:0] of the extended_rx_status_data bus) is 0x3 and the value on the 
cpri_rx_cnt_sync port (bits [4:2] of the extended_rx_status_data bus) is 0x1. 
Following the appearance of these values, the value of the cpri_rx_hfn_state output 
signal transitions to value 1, and then value of the cpri_rx_bfn_state output signal 
transitions to value 1. When these values appear in the waveform display, the CPRI 
link is up and ready to receive and send data.

The testbenches then perform autorate negotiation. The individual testbenches 
attempt autorate negotiation, and successfully negotiate, at the following CPRI line 
rates:

■ Stratix IV GX and Cyclone IV GX variations:

a. Achieve BFN synchronization at 0.6144 Gbps, then lose it.

b. Attempt autorate negotiation to 1.2288 Gbps; succeed at 1.2288 Gbps.

c. Lose synchronization.

d. Attempt autorate negotiation to 0.6144 Gbps; succeed at 0.6144 Gbps.

■ Most Arria V, and all Cyclone V and Stratix V variations: 

a. Achieve BFN synchronization at 1.2288 Gbps, then lose it.

b. Attempt autorate negotiation to 0.6144 Gbps; succeed at 0.6144 Gbps.

■ Arria V GT variations configured at CPRI line rate 9.8 Gbps:

a. Achieve BFN synchronization at 9.8304 Gbps, then lose it.

b. Attempt autorate negotiation to 6.144 Gbps; succeed at 6.144 Gbps. 

Refer to Appendix B, Implementing CPRI Link Autorate Negotiation for details.

Table C–2. Clock Frequencies for CPRI IP Core Under Test

Clock
Frequency (MHz)

Arria V GT 9.8 Gbps autorate negotiation testbench All other autorate negotiation testbenches

gxb_refclk 122.88 61.44

usr_clk 245.76 —

usr_pma_clk 122.88 —

cpu_clk 30.72 30.72

clk_ex_delay 30.96 30.96

mapN_tx_clk 3.84 3.84
CPRI IP Core June 2014 Altera Corporation
User Guide



Appendix C: CPRI Autorate Negotiation Testbench C–5
Running the Autorate Negotiation Testbench
Running the Autorate Negotiation Testbench
To run the CPRI IP core autorate negotiation testbench, perform the following steps:

1. In the Quartus II software, create a project using the New Project Wizard on the 
File menu. Name the project cpri_top_level. If you change this name you must edit 
the testbench simulation .tcl file. The project targets the same device as your 
intended DUT. Refer to Table C–3. 

2. Generate the CPRI IP core initial variation with the properties shown in Table C–3. 

For all 28-nm device variations (the autorate negotiation testbenches for which 
you deliberately simulate the DUT with the wrong example design files to force 
the DUT to perform autorate negotiation), when you are prompted to generate an 
example design, you must turn on Generate Example Design and click Generate.

1 For the Stratix IV GX and Cyclone IV GX autorate negotiation testbenches, 
turn off Generate Example Design before you click Generate. The initial 
variation you generate is not the variation with which you run the 
testbench. For these two testbenches, you run simulation with the example 
design that you generate together with the DUT.

Table C–3. Parameter Values for Autorate Negotiation Testbench Initial Variation

Parameter Value

Device family Stratix IV GX, Cyclone IV GX, Arria V, Cyclone V, or 
Stratix V

Language VHDL

File name (1) <working directory>\cpri_top_level

Operation mode Master (2)

Line rate

Stratix IV GX and Cyclone IV GX variations: 1.2288 Gbps

Arria V GT variations for 9.8 Gbps autorate negotiation: 
6.144 Gbps

All other Arria V, Cyclone V, and Stratix V variations: 
0.6144 Gbps

Enable auto-rate negotiation On

Transceiver reference clock frequency
(Arria V, Cyclone V, and Stratix V 
variations only)

Arria V GT variations for 9.8 Gbps autorate negotiation: 
122.88 MHz 

All other 28-nm variations: 61.44 MHz

Include MAC block On

Include HDLC block Off

Number of antenna-carrier interfaces 0

Notes to Table C–3:

(1) If you use a different path or file name, you must edit the simulation script to refer to the correct file for the DUT.
(2) Altera does not support an example testbench for an RE slave DUT. 
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3. If you are running the testbench for a Stratix IV GX or Cyclone IV GX variation, 
you must generate the appropriate Memory Initialization Files (.mif) to configure 
the altgx_reconfig block. If you are running the testbench for a Cyclone IV GX 
variation, the following steps also generate the appropriate .mif files to configure 
the altpll_reconfig block. To generate the files, perform the following steps:

a. On the Assignments menu, click Settings.

b. In the Settings dialog box, under Category, click Fitter Settings.

c. Click More Settings.

d. Turn on Generate GXB Reconfig MIF by clicking in the Setting column and 
selecting On.

e. Click OK.

f. Click Apply.

g. Click OK.

h. On the Processing menu, click Start Compilation. 

After compilation completes, the following newly generated .mif files are 
available, depending on your target device: 
reconfig_mif/stratix4gx_<rate>_m.mif, cyclone4gx_<rate>_m_rx_pll1.mif, 
cyclone4gx_<rate>_m_tx_pll0.mif, reconfig_mif/cyclone4gx_<rate>_m.mif.

i. In the paramter editor, edit the existing CPRI IP core variation, change its data 
rate to 0.6144 Gbps, and regenerate to create the DUT. When you are prompted 
to generate an example design, turn on Generate Example Design and click 
Generate. You run the testbench with this variation.

j. Repeat step h. A new set of .mif files is generated for the new data rate.

k. Move all of the .mif files from the working directory (the .mif files to configure 
the altpll_reconfig block are the only .mif files in this directory) to the 
reconfig_mif subdirectory, <working dir>/reconfig_mif.

4. If you are running the default autorate negotiation testbench for 28-nm device 
variations, full compilation automatically generates the appropriate Memory 
Initialization Files (.mif) to configure the Altera Transceiver Reconfiguration 
Controller. However, you must perform the full compilation at the 0.6144 Gbps 
CPRI line rate, to generate the .mif for the lower line rate, before you run the 
testbench at the 1.2288 Gbps line rate. 

Altera recommends that you compile Arria V, Cyclone V, and Stratix V designs 
with the 64-bit Quartus II software.

To generate the .mif and prepare for simulation, perform the following steps:

a. On the Processing menu, click Start Compilation. 

After compilation completes, the newly generated .mif files 
inst_xcvr_channel.mif and inst_xcvr_txpll0.mif are available in the 
reconfig_mif subdirectory of the project.
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b. In the parameter editor, edit the existing CPRI IP core variation, change its 
CPRI line rate to 1.2288 Gbps, and regenerate to create the DUT. When you are 
prompted to generate an example design, turn off Generate Example Design 
and click Generate. 

1 Do not generate the example design for the 1.2288 Gbps variation. When 
you run the testbench, you simulate the testbench you generated for the 
0.6144 Gbps initial variation with the 1.2288 Gbps DUT. This combination 
forces the DUT to perform autorate negotiation to synchronize with the 
testbench.

c. In the parameter editor, generate an Altera Transceiver Reconfiguration 
Controller (Interfaces > Transceiver PHY > Transceiver Reconfiguration 
Controller v13.1) in the file xcvr_reconfig_cpri.vhd, with Enable channel/PLL 
reconfiguration turned on.

d. Copy the new <working directory>/xcvr_reconfig_cpri_sim directory into 
<working directory>/cpri_top_level_testbench/altera_cpri/autorate_design.

5. If you are running the testbench for an Arria V GT 9.8 Gbps variation, full 
compilation automatically generates the appropriate Memory Initialization Files 
(.mif) to configure the Altera Transceiver Reconfiguration Controller. However, 
you must perform the full compilation at the 6.144 Gbps CPRI line rate, to 
generate the .mif for the lower line rate, before you run the testbench at the 
9.8304 Gbps line rate. 

Altera recommends that you compile Arria V designs with the 64-bit Quartus II 
software.

To generate the .mif and prepare for simulation, perform the following steps:

a. On the Processing menu, click Start Compilation. 

After compilation completes, the newly generated .mif files 
inst_xcvr_channel.mif and inst_xcvr_txpll0.mif are available in the 
reconfig_mif subdirectory of the project. 

b. In the parameter editor, edit the existing CPRI IP core variation, change its 
CPRI line rate to 9.8304 Gbps, and regenerate to create the DUT. When you are 
prompted to generate an example design, turn off Generate Example Design 
and click Generate. 

1 Do not generate the example design for the 9.8304 Gbps variation. When 
you run the ArriaV GT 9.8 Gbps autorate negotiation testbench, you 
simulate the testbench you generated for the 6.144 Gbps initial variation 
with the 9.8304 Gbps DUT. This combination forces the DUT to perform 
autorate negotiation to synchronize with the testbench.

c. In the parameter editor, generate an Altera Transceiver Reconfiguration 
Controller (Interfaces > Transceiver PHY > Transceiver Reconfiguration 
Controller v13.1) in the file xcvr_reconfig_cpri.vhd, with Enable channel/PLL 
reconfiguration turned on.

d. Copy the new <working directory>/xcvr_reconfig_cpri_sim directory into 
<working directory>/cpri_top_level_testbench/altera_cpri/autorate_design.
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6. If you are using the ModelSim SE or ModelSim AE simulator, turn off simulation 
optimization by performing the following steps:

a. In the ModelSim simulator, on the Compile menu, click Compile Options. The 
Compiler Options dialog box appears.

b. Perform one of the following actions:

i. If you are using the ModelSim SE simulator, on the VHDL tab and on the 
Verilog & System Verilog tab, turn off Use vopt flow and turn on Disable 
optimizations by using -O0.

ii. If you are using the ModelSim AE simulator, on the VHDL tab and on the 
Verilog & System Verilog tab, turn on Disable optimizations by using 
-O0.

c. Click Apply.

d. Click OK.

7. If you are using the Synopsys VCS MX simulator, perform the following steps:

a. Copy the file synopsys_sim.setup from the 
<working dir>/cpri_top_level_sim/synopsys/vcsmx directory to the 
<working dir>/cpri_top_level_testbench/altera_cpri/autorate_design/synopsy
s directory.

b. If you are running either of the 28-nm device variation testbenches, open the 
file 
<working dir>/cpri_top_level_testbench/altera_cpri/autorate_design/synopsy
s/synopsys_sim.setup in a text editor and add the xcvr_reconfig_cpri library 
path to the file by copying in the following command line from the file 
<working dir>/cpri_top_level_testbench/altera_cpri/autorate_design/xcvr_rec
onfig_cpri_sim/synopsys/vcsmx/synopsys_sim.setup:

xcvr_reconfig_cpri: ./libraries/xcvr_reconfig_cpri/

8. If you are using the Cadence NCSIM simulator, perform the following steps:

a. Copy the directory cds_libs and the files cds.lib and hdl.var from the 
<working dir>/cpri_top_level_sim/cadence directory to the 
<working dir>/cpri_top_level_testbench/altera_cpri/autorate_design/cadence 
directory.

b. If you are running either of the 28-nm device variation testbenches, open the 
file 
<working dir>/cpri_top_level_testbench/altera_cpri/autorate_design/autorate
_design/cadence/cds.lib in a text editor and add the xcvr_reconfig_cpri library 
path to the file by copying in the following command line from the file 
<working dir>/cpri_top_level_testbench/altera_cpri/autorate_design/xcvr_rec
onfig_cpri_sim/cadence/cds.lib:

DEFINE xcvr_reconfig_cpri ./libraries/xcvr_reconfig_cpri/

c. If you are running either of the 28-nm device variation testbenches, copy the 
file xcvr_reconfig_cpri.cds.lib from the 
<working dir>/cpri_top_level_sim/cadence/cds_libs directory to the 
<working dir>/cpri_top_level_testbench/altera_cpri/autorate_design/xcvr_rec
onfig_cpri_sim/cadence/cds_libs directory. 
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9. To compile and run the appropriate testbench for the DUT you generated in step 2, 
step 3, or step 4, perform one of the following sets of instructions, depending on 
your target simulator:

■ To compile and run the testbench using the ModelSim or Aldec Riviera-PRO 
simulator, start a simulator session and, in the simulator, type the following 
commands:

cd <working 
dir>/<variation>_testbench/altera_cpri/autorate_design/<vendor>_sim 
r
do compile.tcl [<family> <HDL>] <vendor> r
The <vendor> parameter has following valid values: mentor, aldec

The <family> and <HDL> parameters have the following valid values:

<family>: aiigx, aiigz, sivgx, civgx, av, avgt, avgz, cv, sv

<HDL>: vhd, vlg

■ To compile and run the testbench using the Synopsys VCS or Cadence NCSIM 
simulator, type the following command sequence: 

cd <working 
dir>/<variation>_testbench/altera_cpri/autorate_design/<vendor>_sim 
r
sh compile.sh [ –<family_code> <HDL_code>] r 
The <vendor> parameter designates the appropriate simulator vendor name, 
synopsys or cadence. Table C–4 shows the valid values for the <family_code> 
and <HDL_code> parameters.

Table C–4. Parameter Values for Synopsys and Cadence Simulator Testbench Commands

Parameter Value Meaning

<family_code>

0 Stratix IV device family

3 Cyclone IV GX device family

4 Stratix V device family

5

Arria V (GX or GT) device family, if running 
a testbench other than the testbench for 
variations configured at a CPRI line rate of 
9.8304 Gbps

6 Cyclone V GX device family

7 Arria V GZ device family

8
Arria V GT device family, if running the 
testbench for variations configured at a 
CPRI line rate of 9.8304 Gbps

<HDL_code>
0 VHDL

1 Verilog HDL
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D. Advanced AxC Mapping Modes
The advanced AxC mapping modes are implemented when map_mode has value 2’b01, 
2’b10, or 2’b11 (and you specify All as the value for Mapping mode(s) in the CPRI 
parameter editor), or if you specify Advanced 1, Advanced 2, or Advanced 3 as the 
value for Mapping mode(s) in the CPRI parameter editor. In these modes, different 
data channels can use different sample rates, and the sample rates need not be integer 
multiples of 3.84 MHz. However, all data channels use the same sample width. 

1 Altera recommends that you use sample rates that are integer multiples of 3.84 MHz. 
However, for implementing the WiMAX protocol, Altera recommends that you use 
the exact WiMAX input sample rates. WiMAX applications require that your CPRI IP 
core implement an advanced AxC mapping mode.

The CPRI IP core supports the following advanced AxC mapping modes:

■ When map_mode has the value of 2’b01 or 2’b11 (Advanced 1 or Advanced 3), AxC 
mapping conforms to Method 1: IQ Sample Based, described in Section 4.2.7.2.5 of 
the CPRI V4.2 Specification.

■ When map_mode has the value of 2’b10 (Advanced 2), AxC mapping conforms to 
Method 3: Backward Compatible, described in Section 4.2.7.2.7 of the CPRI V4.2 
Specification.

For a list of the standards supported by the various advanced mapping modes, refer 
to Table 3–2 on page 3–5.

Backward Compability
The CPRI IP core supports one new advanced mapping mode in the Quartus II 
software 11.1 and later releases. To support the new advanced mapping mode, 
advanced mapping mode encodings changed in the Quartus II software 11.1 release. 
Table D–1 shows the correspondence between the advanced mapping mode map_mode 
encodings in the software 11.1 and later releases and the encodings in previous 
software releases. The 2’b01 encoding has a different meaning in the software 11.1 and 
later releases than in previous releases.

Table D–1. Advanced Mapping Mode map_mode Encodings in Software Releases

Mode CPRI Parameter Editor 
Mapping mode(s) Value

map_mode Encoding

In Quartus II Software 
Releases 11.1 and Later

 In Quartus II Software 
Release

11.0 and Earlier

New implementation of 
Method 1: IQ Sample Based Advanced 1 2’b01 —

Conforms to Method 3: 
Backward Compatible Advanced 2 2’b10 2’b10

Conforms to Method 1:
IQ Sample Based Advanced 3 2’b11 2’b01
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All of the advanced AxC mapping modes comply with the description in Section 
4.2.7.2.4 of the CPRI V4.2 Specification. Advanced mapping modes 01 and 11 comply 
with two different interpretations of Section 4.2.7.2.5. Advanced mapping mode 11 is 
available in Quartus II software releases prior to release 11.1 as advanced mapping 
mode 01, and the current advanced mapping mode 01 is new in the Quartus II 
software release 11.1. 

In the Advanced 1 and Advanced 2 mapping modes, each IQ data sample is 
considered a different AxC container, for backward compatibility with earlier 
versions of the CPRI specification. However, multiple consecutive 32-bit words in the 
same frame may contain data samples from or for the same AxC interface. In other 
words, data to or from the same AxC interface may appear in consecutive timeslots, 
even though these IQ data samples are considered individual AxC containers. IQ data 
samples do not span frames. Spare bytes not assigned to an AxC container become 
reserved bits. These reserved bits are located at the end of the basic frame. 

Advanced Mapping Mode Similarities and Differences
This section describes the similarities and differences between the different advanced 
mapping modes. In each advanced mapping mode, the behavior is different in the 
15-bit and 16-bit modes. Figure D–1 on page D–4 illustrates an example in this section 
that describes the differences between the advanced mapping modes in 15-bit mode, 
and Figure D–2 on page D–5 illustrates an example of the supported advanced 
mapping modes in 16-bit mode.

In the advanced mapping modes, AxC containers are packed in the IQ data block in a 
flexible position (Option 2), as illustrated in Section 4.2.7.2.3 of the CPRI V4.2 
Specification. Configuration tables define the mapping of AxC containers to offsets in 
the AxC interface timeslots. 

You specify the flexible position of the start of an AxC container in its timeslot using 
the Rx and Tx mapping tables. You configure the Rx and Tx mapping tables through 
the CPU interface. You can configure one mapping table entry at a time. The table 
index specified in the map_conf_index field of the CPRI_MAP_TBL_INDEX register 
determines the Rx and Tx mapping table entries that appear in the CPRI_MAP_TBL_RX 
and CPRI_MAP_TBL_TX registers, respectively.The CPRI_MAP_TBL_RX register holds the 
currently configurable entry in the Rx mapping table, and the CPRI_MAP_TBL_TX 
register holds the currently configurable entry in the Tx mapping table. You must 
configure these tables prior to data transmission on the MAP interface, otherwise data 
loss may occur.

Each table entry corresponds to an IQ data sample in one AxC container block. Each 
table entry has an enable bit and a field in which to specify the AxC interface number 
for the current IQ data sample, in addition to a position field which specifies the 
starting bit position of the IQ sample in the timeslot — the current 32-bit word on the 
AxC interface — and a width field to specify the number of bits in the current data 
sample.

The application can specify an offset for the start of an AxC container in a timeslot; the 
position field of the table entry that corresponds to the timeslot in which that AxC 
container begins transmission (in the CPRI Rx direction) or appears on the data 
channel (in the CPRI Tx direction), holds this offset. The offset is specified in bits.
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1 Some table entries are not available, depending on the CPRI line rate and on K. In the 
example illustrated in Figure D–2, the table entries 7 and 15 are not available.

In 16-bit mode in all advanced mapping modes, and in 15-bit mode in advanced 
mapping mode 2’b01, you can use the width field to specify the size of the sample that 
starts in the bit position indicated in the position field, allowing you to pack a second 
sample immediately following the first sample in the timeslot, or to specify a sample 
width larger than the timeslot. In the case of a sample that spills into the following 
timeslot, you must enable the following timeslot in the Rx or Tx mapping table. 

In 15-bit width mode in advanced mapping modes 2’b10 and 2’b11, you must set 
width to the value of 15 (indicating a 30-bit IQ sample), and you must set position to 
specify the offset of the next available bit in the current 32-bit timeslot, because the IQ 
samples are packed in the timeslots with no intervening spare bits.

You can calculate the number of timeslots that correspond to a CPRI frame. Only the 
data bytes pass through the AxC interface; the control bytes in a CPRI frame do not 
pass through the AxC interface. Refer to the Number of Bits column in Table 4–5 on 
page 4–17 or Table 4–6 on page 4–17 for the number of data bits in a CPRI frame 
at each CPRI line data rate. The calculation depends on the presence and values of any 
position offsets, on whether the CPRI IP core is in 15-bit width mode or in 16-bit 
width mode, and on how remainder bytes are handled. The following discussion 
focuses on the cases with position fields all set to zero. You can increment the 
timeslot counts as needed to accommodate unused leading timeslot bits specified 
with position offsets.

Fifteen-Bit Width Mode
In 15-bit width mode, you either pack the 30-bit data samples in the 32-bit words (in 
advanced mapping modes Advanced 2 (2’b10) and Advanced 3 (2’b11)), or you 
selectively allow gaps, specifying them with the position and width fields of the table 
entry (in the new Advanced 1 mapping mode (2’b01)). In 15-bit width mode, 
advanced AxC mapping modes 2’b10 and 2’b11 act identically, packing the data into 
consecutive bits. Because the number of bits in the IQ data block of every CPRI frame 
is a multiple of 30, packed 15-bit I- and Q-samples fill an AxC container—and one or 
more CPRI frames—with no spare bytes remaining. However, in the Advanced 1 
mapping mode, you can specify an offset in the position field, potentially leaving 
spare bytes in the IQ data block. 

Figure D–1 shows the contrast between these advanced mapping modes. In this 15-bit 
mode example, the CPRI data rate is 1228.8 Gbps and the value of K is two. For a 
CPRI IP core running at CPRI data rate 1228.8 Gbps, the number of data bits in a CPRI 
basic frame is 240. (Refer to Table 4–6 on page 4–17). If K (specified in the K field of the 
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CPRI_MAP_TBL_CONFIG register) has the value of two, 480 bits, or 60 bytes, of data are 
sent or received on the data channel.

The example shows the mapping to timeslots, assuming a single AxC interface is 
active, or more concretely, the contents of the Tx or Rx advanced mapping table. In 
Advanced 1 mode, the Tx or Rx mapping table entries 7 and 15 are not available. In 
contrast, in the other two advanced mapping modes, the Tx or Rx mapping table 
entries 0 through 15 are valid.

Sixteen-Bit Width Mode
In 16-bit width mode, when map_mode has the value of 2’b01 or 2’b10, the initial 32-bit 
sets of data in the CPRI frame pass through the AxC interface. However, the spare 
bytes—bytes at the end of an IQ data block that do not fill another complete 32-bit 
word in the CPRI frame, or bytes at the end of a CPRI frame that do not fill another 
complete timeslot—are dropped in the outgoing data channel, and become reserved 
bits in the CPRI frame after the data arrives on the incoming data channel; these bits 
are expected to not contain valid AxC data in the CPRI frame. 

Figure D–1. Example of Differences Between the AxC Advanced Mapping Modes in 15-Bit Mode

Note to Figure D–1:

(1) This figure uses the following conventions:
* Each column illustrates two bytes in the CPRI frame.
* The label “c” indicates a control byte.
* A numerical label indicates the index of the corresponding table entry in the Rx or Tx advanced mapping table.
* The label “r” indicates a reserved bit or set of bits. Specifically in this example, this label indicates either two bits or a full byte of reserved bits.
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1 The Altera CPRI IP core does not support the Advanced 3 mapping mode in 16-bit 
width mode. Advanced 3 mapping mode does not support spare bytes. Therefore, all 
of the data bits in a CPRI frame should theoretically pass through the AxC interface to 
or from the CPRI IP core. However, in the 16-bit mode, this requirement would force a 
single timeslot to contain information from two CPRI frames, an arrangement the 
Altera CPRI IP core does not support.

Figure D–2 shows the mapping between CPRI frames and the advanced mapping 
tables for a 16-bit mode example. In this example, the CPRI data rate is 1228.8 Gbps 
and the value of K is two. For a CPRI IP core running at CPRI data rate 1228.8 Gbps, 
the number of data bits in a CPRI basic frame is 240. (Refer to Table 4–5 on page 4–17). 
If K (specified in the K field of the CPRI_MAP_TBL_CONFIG register) has the value of two, 
480 bits, or 60 bytes, of data are sent or received on the data channel. The figure shows 
how the Advanced 1 and Advanced 2 mapping modes map these 60 bytes in 16-bit 
mode. 

In the example, the final two bytes of the data from or for each of the first and second 
CPRI frames are dropped or assumed reserved. The Rx or Tx mapping table entries 7 
and 15 are not valid table entries, as the corresponding IQ data sample is invalid. If 
the CPRI IP core has a single active AxC interface, the eighth and sixteenth timeslots 
are empty. 

Figure D–2. Example of Mapping in 16-Bit Mode

Note to Figure D–2:

(1) This figure uses the following conventions:
* Each column illustrates two bytes in the CPRI frame.
* The label “c” indicates a control byte.
* A numerical label indicates the index of the corresponding table entry in the Rx or Tx advanced mapping table.
* The label “r” indicates a byte of reserved bits

map mode = 2'b01 and 2’b10  16 -bit samples
c NControl Byte 8-bits of timeslot N

 

c

c 0

0

0

0

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

5

5

5

5

6

6

6

6

r

r

8

8

8

8

9

9

9

9

10

10

10

10

11

11

11

11

12

12

12

12

13

13

13

13

14

14

14

14

r

rc

c

June 2014 Altera Corporation CPRI IP Core
User Guide



D–6 Appendix D: Advanced AxC Mapping Modes
Advanced Mapping Mode Similarities and Differences
CPRI IP Core June 2014 Altera Corporation
User Guide



June 2014 Altera Corporation
E. Delay Measurement and Calibration
This appendix describes the delay measurement and calibration features of the CPRI 
IP core. 

1 The latency numbers given in this section are for the Quartus II software version 13.1.

Delay Measurement and Calibration Features
For system configuration and correct synchronization, the CPRI IP core must meet the 
CPRI V5.0 Specification measurement and delay requirements. The CPRI IP core 
provides the following support for accurate delay measurement:

■ Provides current Rx delay measurement values in the CPRI_RX_DELAY and 
CPRI_EX_DELAY_STATUS delay registers.

■ Provides current Tx delay calibration values in the CPRI_TX_BITSLIP register.

■ Provides current round-trip delay value in the CPRI_ROUND_DELAY register.

■ Supports user control over delay measurement accuracy by the following 
methods:

■ Allows you to control the degree of delay accuracy in the status registers by 
programming the CPRI_RX_DELAY_CTRL and CPRI_EX_DELAY_CONFIG registers.

■ Provides an optional automatic calibration process that takes your input for the 
desired round-trip delay and adjusts internal delays in an attempt to match the 
desired value. The automatic calibration process reports its current success 
status in the CPRI_AUTO_CAL register.

The following sections describe the delay requirements and how you can use these 
registers to ensure that your application conforms to the CPRI V5.0 Specification 
delay requirements.

Delay Requirements
CPRI V5.0 Specification requirements R-17, R-18, and R-18A address jitter and 
frequency accuracy in the RE core clock for radio transmission. The relevant clock 
synchronization is performed using an external clean-up PLL that is not included in 
the CPRI IP core.

The CPRI IP core complies with CPRI V5.0 Specification requirements R-19, R-20, 
R-20A, R-21, and R-21A.

CPRI V5.0 Specification requirement R-20A addresses the maximum allowed delay in 
switching between receiving and transmitting on the AxC interface. Because the CPRI 
IP core provides duplex communication on the AxC interfaces, this switch requires 
only the programming of the relevant AxC interface Tx or Rx enable bit in the 
CPRI_IQ_TX_BUF_CONTROL or CPRI_IQ_RX_BUF_CONTROL register, and no delay calculation 
is required.
CPRI IP Core
User Guide



E–2 Appendix E: Delay Measurement and Calibration
Delay Requirements
Requirement R-19 specifies that the link delay accuracy for the downlink between the 
synchronization master SAP and the synchronization slave SAP, excluding the cable 
length, be within ±8.138 ns. Requirements R-20 and R-21 extrapolate this requirement 
to single-hop round-trip delay accuracy. R-20 requires that the accuracy of the 
round-trip delay, excluding cables, be within ±16.276 ns, and R-21 requires that the 
round-trip cable delay measurement accuracy be within the same range. Requirement 
R-21A extrapolates this requirement further, to multihop round-trip delay accuracy. In 
calculating these delays, Altera assumes that the downlink and uplink cable delays 
have the same duration.

Figure E–1 shows the reference points you can use to determine the CPRI IP core 
delay measurements for single-hop CPRI configurations.

CPRI requirement R-21 addresses the accuracy of the round-trip cable delay, which is 
the sum of the T12 and T34 delays. The T12 and T34 delays are assumed to have the 
same duration. 

Figure E–2 shows the reference points you can use to determine the CPRI IP core 
delay measurements for multihop CPRI configurations. The duration of TBdelay 
depends on your routing layer implementation.

The following sections describe the delay through the CPRI IP core on the Rx path and 
on the Tx path to the SAP—the AUX interface—and the deterministic values for 
transceiver latency and delay through the IP core. They describe the calculation of the 
round-trip cable delay T14, the Toffset delay, and the round-trip (SAP to SAP) delay in 
the single-hop and multihop cases, and describe the CPRI IP core optional round-trip 
delay calibration feature and how to activate it.

Figure E–1. Single-Hop CPRI Configuration Delay Measurement Reference Points
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Figure E–2. Multihop CPRI Configuration Delay Measurement Reference Points
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Single-Hop Delay Measurement
1 The “Rx Path Delay” and “Tx Path Delay” sections do not discuss the delays through 
the AxC blocks, because the round-trip delay calculations and the multihop 
configuration delay calculations do not take the AxC blocks into account. For 
purposes of these calculations, the relevant SAP is the AUX interface. For information 
about the delays through the AxC blocks, refer to “MAP Receiver Interface” on 
page 4–18 and “MAP Transmitter Interface” on page 4–24.

Single-Hop Delay Measurement
The following sections describe the RX and TX path delays for single-hop variations 
and provide examples. 

Rx Path Delay
The Rx path delay is the cumulative delay from the arrival of the first bit of a 10 ms 
radio frame on the CPRI Rx interface to the start of transmission of the radio frame on 
the AUX interface. The following sections describe the delay for the following 
variations:

■ Most CPRI IP Core Variations

■ Arria V GT 9.8 Gbps

Most CPRI IP Core Variations
Figure E–3 shows the Rx path delay components in all CPRI IP core variations except 
those that target an Arria V GT device and are configured with the CPRI line rate of 
9.8 Gbps. The figure shows the relation between the two Rx paths.

Figure E–3. Rx Path Delay to AUX Output and Through MAP Interface Block in Most CPRI IP Core Variations
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Single-Hop Delay Measurement
The Rx path delay to the AUX interface or through the MAP interface module in most 
CPRI IP core variations is the sum of the following delays:

1. The link delay is the delay between the arrival of the first bit of a 10 ms radio 
frame on the CPRI Rx interface and the CPRI IP core internal transmission of the 
radio frame pulse from the CPRI protocol interface receiver. The link delay 
includes the following delays:

a. Rx transceiver latency is a fixed delay through the deterministic latency path of 
the Rx transceiver. Its duration depends on the device family and the current 
CPRI line rate. This delay includes comma alignment. Refer to “Rx Transceiver 
Latency” on the following pages. 

b. Fixed delay from the Rx transceiver to the Rx elastic buffer. This delay depends 
on the device family and CPRI data rate. This delay is the first component of 
T_R1 in Figure E–1 on page E–2. Refer to “Fixed Rx Core Delay Component” on 
page E–7. 

c. Delay through the clock synchronization FIFO, as well as the phase difference 
between the recovered receive clock and the core clock cpri_clkout. The 
“Extended Rx Delay Measurement” section shows how to calculate the delay 
in the CPRI Rx elastic buffer, which includes the phase difference delay.

d. Byte alignment delay that can occur as data is shifted out of the receiver. This 
variable delay appears in the rx_byte_delay field of the CPRI_RX_DELAY 
register—when the value in rx_byte_delay is non-zero, a byte alignment delay 
of one cpri_clkout cycle occurs in the Rx path.

e. Variable delay introduced by round-trip delay calibration feature. Refer to 
“Round-Trip Calibration Delay” on page E–7 and “Dynamic Pipelining for 
Automatic Round-Trip Delay Calibration” on page E–19.

2. Delay from the CPRI low-level receiver block to the AUX interface (or through the 
MAP interface block). This delay depends on the device family and CPRI data 
rate. This delay is the second component of T_R1 in Figure E–1 on page E–2. Refer 
to “Fixed Rx Core Delay Component” on page E–7. 

Rx Path Delay Components

The CPRI specification defines requirements on the path to an SAP. The CPRI IP core 
has one relevant SAP, the AUX interface. This section provides the information to 
calculate the Rx path delay to output on the AUX interface. 

The delay to—but not through—the AxC blocks, that is, the delay through the MAP 
interface module, is the same as the delay to the AUX interface. The following sections 
describe the Rx path delay components in the CPRI IP core variations. 

Rx Transceiver Latency

The Altera high-speed transceiver is implemented using the deterministic latency 
protocol, which ensures that delays in comma alignment and in byte alignment 
within the transceiver are consistent. 

In all CPRI IP core variations (except those that target an Arria V GT device and 
are configured with the CPRI line rate of 9.8 Gbps), the delay through the Rx 
transceiver is a fixed delay. 
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Table E–1 shows the fixed latency through the transceiver in the receive side of the 
CPRI IP core. 

The clean-up PLLs shown in Figure 4–2 on page 4–6 and in Figure 4–4 on 
page 4–8 use the recovered clock as input to the PLL that generates the 
gxb_pll_inclk signal (and the usr_clk and usr_pma_clk signals in Figure 4–4), to 
ensure frequency match. To preserve the T_txv_RX latencies listed in Table E–1, 
you must ensure that the reference clock to the clean-up PLL contains no 
asynchronous dividers.

Table E–1. Fixed Latency T_txv_RX Through Rx Transceiver in CPRI IP Core

CPRI Line 
Rate

(Gbps)

Latency Through Transceiver in cpri_clkout Clock Cycles

CPRI IP Core Variations with Hard PCS Soft PCS 
Variations on

Arria V GT 
Device (11)

Arria II GX 
Device (1)

Cyclone IV GX 
Device (1)

Arria II GZ or 
Stratix IV GX 

Device (1)

Arria V
(GX or GT (5)) 

Device

Arria V GZ 
or Stratix V 

Device

Cyclone V,
Device

0.6144 2.6 (2) 2.6 (2) 2.6 (2) 2.85 2.65 3.149 —

1.2288

5.7 (3)

5.7 (3)

7.2 (4) 8.224 (6)

6.782 (10)
8.774 (7)

9.724 (8)2.4576

3.072

4.9152 —

23.986.144 —

9.8304 — — — — (9), —,

Notes to Table E–1:

(1) Latency numbers for Arria II GX, Arria II GZ, Cyclone IV GX, and Stratix IV GX devices are accurate when the 
rx_bitslipboundaryselectout field of the CPRI_TX_BITSLIP register has the value of zero, For the appropriate full formula to calculate 
the value of T_txv_RX in other cases, refer to Notes (2), (3), and (4) and where they are referenced in the table.

(2) In this case, T_txv_RX = (100 + (4 + rx_bitslipboundaryselectout))/40, where rx_bitslipboundaryselectout is the value in this 
field in the CPRI_TX_BITSLIP register.

(3) In this case, T_txv_RX = (220 + (8 – rx_bitslipboundaryselectout))/40, where rx_bitslipboundaryselectout is the value in this 
field in the CPRI_TX_BITSLIP register.

(4) In this case, T_txv_RX = (280 + (8 – rx_bitslipboundaryselectout))/40, where rx_bitslipboundaryselectout is the value in this 
field in the CPRI_TX_BITSLIP register. If the rx_byte_delay field of the CPRI_RX_DELAY register has a non-zero value, the delay is 6.7 
cpri_clkout cycles instead of 7.2.

(5) If you configure your CPRI IP core with the CPRI line rate of 9.8304 Gbps, and target an Arria V GT device, the IP core is configured with a soft 
PCS. The soft PCS configuration does not change with autorate negotiation to a lower frequency. This column describes variations that are not 
configured with a soft PCS.

(6) If the rx_byte_delay field of the CPRI_RX_DELAY register has a non-zero value, this delay is 7.724 cpri_clkout cycles instead of 8.224 
cpri_clkout cycles.

(7) If the rx_byte_delay field of the CPRI_RX_DELAY register has a non-zero value, this delay is 8.274 cpri_clkout cycles instead of 8.774 
cpri_clkout cycles.

(8) f the rx_byte_delay field of the CPRI_RX_DELAY register has a non-zero value, this delay is 9.224 cpri_clkout cycles instead of 9.724 
cpri_clkout cycles.

(9) Arria V GX devices do not support a CPRI IP core line rate of 9.8304 Gbps. Arria V GT devices support a CPRI IP core line rate of 9.8304 Gbps 
only in soft PCS variations.

(10) If the rx_byte_delay field of the CPRI_RX_DELAY register has a non-zero value, the delay is 6.282 cpri_clkout cycles instead of 6.782.
(11) The values described in this column apply to all Arria V GT variations that are configured with a CPRI line rate of 9.8304 Gbps, even after 

autorate negotiation to a lower frequency. These variations cannot auto-negotiate to a CPRI line rate of 0.6144 Gbps.
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Extended Rx Delay Measurement 

The next component of the link delay is the delay through the CPRI Receive 
buffer. The latency of the CPRI Receive buffer depends on the number of 32-bit 
words currently stored in the buffer, and the phase difference between the 
recovered receive clock, which is used to write data to the buffer, and the system 
clock cpri_clkout, which is used to read data from the buffer. The CPRI IP core 
uses a dedicated clock, clk_ex_delay, to measure the Rx buffer delay to your 
desired precision. The ex_delay field of the CPRI_EX_DELAY_CONFIG register 
contains the value N, such that N clock periods of the clk_ex_delay clock are 
equal to some whole number M of cpri_clkout periods. For example, N may be a 
multiple of M, or the M/N frequency ratio may be slightly greater than 1, such as 
64/63 or 128/127. The application layer specifies N to ensure the accuracy your 
application requires. The accuracy of the Rx buffer delay measurement is 
N/least_common_multiple(N,M) cpri_clkout periods.

1 If your application does not require this precision, drive the clk_ex_delay 
input port with the cpri_clkout signal. In this case, the M/N ration is 1 
because the frequencies are the same. Read the Rx buffer delay from the 
CPRI_RX_DELAY register at offset 0x34 and use it in the Rx delay calculation. 
Alternatively, you can tie off the clk_ex_delay signal.

The rx_buf_delay field of the CPRI_RX_DELAY register indicates the number of 
32-bit words currently in the Rx buffer. After you program the ex_delay field of 
the CPRI_EX_DELAY_CONFIG register with the value of N, the rx_ex_buf_delay field 
of the CPRI_EX_DELAY_STATUS register holds the current measured delay through 
the Rx buffer. The unit of measurement is cpri_clkout periods. The 
ex_buf_delay_valid field indicates that a new measurement has been written to 
the rx_ex_buf_delay field since the previous register read. The following sections 
explain how you set and use these register values to derive the extended Rx delay 
measurement information.

M/N Ratio Selection

As your selected M/N ratio approaches 1, the accuracy provided by the use 
of the clk_ex_delay clock increases. Table E–2 shows some example M/N 
ratios and the resolutions they provide, for a CPRI IP core that runs at data 
rate 3072 Mbps and targets a Stratix IV GX device. 

Table E–2. Resolution as a Function of M/N Ratio at 3072 Mbps on a Stratix IV GX Device

M N cpri_clkout Period (1) clk_ex_delay Period (2) Resolution

128 127
13.02 ns

(1/76.80 MHz)

13.12 ns ±100 ps

64 63 13.22 ns ±200 ps

1 4 3.25 ns ±3.25 ns

Notes to Table E–2:

(1) Table 4–2 on page 4–10 lists the cpri_clkout frequency for each CPRI data rate and device family.
(2) “Calculation Example: Rx Buffer Delay” shows you how to calculate the clk_ex_delay clock period for a given M, N, and cpri_clkout period.
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Round-Trip Calibration Delay

The new dynamic pipelining feature for round-trip delay calibration introduces a 
delay in the Rx path in an RE slave. In CPRI IP core variations other than the 
Arria V GT 9.8 Gbps variations, this delay is introduced to the Rx path 
immediately following the Rx elastic buffer. In the Arria V GT 9.8 Gbps 
variations, this delay is introduced in the CPRI Rx block. The feature introduces 
the new delay to maintain a round-trip delay measurement as close as possible to 
the anticipated round-trip delay you provide to the CPRI IP core. The 
CPRI_AUTO_CAL register holds the anticipated delay that you program, an enable 
bit you turn on to activate the feature, and a status field in which the CPRI IP core 
reports its relative success in maintaining the round-trip delay you requested. 

The register also contains a field, cal_pointer, that the CPRI IP core updates 
dynamically with the current number of cpri_clkout cycles of delay that this 
feature adds. You must include this register field value in your Rx path delay 
calculation. If the enable bit of the CPRI_AUTO_CAL register has the value of 0, the 
delay is 3 cpri_clkout cycles.

f For more information about this feature, refer to “Dynamic Pipelining for Automatic 
Round-Trip Delay Calibration” on page E–19 and to Table 7–29 on page 7–14.

Fixed Rx Core Delay Component

In the Rx path, the delay from the Rx transceiver to the Rx elastic buffer, 
(component 1(b) in “Most CPRI IP Core Variations” on page E–3) and the delay 
from the CPRI low-level receiver block to the AUX interface or through the MAP 
interface block (component 2 in Figure E–3 on page E–3 and Figure E–4 on 
page E–10), are fixed. This combined delay depends on the device family and 
CPRI data rate. This delay is the fixed delay component of the delay labeled T_R1 
in Figure E–1 on page E–2.

Table E–3 shows the sum of these two fixed delays in the different device families.
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Calculation Example: Rx Buffer Delay

This section walks you through an example that shows you how to calculate the 
frequency at which to run clk_ex_delay, and how to program and use the registers to 
determine the delay through the CPRI Receive buffer.

For example, assume your CPRI IP core runs at data rate 3072 Mbps. In this case, 
Table 4–2 on page 4–10 shows that the cpri_clkout frequency is 76.80 MHz, so a 
cpri_clkout cycle is 1/(76.80 MHz). 

Refer to Table E–2 for the accuracy resolution provided by some sample M/N ratios. 
If your accuracy resolution requirements are satisfied by an M/N ratio of 128/127, 
perform the following steps: 

1. Program the value N=127 in the ex_delay field of the CPRI_EX_DELAY_CONFIG 
register at offset 0x3C (Table 7–19 on page 7–10).

2. Perform the following calculation to determine the clk_ex_delay frequency that 
supports your desired accuracy resolution:

clk_ex_delay period = (M/N) cpri_clkout period
= (128/127) (1/(76.80 MHz))
= (128/127)(13.02083 ns)
= 13.123356 ns

Based on this calculation, the frequency of clk_ex_delay is 

1/(13.123356 ns) = 76.20 MHz

The following steps assume that you run clk_ex_delay at this frequency.

Table E–3. Fixed Latency T_R1 in cpri_clkout Cycles

CPRI 
Line 
Rate

(Gbps)

Latency Through Core on Rx Path in cpri_clkout Clock Cycles

Arria II GX, 
Arria II GZ, 

or 
Stratix IV GX 

Device

Cyclone IV GX 
or Cyclone V 

Device

Stratix V or Arria V GZ 
Device

Arria V GX or Arria V GT 
Device Arria V GT 

Device 
Configured at 
9.8304 Gbps

 Configured 
at 4.9152 
Gbps or 
Slower

Configured 
at 6.144 or 

9.8304 Gbps

Configured 
at 3.072 
Gbps or 
Slower

Configured 
at 4.9152 or 
6.144 Gbps

0.6144 3.5 3.5 3.5 4.5 3.5 4.5 —

1.2288

5

5
5

5 (1)

5

6 (2)

4

2.4576

3.072

4.9152 — —

6.144 — — —

9.8304 — — — — —

Notes to Table E–3:

(1) In the Quartus II software release v13.1, v13.0 SP1, and v13.0, and in the releases that precede release v12.1, the fixed latency T_R1 in this 
case is five cpri_clkout cycles. However, in the Quartus II software releases v12.1 and v12.1 SP1, the fixed latency T_R1 in this case is six 
cpri_clkout cycles. 

(2) In the Quartus II software releases v12.1 and later, the fixed latency T_R1 in this case is six cpri_clkout cycles. However, in the Quartus II 
software releases that precede release v12.1, the fixed latency T_R1 in this case is five cpri_clkout cycles.
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3. Read the value of the CPRI_EX_DELAY_STATUS register at offset 0x40 (Table 7–20 on 
page 7–10). 

If the ex_buf_delay_valid field of the register is set to 1, the value in the 
rx_ex_buf_delay field has been updated, and you can use it in the following 
calculations. For this example, assume the value read from the rx_ex_buf_delay 
field is 0x107D, which is decimal 4221.

4. Perform the following calculation to determine the delay through the Rx elastic 
buffer:

Delay through Rx elastic buffer = (rx_ex_buf_delay × cpri_clkout period) / N
= (4221 × 13.02083 ns) / 127
= 432.7632 ns

This delay comprises (432.7632 ns / 13.02083 ns) = 33.236 cpri_clkout clock 
cycles.

These numbers provide you the result for this particular example. For illustration, 
the preceding calculation shows the result in nanoseconds. You can derive the 
result in cpri_clkout clock cycles by dividing the preceding result by the 
cpri_clkout clock period. Alternatively, you can calculate the number of 
cpri_clkout clock cycles of delay through the Rx elastic buffer directly, as 
rx_ex_buf_delay / N.

Calculation Example: Rx Path Delay to AUX Output

This section shows you how to calculate the Rx path delay to the AUX output, based 
on the example shown in “Calculation Example: Rx Buffer Delay” on page E–8. This 
example walks through the calculation for the case of a CPRI IP core that runs at CPRI 
data rate 3072 Mbps and targets an Arria II GX device. The cal_en field of the 
CPRI_AUTO_CAL register has the value of 0 and the tx_bitslipboundaryselect and 
rx_bitslipboundaryselectout fields of the CPRI_TX_BITSLIP register have the value 
of 0.

To calculate the Rx path delay, perform the following steps:

1. Consult Table E–1 on page E–5 for the correct value of T_txv_RX for your device 
family. For the example, the table yields T_txv_RX = 5.7 cpri_clkout clock cycles.

2. Calculate the latency through the Rx Receive buffer, including phase alignment, by 
following the steps in “Calculation Example: Rx Buffer Delay” on page E–8 for 
your CPRI IP core instance. For the example, the calculations shown in 
“Calculation Example: Rx Buffer Delay” yield a delay through the Rx Receive 
buffer of 33.236 cpri_clkout clock cycles.

3. Read the value in the rx_byte_delay field of the CPRI_RX_DELAY register—when 
the value in rx_byte_delay is non-zero, a byte alignment delay of one 
cpri_clkout cycle occurs in the Rx path. When the value is zero, no byte 
alignment delay occurs. In this example, the value in the rx_byte_delay field is 0.

4. Read the value of the cal_pointer field of the CPRI_AUTO_CAL register. In this case, 
the value in this field is 3. This value is consistent with the fact that the cal_en field 
of the CPRI_AUTO_CAL register has the value of 0.

5. Consult Table E–3 on page E–8 to determine the delay through the CPRI IP core to 
the AUX interface. For the example, the duration of this delay is 5 cpri_clkout 
clock cycles.
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6. Calculate the full Rx path delay to the AUX interface by adding the values you 
derived in step 1 through step 5. For the example, calculate the Rx path delay as 
follows:

Rx path delay = T_txv_RX + <delay through Rx Receive buffer>
+ <rx_byte_delay value> + <cal_pointer value> 
+ <delay to AUX IF>

= 5.7 + 33.236 + 0 + 3 + 5 cpri_clkout clock cycles
= 46.936 cpri_clkout clock cycles

Arria V GT 9.8 Gbps
Arria V GT 9.8 Gbps variations use a soft PCS, and are a special case. The following 
sections describe the unique differences of these variations.

Rx Path Delay Components

Figure E–4 shows the Rx path delay components in a CPRI IP core variation that 
targets an Arria V GT device and was originally configured with the CPRI line rate of 
9.8 Gbps. This figure illustrates the Rx path delay components in Arria V GT 
variations whose CPRI line rate was auto-negotiated down from the configured CPRI 
line rate of 9.8 Gbps to a lower line rate, as well. 

The figure shows the relation between the two Rx paths, the path through the AUX 
module and the path through the MAP interface module but not through the AxC 
interface blocks.

In the CPRI IP core variations that target an Arria V GT device, and were configured 
with a with a CPRI line rate of 9.8 Gbps, the link delay (1.) includes the following 
delays:

a. Fixed delay through the PMA configured with the Altera Native PHY IP core. 

b. Delay through an Rx buffer between the PMA and the PCS. The “Extended Rx 
Delay Measurement” section shows how to calculate this delay.

c. Fixed delay through the PCS.

d. Variable delay introduced by round-trip delay calibration feature. Refer to 
“Round-Trip Calibration Delay” on page E–7 and “Dynamic Pipelining for 
Automatic Round-Trip Delay Calibration” on page E–19. This delay 
component is common to all CPRI IP core variations.

The following sections describe the individual delays and how to calculate them.

Figure E–4. Rx Path Delay in Arria V GT Variations Configured with a CPRI Line Rate of 9.8 Gbps 
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Rx Transceiver Latency

In Arria V GT variations configured with a CPRI line rate of 9.8 Gbps, the Rx 
transceiver latency includes fixed delays through the PMA and soft PCS, and a 
variable delay through a buffer. The “Extended Rx Delay Measurement” section 
shows how to calculate the variable delay through the Rx buffer between the 
PMA and the PCS.

In the Arria V GT variations originally configured with a CPRI line rate of 
9.8 Gbps, the fixed latency is the sum of the delays through the PMA and the soft 
PCS. These values correspond to T_txv_RX in Figure E–1.

Table E–4 describes the fixed latency for Arria V GT devices configured with a 
CPRI line rate of 9.8 Gbps. 

Extended Rx Delay Measurement

The extended delay measurement is calculated as described in “Extended Rx 
Delay Measurement” on page E–6 for other device variations.

CPRI IP core variations that target an Arria V GT device and were originally 
configured with a CPRI line rate of 9.8 Gbps do not have an Rx elastic buffer 
outside the transceiver. In these variations, the same calculation applies to the Rx 
buffer inside the transceiver, instead.

Note this case includes Arria V GT variations originally configured with CPRI 
line rate 9.8 Gbps that are running at a lower CPR line rate after autorate 
negotiation.

Fixed-Core Delay

In the Rx path, the delay from the Rx transceiver to the Rx elastic buffer, and the 
delay from the CPRI low-level receiver block to the AUX interface or through the 
MAP interface block, are fixed. This combined delay depends on the device 
family and CPRI data rate. This delay is the fixed delay component of the delay 
labeled T_R1 in Figure E–1 on page E–2.

Table E–4. Fixed Latency T_txv_RX Through Rx Transceiver in Arria V GT 9.8 Gbps CPRI IP Core

CPRI Line Rate
(Gbps)

Latency Through Transceiver in cpri_clkout Clock Cycles

CPRI IP Core Variations
with Hard PCS

Arria V GT (1) Device

Soft PCS Variations on
Arria V GT Device (3)

9.8304 — (2), Refer to Table E–1 on page E–5

Notes to Table E–4:

(1) If you configure your CPRI IP core with the CPRI line rate of 9.8304 Gbps, and target an Arria V GT device, the IP 
core is configured with a soft PCS. The soft PCS configuration does not change with autorate negotiation to a lower 
frequency. This column describes variations that are not configured with a soft PCS.

(2) Arria V GX devices do not support a CPRI IP core line rate of 9.8304 Gbps. Arria V GT devices support a CPRI IP 
core line rate of 9.8304 Gbps only in soft PCS variations.

(3) The values described in this column apply to all Arria V GT variations that are configured with a CPRI line rate of 
9.8304 Gbps, even after autorate negotiation to a lower frequency. These variations cannot auto-negotiate to a 
CPRI line rate of 0.6144 Gbps.
June 2014 Altera Corporation CPRI IP Core
User Guide



E–12 Appendix E: Delay Measurement and Calibration
Single-Hop Delay Measurement
Table E–5 shows the sum of these two fixed delays for Arria V GT 9.8 Gbps 
variations.

Round-Trip Calibration Delay

The new dynamic pipelining feature for round-trip delay calibration introduces a 
delay in the Rx path in an RE slave. In the Arria V GT 9.8 Gbps variations, this 
delay is introduced in the CPRI Rx block. 

f For more information about this feature, refer to “Dynamic Pipelining for 
Automatic Round-Trip Delay Calibration” on page E–19 and to Table 7–29 
on page 7–14.

Tx Path Delay
The Tx path delay is the cumulative delay from the arrival of the first bit of a 10 ms 
radio frame on the CPRI AUX interface to the start of transmission of this data on the 
CPRI link. This section provides the information to calculate the Tx path delay. The 
following sections describe the delay for the following variations:

■ Most CPRI IP Core Variations

■ Arria V GT 9.8 Gbps

Most CPRI IP Core Variations
The delay through the MAP interface module to the CPRI link is the same as the delay 
from the AUX interface. The following sections describe the Tx path delay 
components in the CPRI IP core variations.

Tx Path Delay Components

The delay through the MAP interface module to the CPRI link is the same as the delay 
from the AUX interface. The following sections describe the Tx path delay 
components in the CPRI IP core variations.

Table E–5. Fixed Latency T_R1 in cpri_clkout Cycles

CPRI Line Rate
(Gbps)

Latency Through Core on Rx Path in cpri_clkout Clock Cycles
Arria V GT Device Configured at 9.8304 Gbps

9.8304 4
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Figure E–5 shows the Tx path delay components in all CPRI IP core variations except 
those that target an Arria V GT device and are configured with the CPRI line rate of 
9.8 Gbps. This figure shows the relation between the two Tx paths. 

In the CPRI IP core the delay from the AUX interface has a fixed component and a 
variable component. In the variations that do not target an Arria V GT device or that 
are configured with a CPRI line rate other than 9.8 Gbps, the variable component 
results from the Tx elastic buffer and the Tx bitslip delay compensation feature.

The Tx path delay from the AUX interface in most CPRI IP core variations comprises 
the following delays:

1. Fixed delay from the AUX interface through the CPRI low-level transmitter to the 
Tx elastic buffer. This delay depends on the device family and CPRI data rate. This 
delay is the first component of T_T4 in Figure E–1 on page E–2 and in Table E–6 on 
page E–14. Refer to “Fixed Tx Core Delay Component” on page E–14. 

2. Variable delay through the Tx elastic buffer, as well as the phase difference 
between the core clock and the transceiver tx_clkout clock. The “Extended Tx 
Delay Measurement” section shows how to calculate the delay in the CPRI Tx 
elastic buffer, which includes the phase difference delay. 

3. Variable Tx bitslip delay in CPRI RE slaves. Refer to “Tx Bitslip Delay” on 
page E–14.

4. Fixed delay from the Tx elastic buffer to the transceiver. This delay depends on the 
device family and CPRI line rate. This delay is the second component of T_T4 in 
Figure E–1 on page E–2 and in Table E–6 on page E–14. Refer to “Fixed Tx Core 
Delay Component” on page E–14. 

5. Link delay through the transceiver. This delay is T_txv_TX in Table E–7 on 
page E–16.

Figure E–5. Tx Path Delay from AUX Interface or Through MAP Interface Block to CPRI Link in Most Variations
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Fixed Tx Core Delay Component

In the Tx path in CPRI IP core variations other than the Arria V GT variations 
configured at 9.8 Gbps, the following are fixed delays:

■ Delay from the AUX interface to the Tx elastic buffer (component 1 in 
Figure E–5 on page E–13). This delay has a fixed value of four cpri_clkout 
cycles.

■ Delay from the Tx elastic buffer to the Tx transceiver (component 4 in 
Figure E–5 on page E–13). This delay depends on the device family and CPRI 
data rate. 

The sum of these two delays is the fixed delay component of the delay labeled 
T_T4 in Figure E–1 on page E–2. 

Table E–6 shows the sum of these two fixed delays in the different device families.

In CPRI IP core variations with a CPRI line rate of 9.8 Gbps that target an 
Arria V GT device, the fixed Tx core delay component extends to the transceiver.

Extended Tx Delay Measurement

The latency of the Tx elastic buffer depends on the number of 32-bit words 
currently stored in the buffer, and the phase difference between the system clock 
cpri_clkout, which is used to write data to the buffer, and the transceiver clock 
tx_clkout, which is used to read data from the buffer.

The calculation of the extended Tx delay is identical to the description and 
example of extended Rx delay measurement in “Extended Rx Delay 
Measurement” on page E–6, with the substitution of tx for rx in all the register 
field names. 

Tx Bitslip Delay

To increase the consistency of the round-trip delay, the CPRI RE slave introduces a 
variable bitslip on the Tx path to complement the variability in the word aligner 
on the Rx path. The word aligner is encapsulated in the transceiver block. The 
word aligner introduces delay variability that is captured in the values described 
in Table E–1 on page E–5 and Table E–7 on page E–16 and their associated notes.

Table E–6. Fixed Latency T_T4 in cpri_clkout Cycles

Data Rate 614.4 Mbps Data Rate > 614.4 Mbps

Arria II GX 
Device

All Other Device 
Families

Arria II GX 
Device

Cyclone IV GX 
Device

All Other Device 
Families

5 or 5.25 4.75 6 or 6.5 5.5 7

Note to Table E–6:

(1) The first number applies for CPRI IP core variations in which you do not enable autorate negotiation in the CPRI 
parameter editor (prior to IP core generation), and the second number applies for CPRI IP core variations in which 
you enable autorate negotiation in the CPRI parameter editor.
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The CPRI IP core reports the Rx bitslip through the word aligner in the 
rx_bitslipboundaryselectout field of the CPRI_TX_BITSLIP register, and 
compensates for this variable delay by adding a bitslip in the Tx path. The current 
size of this bitslip in bits is available in the tx_bitslipboundaryselect field of the 
CPRI_TX_BITSLIP register. When you leave the tx_bitslip_en field at its default 
value of 0, this feature is active. 

The Tx bitslip feature ensures stability in the round-trip delay through a CPRI RE 
core, but introduces a variable component in each of the Tx and Rx paths when 
considered independently. In CPRI IP cores in master clocking mode, the 
tx_bitslipboundaryselect field has the constant value of 0. 

If you set the value of the tx_bitslip_en field to 1, you can override the current 
tx_bitslipboundaryselect value to control the Tx bitslip delay manually. Altera 
does not recommend implementing the manual override.

In CPRI IP core variations that target an Arria V, Cyclone V, or Stratix V device, 
the Tx bitslip functionality is included in the Altera PHY IP core that is generated 
with the CPRI IP core. These variations include the CPRI_TX_BITSLIP register to 
support manual override of the Tx bitslip delay.

1 Altera does not recommend implementing the manual override for the Tx 
bitslip.

Tx Transceiver Latency

The Altera high-speed transceiver is implemented using the deterministic latency 
protocol, which ensures that delays in byte alignment within the transceiver are 
consistent.

In all CPRI IP core variations except those that target an Arria V GT device and 
are configured with the CPRI line rate of 9.8 Gbps, the delay through the Tx 
transceiver is a fixed delay. 
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Table E–7 shows the fixed latency through the transceiver in the transmit side of 
the CPRI IP core. These values correspond to T_txv_TX in Figure E–1 on page E–2.

Table E–7. Fixed Latency T_txv_TX Through Tx Transceiver

CPRI Line Rate 
(Gbps)

Fixed Latency Through Transceiver in cpri_clkout Clock Cycles

CPRI IP Core Variations with Hard PCS Soft PCS 
Variations on

Arria V GT 
Device (7)

Arria II GX 
Device (1)

Cyclone IV G
X Device (1)

Arria II GZ or 
Stratix IV GX 

Device (1)

Arria V (GX 
or GT (5)) 
Device

Arria V GZ or 
Stratix V 
Device

Cyclone V,
Device

0.6144 1.85 (2) 1.85 (2) 1.85 (2) 2.050 2.075 1.547 —

1.2288

3.1 (3)

3.1 (3)

3.6 (4) 4.05
4.094

2.549

6.0492.4576

3.072

4.9152 —

14.0616.144 —

9.8304 — — — — (6) —,

Notes to Table E–7:

(1) Latency numbers for Arria II GX, Arria II GZ, Cyclone IV GX, and Stratix IV GX devices are accurate when the tx_bitslipboundaryselect 
field of the CPRI_TX_BITSLIP register has the value of zero, For the appropriate full formula to calculate the value of T_txv_TX in other cases, 
refer to Notes (2), (3), and (4) and where they are referenced in the table.

(2) In this case, T_txv_TX = (70 + (4 + tx_bitslipboundaryselect))/40, where tx_bitslipboundaryselect is the value in this field in the 
CPRI_TX_BITSLIP register.

(3) In this case, T_txv_TX = (120 + (4 + tx_bitslipboundaryselect))/40, where tx_bitslipboundaryselect is the value in this field in the 
CPRI_TX_BITSLIP register.

(4) In this case, T_txv_TX = (120 + (24 + tx_bitslipboundaryselect))/40, where tx_bitslipboundaryselect is the value in this field in 
the CPRI_TX_BITSLIP register.

(5) If you configure your CPRI IP core with the CPRI line rate of 9.8304 Gbps, and target an Arria V GT device, the IP core is configured with a soft 
PCS. The soft PCS configuration does not change with autorate negotiation to a lower frequency. This column describes variations that are not 
configured with a soft PCS.

(6) Arria V GX devices do not support a CPRI IP core line rate of 9.8304 Gbps. Arria V GT devices support a CPRI IP core line rate of 9.8304 Gbps 
only in soft PCS variations.

(7) The values described in this column apply to all Arria V GT variations that are configured with a CPRI line rate of 9.8304 Gbps, even after 
autorate negotiation to a lower frequency. These variations cannot auto-negotiate to a CPRI line rate of 0.6144 Gbps.
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Arria V GT 9.8 Gbps
Arria V GT 9.8 Gbps variations use a soft PCS, and are a special case. The following 
sections describe the Tx delay through this variant.

Figure E–6 shows the Tx path delay components in a CPRI IP core variation that 
targets an Arria V GT device and was originally configured with the CPRI line rate of 
9.8 Gbps. This figure also illustrates the Tx path delay components in Arria V GT 
variations whose CPRI line rate was auto-negotiated down from the configured CPRI 
line rate of 9.8 Gbps to a lower line rate.

The Tx path delay from the AUX interface comprises the following delays:

1. Fixed delay from the Aux interface through the CPRI low-level transmitter to the 
transceiver PCS. This delay is 7 cpri_clkout clock cycles.

2. Delay through the transceiver. This delay has the following components.

a. Variable Tx bitslip delay in CPRI RE slaves.

b. Fixed delay through the soft PCS.

c. Variable delay through the Tx buffer between the soft PCS and the PMA.

d. Fixed delay through the PMA configured with the Altera Native PHY IP core.

Fixed Tx Core Delay Component

This delay is 7 cpri_clkout clock cycles.

Delay through the Transceiver

The following sections describe the delays through the transceiver.

Variable Tx Bitslip Delay

This delay does not exist for CPRI IP cores in master clocking mode. Refer to “Tx 
Bitslip Delay” on page E–14 for information about tx_bitslip.

Transceiver Fixed Delay

This delay is the sum of the fixed delay through the soft PCS and the fixed delay 
through the PMA. This delay is shown in the last column of Table E–7 on 
page E–16. 

Figure E–6. Tx Path Delay to CPRI Link in Arria V GT Variations Configured with a CPRI Line Rate of 9.8 Gbps

AxC IF 0

AxC IF n

...

AUX Interface

Data Channels

Transmitter Transceiver

Transmitter

tx_dataout

Physical Layer

CPRI MAP
Interface Module

AUX
Module

(1)

(1)

(2a)(2b)(2c)(2d)
June 2014 Altera Corporation CPRI IP Core
User Guide



E–18 Appendix E: Delay Measurement and Calibration
Single-Hop Delay Measurement
Variable Delay through Tx Buffer

This delay is the extended Tx delay. The calculation is the same as for the Rx 
extended delay measurement.

Toffset
Use the following formula to calculate the Toffset delay:

Toffset = <RE Rx path delay> + <RE Tx path delay> + <loopback delay>

where <loopback_delay> is listed in Table E–8.

Table E–8 provides the loopback delay in cpri_clkout clock cycles for various 
combinations of devices and data rates. 

Round-Trip Delay
The rx_round_trip_delay field of the CPRI_ROUND_DELAY register records the total 
round-trip delay from the start of the internal transmit radio frame in the REC to the 
start of the internal receive radio frame in the REC, that is, from SAP to SAP. The 
register value is only available in CPRI REC and RE masters. 

CPRI V5.0 Specification requirements R-20 and R-21 address the round-trip delay. 
Requirement R-20 addresses the measurement without including the cable delay, and 
requirement R-21 is the requirement for the cable delay. Both requirements state that 
the variation must be no more than ±16.276 ns. 

The CPRI IP core supports two approaches to these requirements. In the first 
approach, you perform calculations based on register values to determine the current 
delay, and check periodically to confirm that the variation in measurements over time 
is small enough that the requirements are met. 

In the second approach, you activate the new dynamic pipelining feature to perform 
round-trip delay calibration. This feature enables the CPRI IP core to compensate 
dynamically for variations from a predetermined round-trip delay value that you 
select.

Round-Trip Cable Delay
The round-trip cable delay is the sum of T12 and T34 (refer to Figure E–1 on 
page E–2). The CPRI V5.0 Specification requirement R-21 requires that we ensure an 
accuracy of ±16.276 ns in the measurement of the round-trip cable delay in a 
single-hop configuration. 

Table E–8. Loopback Delay (cpri_clkout Clock Cycles)

Family Data Rate Delay

Arria V GX 4.9152, 6.144, 9.8304 6

Arria V GT 4.9152, 6.144, 9.8304 6

Arria V GZ 6.144, 9.8304 6

Stratix V 6.144, 9.8304 6

All other combinations 1
CPRI IP Core June 2014 Altera Corporation
User Guide



Appendix E: Delay Measurement and Calibration E–19
Single-Hop Delay Measurement
The rx_round_trip_delay field of the CPRI_ROUND_DELAY register records the delay 
between the outgoing cpri_tx_rfp signal and the outgoing cpri_rx_rfp signal. The 
cpri_tx_rfp signal is bit [0] of the aux_tx_status_data output signal bus, asserted in 
response to the assertion of the incoming signal cpri_tx_sync_rfp, which is bit [64] of 
the aux_tx_mask_data input signal, or in response to the 10 ms radio frame start based 
on the internal frame count in the CPRI transmitter interface. The cpri_rx_rfp signal 
is bit [75] of the aux_rx_status_data output signal bus, asserted in response to the 
start of the 10 ms radio frame on the CPRI receiver interface. 

The CPRI IP core does not provide the values of T12 and T34. Use the following 
process to calculate the round-trip cable delay T14 in cpri_clkout cycles:

T14 = rx_round_trip_delay – <REC Rx path delay> – <REC Tx path delay>

where 

■ rx_round_trip_delay is the value in the CPRI_ROUND_DELAY register at offset 
0x38 (Table 7–18 on page 7–10)

■ <REC Rx path delay> is the Rx path delay, described in “Rx Path Delay” on 
page E–3, for the values in the CPRI REC master

■ <REC Tx path delay> is the Tx path delay, described in “Tx Path Delay” on 
page E–12, for the values in the CPRI REC master

1 Because the CPRI REC master and the CPRI RE slave might be on different 
devices, these formulas specify the source CPRI IP core (REC or RE) for the 
delays in each calculation.

The round-trip cable delay in a single-hop system is

Round-trip cable delay = T14 – Toffset

Tx Bitslip Delay in the Round-Trip Delay Calculation
The Tx bitslip delay that a CPRI RE slave adds to the delay through the transceiver 
transmitter compensates for the word aligner bitslip delay in the transceiver receiver. 
The total of these two bit values is added to a detailed round-trip delay calculation, 
because the two delays are included in the respective transceiver delay. However, the 
total of these two bit values does not reach the duration of a single cpri_clkout cycle, 
nor does it reach the threshold of the CPRI specification R-20 and R-21 requirements. 
The bitslip delay is noticeable only with an oscilloscope.

Refer to “Tx Bitslip Delay” on page E–14 for the details of this feature.

Dynamic Pipelining for Automatic Round-Trip Delay Calibration
The CPRI IP core provides an additional, optional mechanism to help minimize the 
variation in the round-trip delay through a CPRI REC or RE master. The CPRI IP core 
is configured with a set of n (currently five) pipelined registers following the Rx 
elastic buffer in the Rx path. This feature is turned off by default in the IP core 
parameter editor. When this feature is turned off, the calibration pointer latency is 
zero and you should deduct one cpri_clkout clock cycle from the T_R1 value as 
stated in Table E–3. If this feature is turned on and the cal_en bit in the CPRI_AUTO_CAL 
register has the value of 1, the autocalibration feature is active. The user programs the 
cal_rtd field of the CPRI_AUTO_CAL register with the expected number of cpri_clkout 
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cycles of round-trip delay. The CPRI IP core adjusts the number of pipeline registers 
the data passes through (in contrast to the number of registers it bypasses) to 
compensate for mismatches between the desired round-trip delay programmed in the 
cal_rtd field, and the actual round-trip delay recorded in the CPRI_ROUND_DELAY 
register. 

The cal_status field reports whether the CPRI IP core is successful in keeping the 
round-trip delay at the value you prescribed in the cal_rtd field. The value of the 
cal_status bits should remain at 2’b11. If the value does not remain at 2’b11, you 
should adjust the value in the cal_rtd field.Refer to Table 7–29 on page 7–14 for the 
full encoding of these status bits and how to determine whether to increase or 
decrease the value of cal_rtd.

Initially, the number of pipeline registers the CPRI IP core uses is one half the total 
number n of available register stages. This initial setting allows the CPRI IP core to 
adjust the number up or down as required, and adds n/2+1 latency cycles to the Rx 
path delay and the round-trip delay. The number of available register stages is five 
and the default number of register stages of delay is three.

Figure E–7 shows two example behaviors of the autocalibration feature. In the 
examples, the CPRI IP core changes the value of the pipeline read pointer in response 
to a change in the measured actual round-trip delay through the IP core. Figure E–7 
shows the CPRI IP core in the following three states:

1. In the initial state, the CPRI IP core sets the read pointer for the pipeline registers 
to the middle register. 

2. In Case 1, the application writes the value of 60 in the cal_rtd field. When the 
CPRI IP core measures the actual round-trip delay and sets the 
rx_round_trip_delay field in the CPRI_ROUND_DELAY register to the value of 61, the 
CPRI IP core responds by moving the read pointer to decrease the pipeline length, 
and therefore the measured round-trip delay value, by one cpri_clkout cycle. The 
adjustment achieves the desired effect: the measured round-trip delay value 
changes to 60.

3. In Case 2, the application writes the value of 62 in the cal_rtd field, instead. When 
the CPRI IP core measures the actual round-trip delay and sets the 
rx_round_trip_delay field in the CPRI_ROUND_DELAY register to the value of 61, the 
CPRI IP core responds by moving the read pointer to increase the pipeline length, 
and therefore the measured round-trip delay value, by one cpri_clkout cycle. The 
adjustment achieves the desired effect: the measured round-trip delay value 
changes to 62.

Figure E–7. Round-Trip Delay Autocalibration Examples
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Measured RTD = 61 Measured RTD = 61
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Round-Trip and Cable Delay Calculation Examples
This section shows you how to calculate the round-trip cable delay in your system. 
The CPRI_ROUND_DELAY register value and the Rx and Tx elastic buffer delays in the 
examples are derived from hardware. 

Round-Trip and Cable Delay Calculation Example 1: Two Stratix IV GX Devices
The example walks through the calculation for the case of two link partner CPRI IP 
cores configured on Stratix IV GX devices, in a single-hop configuration, running at 
CPRI data rate 6.144 Gbps. In both devices, the rx_byte_delay field of the 
CPRI_RX_DELAY register has the value of 0 and the cal_en field of the CPRI_AUTO_CAL 
register has the value of 0. Both IP cores are configured with autorate negotiation 
disabled.

To calculate the round-trip cable delay in this system, perform the following steps:

1. Read the value in the rx_round_trip_delay field of the CPRI_ROUND_DELAY register 
(at register offset 0x38) of the REC master. For the example, the value is 0x6D, 
which is decimal 109. 

2. For each of the REC master and the RE slave, read the value in the 
rx_ex_buf_delay field of the CPRI_EX_DELAY_STATUS register (at register offset 
0x40) and the value in the ex_delay field of the CPRI_EX_DELAY_CONFIG register. 
Read the rx_ex_buf_delay field only after the ex_buf_delay_valid bit in the 
register is high. 

3. For each of the REC master and the RE slave, divide the value in the 
rx_ex_buf_delay register field by the value in the ex_delay register field. The 
result is the current Rx elastic buffer delay in cpri_clkout cycles. In this example, 
the Rx elastic buffer delay in the REC master is 10.5 cpri_clkout cycles, and the Rx 
elastic buffer delay in the RE slave is 31 cpri_clkout cycles.

4. Calculate the Rx path delay through the RE slave, by following the steps in 
“Calculation Example: Rx Path Delay to AUX Output” on page E–9. 

In this example, the value in the rx_bitslipboundaryselectout field of the 
CPRI_TX_BITSLIP register is 0x8. Therefore, according to Table E–1 on page E–5, 
and the table notes that describe how to calculate Tx_txv_RX in the case that 
rx_bitslipboundaryselectout has a non-zero value, the correct value of 
T_txv_RX is 7 cpri_clkout cycles. 

According to Table E–3 on page E–8, the correct value of T_R1 is 5 cpri_clkout 
cycles. The Rx buffer delay is 10.5 cpri_clkout cycles, the rx_byte_delay register 
field value is 0, and the cal_pointer register field value is 3, yielding a total delay 
of 25.5 cpri_clkout cycles.

25.5 = <fixed T_txv_RX delay through transceiver> + <Rx buffer delay> + 0 + 3 + <fixed 
core delay>

 = 7 + 10.5 + 3 + 5

5. Calculate the Rx path delay through the REC master, by following the steps in 
“Calculation Example: Rx Path Delay to AUX Output” on page E–9. 

In this example, the value in the rx_bitslipboundaryselectout field of the 
CPRI_TX_BITSLIP register is 0x7. Therefore, according to Table E–1 on page E–5, 
and the table notes that describe how to calculate Tx_txv_RX in the case that 
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rx_bitslipboundaryselectout has a non-zero value, the correct value of 
T_txv_RX is 7.025 cpri_clkout cycles. 

The Rx buffer delay is 31 cpri_clkout cycles, yielding a total delay of 47.6 
cpri_clkout cycles. 

46.025 = <fixed transceiver delay> + <Rx buffer delay> + 0 + 3 + <fixed core delay>
 = 7.025 + 31 + 0 + 3 + 5

6. For each of the REC master and the RE slave, read the value in the 
tx_ex_buf_delay field of the CPRI_EX_DELAY_STATUS register (at register offset 
0x40) and the value in the ex_delay field of the CPRI_EX_DELAY_CONFIG register. 
Read the tx_ex_buf_delay field only after the ex_buf_delay_valid bit in the 
register is high.

7. For each of the REC master and the RE slave, divide the value in the 
tx_ex_buf_delay register field by the value in the ex_delay register field. The 
result is the current Tx elastic buffer delay in cpri_clkout cycles. In this example, 
the Tx elastic buffer delay in the REC master is 6.5 cpri_clkout cycles, and the Tx 
elastic buffer delay in the RE slave is 7.5 cpri_clkout cycles. 

8. Calculate the Tx path delay through the REC master. 

In this example, the value in the tx_bitslipboundaryselect field of the 
CPRI_TX_BITSLIP register is 0. Therefore, according to Table E–7 on page E–16, the 
correct value of T_txv_TX is 3.6 cpri_clkout cycles. 

According to Table E–6 on page E–14, the correct value of T_T4 is 7 cpri_clkout 
cycles. You calculated the Tx elastic buffer delay in steps 6 and 7.

Tx path delay = T_T4 + <Tx elastic buffer delay> + T_txv_TX = 7 + 6.5 + 3.6 = 17.1

9. Calculate the Tx path delay through the RE slave. 

In this example, the value in the tx_bitslipboundaryselect field of the 
CPRI_TX_BITSLIP register is 0xE (decimal 14). Therefore, according to Table E–7 on 
page E–16, the correct value of T_txv_TX is 3.95 cpri_clkout cycles. 

Because the device family is the same for the REC master and the RE slave in this 
example, they have the same T_T4 delay. You calculated the Tx elastic buffer delay 
in steps 6 and 7. 

Tx path delay = T_T4 + <Tx elastic buffer delay> + T_txv_TX = 7 + 7.5 + 3.95 = 18.45

10. Calculate 
T14 = rx_round_trip_delay – <REC Rx path delay> – <REC Tx path delay>

= 109 – 46.025 – 17.1 
= 45.875 cpri_clkout cycles

11. Calculate
Toffset = <RE Rx path delay> + <RE Tx path delay> + <loopback delay>,

= 25.5 + 18.45 + 1
= 44.95 cpri_clkout cycles

12. Perform the final calculation. Calculate
Round-trip cable delay = T14 – Toffset

= 45.875 – 44.95
= 0.925 cpri_clkout cycles
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Single-Hop Delay Measurement
Round-Trip and Cable Delay Calculation Example 2: Two Arria II GX Devices
This example shows the calculation for the case of two link partner CPRI IP cores 
configured with autorate negotiation enabled on Arria II GX devices, in a single-hop 
configuration, running at CPRI data rate 3.072 Gbps. In both devices, the cal_en field 
of the CPRI_AUTO_CAL register has the value of 0, and the rx_byte_delay field has the 
value of 1.

The calculation is identical to the calculation in Example 1, except that the fixed and 
transceiver delays are different in Arria II GX devices than in Stratix IV GX devices. In 
addition, Example 2 has a different value in the rx_round_trip_delay register field. In 
your own system, the Rx elastic buffer and Tx elastic buffer delays may also vary. 

To calculate the round-trip cable delay in this system, perform the steps in 
“Round-Trip and Cable Delay Calculation Example 1: Two Stratix IV GX Devices”, 
replacing values according to Table E–9. The final row of Table E–9 shows the 
calculated cable delay.

Table E–9. Example 2 Data and Calculations

Calculation 
Component Delay Component Relevant Register Value or Source Table Delay Total 

(decimal)

Round trip delay rx_round_trip_delay = 0x85 133

REC Tx path delay

T_T4 Table E–6 on page E–14 6.5

18.5Tx buffer delay tx_ex_buf_delay = 0x46A 8.90

T_txv_TX tx_bitslipboundaryselect = 0x0
Table E–7 on page E–16 3.1

REC Rx path delay

T_txv_RX rx_bitslipboundaryselectout = 0x8
Table E–1 on page E–5 5.5

46.75
Rx buffer delay rx_ex_buf_delay = 0x1000 32.25

Calibration pointer cal_pointer = 3 3

Byte alignment rx_byte_delay = 1 1

T_R1 Table E–3 on page E–8 5

T14 (Round trip delay minus REC Tx path delay minus REC Rx path delay) 67.75

RE Tx path delay

T_T4 Table E–6 on page E–14 6.5

18.585Tx buffer delay tx_ex_buf_delay = 0x46B 8.91

T_txv_TX tx_bitslipboundaryselect = 0x3
Table E–7 on page E–16 3.175

RE Rx path delay

T_txv_RX rx_bitslipboundaryselectout = 0x8
Table E–1 on page E–5 5.5

47.35
Rx buffer delay rx_ex_buf_delay = 0x104C 32.85

Calibration pointer cal_pointer = 3 3

Byte alignment rx_byte_delay = 1 1

T_R1 Table E–3 on page E–8 5

Loopback delay on RE slave 1

Toffset (RE Tx path delay + RE Rx path delay + loopback delay) 66.935

Cable delay (T14 minus Toffset) 0.815
June 2014 Altera Corporation CPRI IP Core
User Guide



E–24 Appendix E: Delay Measurement and Calibration
Single-Hop Delay Measurement
Round-Trip and Cable Delay Calculation Example 3: Two Different Device 
Families
This example shows the calculation for the case of two link partner CPRI IP cores 
configured with autorate negotiation enabled in a single-hop configuration, running 
at CPRI data rate 3.072 Gbps. The REC master is configured on a Stratix IV GX device 
and the RE slave is configured on an Arria II GX device. In both devices, the cal_en 
field of the CPRI_AUTO_CAL register has the value of 0 and the rx_byte_delay field of 
the CPRI_RX_DELAY register has the value of 0.

The calculation is identical to the calculation in Examples 1 and 2, except that the fixed 
and transceiver delays are different for the two different devices, so the fixed parts of 
the Rx path delay and Tx path delay are different on the two devices. In addition, 
Example 3 has a different value in the rx_round_trip_delay register field. In your 
own system, the Rx elastic buffer delay and Tx elastic buffer delay may also vary. 

To calculate the round-trip cable delay in this system, perform the steps in 
“Round-Trip and Cable Delay Calculation Example 1: Two Stratix IV GX Devices”, 
replacing values according to Table E–10. The final row of Table E–10 shows the 
calculated cable delay.
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Single-Hop Delay Measurement
Round-Trip and Cable Delay Calculation Example 4: Two Different Device 
Families
This example describes the calculation for the case of two link partner CPRI IP cores 
configured with autorate negotiation enabled in a single-hop configuration, running 
at CPRI data rate 3.072 Gbps. The REC master is configured on an Arria II GX device 
and the RE slave is configured on a Stratix IV GX device.

The calculation is identical to the calculation in Example 3, except that the register 
values vary, and different table columns are relevant in Table E–1, Table E–3, 
Table E–6, and Table E–7.

Table E–10. Example 3 Data and Calculations

Calculation 
Component Delay Component Relevant Register Value or Source Table Delay Total

(decimal)

Round trip delay rx_round_trip_delay = 0x69 105

REC Tx path delay

T_T4 Table E–6 on page E–14 7

18.10Tx buffer delay tx_ex_buf_delay = 0x3B9 7.50

T_txv_TX tx_bitslipboundaryselect = 0x0
Table E–7 on page E–16 3.6

REC Rx path delay

T_txv_RX rx_bitslipboundaryselectout = 0x8
Table E–1 on page E–5 7

47.25
Rx buffer delay rx_ex_buf_delay = 0x1000 32.25

Calibration pointer cal_pointer = 3 3

Byte alignment rx_byte_delay = 0 0

T_R1 Table E–3 on page E–8 5

T14 (Round trip delay minus REC Tx path delay minus REC Rx path delay) 39.65

RE Tx path delay

T_T4 Table E–6 on page E–14 6.5

18.585Tx buffer delay tx_ex_buf_delay = 0x46B 8.91

T_txv_TX tx_bitslipboundaryselect = 0x3
Table E–7 on page E–16 3.175

RE Rx path delay

T_txv_RX rx_bitslipboundaryselectout = 0x5
Table E–1 on page E–5 5.575

19.475
Rx buffer delay rx_ex_buf_delay = 0x2ED 5.90

Calibration pointer cal_pointer = 3 3

Byte alignment rx_byte_delay = 0 0

T_R1 Table E–3 on page E–8 5

Loopback delay on RE slave 1

Toffset (RE Tx path delay + RE Rx path delay + loopback delay) 39.06

Cable delay (T14 minus Toffset) 0.59
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Single-Hop Delay Measurement
To calculate the round-trip cable delay in this system, perform the steps in 
“Round-Trip and Cable Delay Calculation Example 1: Two Stratix IV GX Devices”, 
replacing values according to Table E–11. The final row of Table E–11 shows the 
calculated cable delay.

Table E–11. Example 4 Data and Calculations

Calculation 
Component Delay Component Relevant Register Value or Source Table Delay Total

(decimal)

Round trip delay rx_round_trip_delay = 0x6D 109

REC Tx path delay

T_T4 Table E–6 on page E–14 6.5

16.1Tx buffer delay tx_ex_buf_delay = 0x33A 6.50

T_txv_TX tx_bitslipboundaryselect = 0x0
Table E–7 on page E–16 3.1

REC Rx path delay

T_txv_RX rx_bitslipboundaryselectout = 0x2
Table E–1 on page E–5 5.65

44.23
Rx buffer delay rx_ex_buf_delay = 0xF2C 30.58

Calibration pointer cal_pointer = 3 3

Byte alignment rx_byte_delay = 0 0

T_R1 Table E–3 on page E–8 5

T14 (Round trip delay minus REC Tx path delay minus REC Rx path delay) 48.67

RE Tx path delay

T_T4 Table E–6 on page E–14 7

19.79
Tx buffer delay tx_ex_buf_delay = 0x46B 8.94

T_txv_TX
tx_bitslipboundaryselect = 0xA 
(decimal 10)
Table E–7 on page E–16

3.85

RE Rx path delay

T_txv_RX rx_bitslipboundaryselectout = 0x7
Table E–1 on page E–5 7.025

27.025
Rx buffer delay rx_ex_buf_delay = 0x5F4 12

Calibration pointer cal_pointer = 3 3

Byte alignment rx_byte_delay = 0 0

T_R1 Table E–3 on page E–8 5

Loopback delay on RE slave 1

Toffset (RE Tx path delay + RE Rx path delay + loopback delay) 47.815

Cable delay (T14 minus Toffset) 0.855
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Multi-Hop Delay Measurement
Multi-Hop Delay Measurement
In a multihop system, you must combine the delays between and through the 
different CPRI masters and CPRI RE slaves to determine the round-trip delay. 

Round-Trip Delay Calculation
The value in the rx_round_trip_delay field of the CPRI_ROUND_DELAY register is 
meaningful only in CPRI REC and RE masters. It records the round-trip delay for the 
current hop only, as shown in Figure E–1 on page E–2. 

To determine the round-trip delay of a full multihop system, you must add together 
the values in the CPRI_ROUND_DELAY registers of the REC and RE masters in the system, 
plus the delays through the external routers, and subtract the loopback delay from all 
the hops except the final hop. Use the following calculation, based on the labels in 
Figure E–2 on page E–2:

Round-trip delay = ∑ rx_round_trip_delay (hop i) + ∑ (TBdelayUL + TBdelayDL)(j)
– n

where the REC and RE masters in the configuration are labeled i=0,1,...,n and the 
routing layers in the configuration, and their uplink and downlink delays, are labeled 
j=0,1,...,(n-1). 

As the equation shows, you must omit the loopback delay of one cpri_clkout cycle 
from the single-hop calculation for all but the final pair of CPRI link partners. The 
loopback delay is only relevant at the turnaround point of the full multihop path. 

Round-Trip Cable Delay Calculation
To determine the local round-trip cable delay at each hop, use the method described 
in “Round-Trip and Cable Delay Calculation Examples”, for the REC or RE master 
and the RE slave at the current hop. Half of the resulting value is assumed to be the 
cable delay in each direction at the current hop.

The round-trip cable delay is the sum of all the local round-trip cable delays in the 
multihop path.
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Multi-Hop Delay Measurement
Two-Hop Round-Trip and Cable Delay Calculation Example
This section walks through an example calculation for the system shown in 
Figure E–8. 

In the example, all of the four CPRI IP cores are configured with autorate negotiation 
enabled and are running at CPRI data rate 3.072 Gbps.

Example calculations for the first hop appear in “Round-Trip and Cable Delay 
Calculation Example 3: Two Different Device Families” on page E–24. Example 
calculations for the second hop appear in “Round-Trip and Cable Delay Calculation 
Example 2: Two Arria II GX Devices” on page E–23. 

Assuming the multihop system has the same register values as in these two 
single-hop examples, you calculate the multihop round-trip delay and total cable 
delay as follows:

Round-trip delay = ∑ rx_round_trip_delay (hop i) + ∑ (TBdelayUL + TBdelayDL)(j)
– n

= (105 + 132) + TBdelayUL + TBdelayDL – 1

= 236 cpri_clkout cycles + TBdelayUL + TBdelayDL

Total round-trip CPRI-link cable delay = 0.590944882 + 0.819488189 

= 1.401433071 cpri_clkout cycles

The CPRI IP core does not provide a mechanism to measure the delays through the 
external routing layer.

Figure E–8. Two-Hop System for Multihop Delay Calculation Example
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F. Integrating the CPRI IP Core Timing
Constraints in the Full Design
When you generate your CPRI IP core variation, the Quartus II software generates a 
Synopsys Design Constraints File (.sdc) that specifies the timing constraints for the 
input clocks to your IP core. At the time you generate the CPRI IP core, your design is 
not yet complete and the CPRI IP core is not yet connected in the design. The final 
clock names and paths are not yet known, and therefore the Quartus II software 
cannot incorporate the final signal names in the .sdc file it generates automatically.

Instead, you must modify the clock signal names in this file manually to integrate 
these constraints with the timing constraints for your full design.

This appendix describes by example how to integrate the timing constraints that the 
Quartus II software generates with your CPRI IP core into the timing constraints for 
your design. 

For a list of the input clocks to the CPRI IP core, refer to Table 4–1 on page 4–3.

In the Quartus II software release v12.0 and later, the automatically generated 
altera_cpri.sdc file contains the CPRI IP core timing constraints.

For a CPRI IP core with a single antenna-carrier interface that runs at the CPRI line 
rate of 3.072 Gbps and targets an Arria II GX device, the Quartus II software v12.0 
generates an altera_cpri.sdc file with the following timing constraints:

#ALTGX Transceiver Reference Clock
create_clock -name gxb_refclk -period 6.510 -waveform {0.000 3.255} [get_ports 
gxb_refclk]

#Clock from Clean-Up PLL (RE slave only)
create_clock -name gxb_pll_inclk -period 6.510 -waveform {0.000 3.255} [get_ports 
gxb_pll_inclk]

#ALTGX Calibration Block Clock (10MHz to 125 MHz)
create_clock -name gxb_cal_blk_clk -period 8.000 -waveform {0.000 4.000} 
[get_ports gxb_cal_blk_clk]

#ALTGX_RECONFIG Clock (37.5MHz to 50MHz)
create_clock -name reconfig_clk -period 20.000 -waveform {0.000 10.000} 
[get_ports reconfig_clk]

#CPRI CPU Clock
create_clock -name cpu_clk -period 32.552 -waveform {0.000 16.276} [get_ports 
cpu_clk]

#Extended Delay Measurement Clock
create_clock -name clk_ex_delay -period 13.123 -waveform {0.000 6.562} [get_ports 
clk_ex_delay]

#Data Mapping Clock
create_clock -name map0_tx_clk -period 260.416 -waveform {0.000 130.208} 
[get_ports map0_tx_clk]

create_clock -name map0_rx_clk -period 260.416 -waveform {0.000 130.208} 
[get_ports map0_rx_clk]

derive_pll_clocks

derive_clock_uncertainty
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F–2 Appendix F: Integrating the CPRI IP Core Timing Constraints in the Full Design
set_false_path -from * -to *sync
set_false_path -from * -to *sync[*]
set_false_path -from * -to *sync1
set_false_path -from * -to *sync1[*]
set_false_path -from * -to *s0
set_false_path -from * -to *s0[*]

create_generated_clock -name txclk_div2 -source [get_pins -compatibility_mode 
*transmit_pcs0|clkout] -divide_by 2 [get_registers *txclk_div2]

derive_clock_uncertainty

set_clock_groups -exclusive -group txclk_div2 -group *receive_pcs0|clkout
set_clock_groups -exclusive -group *transmit_pcs0|clkout -group 
*receive_pcs0|clkout
set_clock_groups -asynchronous -group cpu_clk -group txclk_div2
set_clock_groups -asynchronous -group map*_clk -group txclk_div2
set_clock_groups -asynchronous -group clk_ex_delay -group {txclk_div2 
*transmit_pcs0|clkout *receive_pcs0|clkout}
set_clock_groups -asynchronous -group reconfig_clk -group txclk_div2

When you embed your CPRI IP core variation in your full design, you drive the CPRI 
IP core clocks directly from the top-level signals of the design or indirectly through 
internal logic. The timing constraints for your full design must reference the clock 
names relative to the full design hierarchy. 

Figure F–1 shows an example design that contains the example CPRI IP core 
variation. 

Table F–1 lists the correspondence between the clock names in the .sdc file and the 
signal names in the full design. 

Figure F–1. Clocks Driving CPRI IP Core Clocks in Example Full Design

Table F–1. Stand-Alone IP Core Clock Names and Example Design Clock Names (Part 1 of 2)

Stand-Alone IP Core Clock Name Full Design Clock Name

gxb_refclk cpri_ref_clk

gxb_pll_inclk cleaned_clkin

gxb_cal_blk_clk clkin_50mhz

reconfig_clk clkin_50mhz

gxb_refclk CPRI IP Corecpri_ref_clk

gxb_pll_inclk

gxb_cal_blk_clk

reconfig_clk

cpu_clk

clk_ex_delay

map0_tx_clk

map0_rx_clk

cleaned_clkin

clkin_50mhz

PLL2

PLL1

cpri_0_inst
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After you complete your design, you must modify the clock names in the .sdc file to 
the full-design clock names, taking into account both the CPRI IP core instance name 
in the full design, and the design hierarchy. After you make the required 
modifications, the example .sdc file contains the following substitute timing 
constraints:

#ALTGX Transceiver Reference Clock
create_clock -name cpri_ref_clk -period 6.510 -waveform {0.000 3.255} [get_ports 
cpri_ref_clk]

#Clock from Clean-Up PLL (RE slave only)
create_clock -name cleaned_clkin -period 6.510 -waveform {0.000 3.255} [get_ports 
cleaned_clkin]

#50MHz Clock to Drive Calibration Block Clock, CPU Clock, and Reconfig Clock
create_clock -name clkin_50mhz -period 20.000 -waveform {0.000 10.000} [get_ports 
clkin_50mhz]

derive_pll_clocks

derive_clock_uncertainty

set_false_path -from * -to *cpri_0_inst*sync
set_false_path -from * -to *cpri_0_inst*sync[*]
set_false_path -from * -to *cpri_0_inst*sync1
set_false_path -from * -to *cpri_0_inst*sync1[*]
set_false_path -from * -to *cpri_0_inst*s0
set_false_path -from * -to *cpri_0_inst*s0[*]

create_generated_clock -name txclk_div2 -source [get_pins -compatibility_mode 
*cpri_0_inst*transmit_pcs0|clkout] -divide_by 2 [get_registers 
*cpri_0_inst*txclk_div2]

derive_clock_uncertainty

set_clock_groups -exclusive -group txclk_div2 -group 
*cpri_0_inst*receive_pcs0|clkout
set_clock_groups -exclusive -group *cpri_0_inst*transmit_pcs0|clkout -group 
*cpri_0_inst*receive_pcs0|clkout
set_clock_groups -asynchronous -group clkin_50mhz -group txclk_div2
set_clock_groups -asynchronous -group pll1|clk[0] -group txclk_div2
set_clock_groups -asynchronous -group pll2|clk[0] -group {txclk_div2 
*cpri_0_inst*transmit_pcs0|clkout *cpri_0_inst*receive_pcs0|clkout}

The example illustrates the following guidelines you must follow when finalizing the 
.sdc file for your design:

■ The CPRI IP core clock ports are not in one-to-one correspondence with the full 
design input clock ports. You must use the correspondence between the 
stand-alone IP core clocks and the full design clocks to define the integrated 
design timing constraints for the external clocks that drive CPRI IP core clocks 
directly.

cpu_clk clkin_50mhz

clk_ex_delay pll1|clk[0]

map0_tx_clk pll2|clk[0]

map0_rx_clk pll2|clk[0]

Table F–1. Stand-Alone IP Core Clock Names and Example Design Clock Names (Part 2 of 2)

Stand-Alone IP Core Clock Name Full Design Clock Name
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■ To integrate timing constraints with wild cards that identify lower level nodes in 
the CPRI IP core, you must modify each lower level node designator with the 
CPRI IP core instance name to ensure the new file constraints the correct design 
instance of each CPRI IP core signal name.

After you perform the manual mapping and custmize the .sdc file according to this 
correspondence, your file contains the correct timing constraints for the CPRI IP core 
in your full design.
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G. Porting a CPRI IP Core from the
Previous Version of the Software
This appendix describes how to port your CPRI IP core from the previous version of 
the Quartus II software. In some software releases, new parameters are added to the 
IP core. In those cases, the instructions include the information required to set the new 
parameters to backward compatible values. 

To upgrade your CPRI IP core that you developed and generated using the Quartus II 
software v13.0, to the IP core v13.1, use the IP Upgrade process provided in the 
Quartus II software, or manually perform the following steps:

1. Open the Quartus II software v13.1.

2. On the File menu, click Open Project.

3. Navigate to the location of the .qpf file you generated with the Quartus II software 
v13.0.

4. Select the .qpf file and click Open.

5. In the Quartus II Project Navigator, click the IP Components tab.

6. Double-click the IP variation for edit. The parameter editor appears.

7. Click Finish.

8. Proceed with simulation and compilation of your design.
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Additional Information
This chapter provides additional information about the document and Altera.

Document Revision History
The following table shows the revision history for this user guide.
.

Date Version Changes Made

June 2014 2014.06.30

■ Replaced MegaWizard Plug-In Manager information with IP Catalog.

■ Added standard information about upgrading IP cores.

■ Added standard installation and licensing information.

December 2013 13.1

■ Updated latency numbers in Appendix E, Delay Measurement and Calibration for the 
13.1 release.

■ Removed support for HardCopy IV GX devices.

■ Updated Chapter 8, CPRI IP Core Demonstration Testbench to describe the new 
streamlined CPRI IP core demonstration testbench. This testbench exercises HDLC 
functionality. 

■ Added new appendix, Appendix C, CPRI Autorate Negotiation Testbench to describe 
the legacy CPRI IP core autorate negotiation demonstration testbench.

■ Corrected description of CPRI_MAP_CONFIG register to add register field 
map_tx_start_mode in Table 7–31 on page 7–15. This register field is present in the 
CPRI IP core starting with software release v11.1. 

■ Updated “Operation Mode Parameter” on page 3–2, the introduction to “Clocking 
Structure” on page 4–3, and “Dynamically Switching Clock Mode” on page 4–9 to 
clarify that dynamic clock switching — switching between master and slave clocking 
modes — is available only in CPRI IP core variations that target an Arria V device, a 
Cyclone V device, or a Stratix V device. 

■ Updated Table 1–3 on page 1–5 to indicate the potential difficulty of achieving timing 
closure on a 9.8304 Gbps CPRI IP core variation that targets an Arria V GT device. 

■ Fixed typos in Table E–1 on page E–5 and in Table E–7 on page E–16 by removing 
redundant header information inside a table entry. 

July 2013 13.0 SP1

■ Corrected latency numbers in Appendix D, Delay Measurement and Calibration and 
reorganized this section. 

■ Updated improved resource utilization performance numbers.

■ Added two new parameters: Include automatic round-trip delay calibration logic and 
Include Vendor Specific Space (VSS) access through CPU interface.

■ Corrected Include MAC block setting for tb_altera_cpri_autorate_98G_phy testbench 
in Table 8–6 on page 8–9. 

■ Removed incorrect statement that Analog controls must be turned on for 
altgx_reconfig to connect correctly, in “Supporting the Transceivers” on page 2–5. 

■ Corrected pll_clkout frequencies in Arria V GT devices in Table 4–2 on page 4–10. 

March 2013 12.1 SP1 ■ Updated latency numbers in Appendix D, Delay Measurement and Calibration.
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Document Revision History
February 2013 12.1 SP1

■ Added support for the CPRI V5.0 Specification in “General Description” on page 1–2 
and “CPRI IP Core Features” on page 1–3. Updated Figure 4–25 on page 4–47 to 
include Ctrl_AxC bytes in control word, a new feature in the V5.0 specification. 
Updated Chapter 4, Functional Description mentions that features comply with the 
CPRI specification, to indicate the V5.0 specification where appropriate. Clarified that 
the CPRI IP core MAP interface does not implement the GSM mapping feature of the 
V5.0 specification. You must implement GSM mapping in communication through the 
IP core AUX interface.

■ Added support for Arria V GZ devices at CPRI line rates up through 9.8304 Gbps, with 
autorate negotiation support among all of these line rates. (Support for the 
9.8304 Gbps CPRI line rate is new in the 12.1 SP1 release).

■ Added autorate negotiation support for Arria V GT devices to and from CPRI line rate 
9.8304 Gbps. Updated Appendix B, Implementing CPRI Link Autorate Negotiation with 
the additional requirements for this case. Arria V GT variations configured with the 
CPRI line rate of 9.8304 Gbps cannot negotiate down to a CPRI line rate of 
0.6144 Gbps. (Autorate negotiation support at this CPRI line rate is new in the 
12.1 SP1 release).

■ Added support for Cyclone V GX devices at CPRI line rates up through 3.072 Gbps, 
with autorate negotiation support among all of these line rates. (Cyclone V GX device 
support is new in the 12.1 release).

■ Documented support for new dynamic master–slave clock mode and slave–master 
clock mode switching capability in new section “Dynamically Switching Clock Mode” 
on page 4–9 and in update to description of CPRI_CONFIG register (offset 0x8) in 
Table 7–6 on page 7–4.

■ Documented support for new slave IP core self-synchronization feature in new section 
“Achieving Link Synchronization Without an REC Master” on page 5–4 and in update 
to description of CPRI_CONFIG register (offset 0x8) in Table 7–6 on page 7–4.

■ Documented new register access method to full CPRI frame control word in updated 
“Accessing the Hyperframe Control Words” on page 4–43 and in update to 
descriptions of CPRI_CTRL_INDEX register (offset 0xC) in Table 7–7 on page 7–5, 
CPRI_RX_CTRL register (offset 0x10) in Table 7–8 on page 7–6, and CPRI_TX_CTRL 
register (offset 0x14) in Table 7–9 on page 7–6.

■ Updated Chapter 8, Testbenches with new testbench 
tb_altera_cpri_autorate_98G_phy, which demonstrates autorate negotiation in 
Arria V GT devices configured at the CPRI line rate of 9.8304 Gbps. (This testbench is 
new in the 12.1 SP1 release).

■ Updated “Running the Testbenches” on page 8–8 to document new testbench flow for 
all four Altera-supported simulators.

Continued...

Date Version Changes Made
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Document Revision History
February 2013, 
continued

12.1 SP1, 
continued

■ Updated Appendix B, Implementing CPRI Link Autorate Negotiation with new 
information about configuring the Altera Transceiver Reconfiguration Controller in 
Arria V GX and Arria V GT devices. 

■ Updated Figure 8–6 on page 8–5 to reflect new PHY autorate negotiation testbench 
handling of Altera Transceiver Reconfiguration Controller. 

■ Separated master and slave clocking diagrams for Arria V GT variations with CPRI line 
rate 9.8304 Gbps and added detail. New figures are Figure 4–4 on page 4–8 and 
Figure 4–5 on page 4–9.

■ Updated Appendix D, Delay Measurement and Calibration for new release.

■ Moved instructions to create assignments for high-speed transceiver VCCH settings 
from “Specifying Parameters” on page 2–2 to “Specifying Constraints” on page 2–6.

■ Moved instructions for instantiating additional transceiver support IP cores from 
“Specifying Parameters” on page 2–2 to new section “Supporting the Transceivers” 
on page 2–5.

■ Placed “Specifying Constraints” and “Supporting the Transceivers” in new section 
“Integrating the CPRI IP Core in a Design” on page 2–5.

■ Fixed expected reconfig_clk frequency in Arria V, Cyclone V, and Stratix V designs, 
in Table 6–14 on page 6–15. 

■ Fixed description of CPRI_EX_DELAY_CONFIG register (Table 7–19 on page 7–10) to 
unify tx_ex_delay and rx_ex_delay fields into single register field ex_delay, and 
updated all references to the field name. 

■ Updated description of CPRI_EX_DELAY_STATUS register (Table 7–20 on page 7–10) 
to unify tx_ex_buf_delay_valid and rx_ex_buf_delay_valid fields into single 
register field ex_buf_delay_valid, and updated all references to the field name. 

■ Fixed description of cpu_irq_vector[4:0] in Table 6–8 on page 6–11. 

■ Fixed assorted typos. 

Date Version Changes Made
June 2014 Altera Corporation CPRI IP Core
User Guide



Info–4 Additional InformationAdditional Information
Document Revision History
May 2012 12.0

■ Added CPRI line rate of 9.8 Gbps in Arria V GT and Stratix V devices.

■ Added support for autorate negotiation up to 6.144 Gbps in Arria V devices.

■ Added support for autorate negotiation up to 9.8 Gbps in Stratix V devices.

■ Added new parameter to specify inclusion or exclusion of an HDLC block.

■ Added new parameter to specify the MAP interface mapping mode.

■ Updated Figure 4–27 on page 4–56, CPRI Frame Synchronization Machine, to include 
the descrambling conditions and remove a redundant state.

■ Updated Figure 4–14 on page 4–27 and discussion of MAP interface TX synchronous 
buffer mode to encourage the application to assert mapN_tx_resync and 
mapN_tx_valid simultaneously.

■ Updated clocks presentation in “Clocking Structure” on page 4–3 and separated from 
reset signals presentation.

■ Updated Chapter 8, Testbenches with new testbenches for Arria V and Stratix V 
devices.

■ Moved information about loopback modes and PRBS generation and testing from 
Chapter 4, Functional Description to new Chapter 5, Testing Features.

■ Moved information about the advanced AxC mapping modes from Chapter 4, 
Functional Description to new appendix Appendix C, Advanced AxC Mapping Modes 
and updated the presentation.

■ Moved information about the RX delay measurement and TX delay calibration from 
Chapter 4, Functional Description to new appendix Appendix D, Delay Measurement 
and Calibration.

■ Added new appendix Appendix E, Integrating the CPRI IP Core Timing Constraints in 
the Full Design.

■ Reordered sections in Chapter 4, Functional Description to emphasize the MAP and 
AUX interfaces and to group together the modules accessed through the CPU 
interface.

■ Reordered presentation of signals in Chapter 6, Signals to reflect order in Chapter 4, 
Functional Description.

■ Enhanced description of control word access through CPU interface in new section 
“Accessing the Hyperframe Control Words” on page 4–42.

■ Updated description of Ethernet communication through the CPU interface in 
“Accessing the Ethernet Channel” on page 4–47.

■ Moved “Reset Control Word” on page 4–57 from Reset section of “Reset 
Requirements” on page 4–11 to “CPRI Protocol Interface Layer (Physical Layer)” on 
page 4–51.

Date Version Changes Made
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Document Revision History
November 2011 11.1

■ Added support for Arria V and Stratix V devices.

■ Added information about new transceiver IP (the Altera Deterministic Latency PHY IP 
core) in Arria V and Stratix V variations.

■ Added Tx elastic buffer and Tx extended delay measurement information.

■ Updated clocking diagrams with Tx elastic buffer and removal of divider on 
transceiver-side clock before clocking Rx and Tx elastic buffers. Consolidated from six 
figures to two.

■ Added information about new delay measurement features to enhance the consistency 
of the round-trip delay through a CPRI RE slave: Tx bitslip, autocalibration.

■ Added new registers CPRI_TX_BITSLIP and CPRI_AUTO_CAL to support new 
features.

■ Removed use of the rx_byte_delay field in the CPRI_RX_DELAY register from the 
RX path delay calculation.

■ Added new advanced Method 1 mapping mode and updated map_mode encodings.

■ Added new parameter to enable clocking AxC interfaces with cpri_clkout. The 
resulting new synchronization mode requires a new signal, mapN_rx_start, per AxC 
interface.

■ Added timing diagrams for three synchronization modes on MAP interface and for 
cpri_tx_sync_rfp response behavior.

■ Added information about data order on the AUX interface.

■ Enhanced PRBS mode description.

■ Added Loopback Modes section in Functional Description chapter.

■ Updated Appendix C, Porting a CPRI IP Core from the Previous Version of the 
Software.

■ Refered to new What’s New in Altera IP page for information about IP core support 
level for some device families.

May 2011 11.0

■ Upgraded to final support for Arria II GZ and Cyclone IV GX devices.

■ Upgraded to HardCopy Compilation support for HardCopy IV GX devices.

■ Added byte-enable signal.

■ Added parameter to control WIDTH_RX_BUF.

■ Enhanced delay measurement and cpri_tx_sync_rfp signal descriptions.

■ Modified MII and frame synchronization machine descriptions.

■ Miscellaneous small fixes, including:

■ Updated address range for MAP and AUX interface configuration registers in 
Table 6–2 on page 6–1 to match individual register addresses as updated for v10.1.

■ Updated descriptions of frame synchronization machine and cpri_rx_cnt_sync 
signal.

■ Added Appendix C, Porting a CPRI IP Core from the Previous Version of the Software.

Date Version Changes Made
June 2014 Altera Corporation CPRI IP Core
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How to Contact Altera
How to Contact Altera
To locate the most up-to-date information about Altera products, refer to the 
following table.

Typographic Conventions
The following table shows the typographic conventions this document uses.

December 2010 10.1

■ Added support for Arria II GZ devices.

■ Added support for additional CPRI data rates in Arria II GX devices.

■ Updated register addresses.

■ Added scrambler/descrambler support.

■ Enhanced descriptions of offset registers and delay calculations.

■ Added CPU interrupt for remote hardware reset.

■ Enhanced testbench suite to include one new testbench, to demonstrate autorate 
negotiation in Cyclone IV GX devices.

July 2010 10.0

■ Added support for Cyclone IV GX devices.

■ Added GUI parameter to enable autorate negotiation and two signals to support 
visibility of the feature status.

■ Enhanced descriptions of MII, MAP interface synchronous buffer mode, and use of 
AUX interface mask.

■ Enhanced testbench suite to include two new testbenches, to demonstrate operation 
with no MAP interface and to demonstrate autorate negotiation.

February 2010 9.1 SP1 Initial release.

Date Version Changes Made

Contact (1) Contact Method Address

Technical support Website www.altera.com/support

Technical training
Website www.altera.com/training

Email custrain@altera.com

Product literature Website www.altera.com/literature

Nontechnical support (general) Email nacomp@altera.com

(software licensing) Email authorization@altera.com

Note to Table:

(1) You can also contact your local Altera sales office or sales representative. 

Visual Cue Meaning

Bold Type with Initial Capital 
Letters

Indicate command names, dialog box titles, dialog box options, and other GUI 
labels. For example, Save As dialog box. For GUI elements, capitalization matches 
the GUI.

bold type
Indicates directory names, project names, disk drive names, file names, file name 
extensions, software utility names, and GUI labels. For example, \qdesigns 
directory, D: drive, and chiptrip.gdf file.
CPRI IP Core June 2014 Altera Corporation
User Guide
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Typographic Conventions
Italic Type with Initial Capital Letters Indicate document titles. For example, Stratix IV Design Guidelines.

italic type
Indicates variables. For example, n + 1.

Variable names are enclosed in angle brackets (< >). For example, <file name> and 
<project name>.pof file. 

Initial Capital Letters Indicate keyboard keys and menu names. For example, the Delete key and the 
Options menu. 

“Subheading Title” Quotation marks indicate references to sections in a document and titles of 
Quartus II Help topics. For example, “Typographic Conventions.”

Courier type

Indicates signal, port, register, bit, block, and primitive names. For example, data1, 
tdi, and input. The suffix n denotes an active-low signal. For example, resetn.

Indicates command line commands and anything that must be typed exactly as it 
appears. For example, c:\qdesigns\tutorial\chiptrip.gdf. 

Also indicates sections of an actual file, such as a Report File, references to parts of 
files (for example, the AHDL keyword SUBDESIGN), and logic function names (for 
example, TRI). 

r An angled arrow instructs you to press the Enter key.

1., 2., 3., and
a., b., c., and so on

Numbered steps indicate a list of items when the sequence of the items is important, 
such as the steps listed in a procedure. 

■ ■ ■ Bullets indicate a list of items when the sequence of the items is not important. 

1 The hand points to information that requires special attention. 

h The question mark directs you to a software help system with related information. 

f The feet direct you to another document or website with related information. 

m The multimedia icon directs you to a related multimedia presentation. 

c A caution calls attention to a condition or possible situation that can damage or 
destroy the product or your work.

w A warning calls attention to a condition or possible situation that can cause you 
injury.

The envelope links to the Email Subscription Management Center page of the Altera 
website, where you can sign up to receive update notifications for Altera documents.

The feedback icon allows you to submit feedback to Altera about the document. 
Methods for collecting feedback vary as appropriate for each document.

Visual Cue Meaning
June 2014 Altera Corporation CPRI IP Core
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