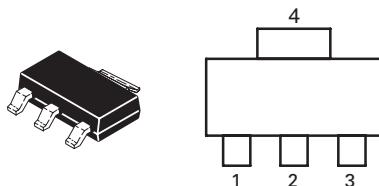


NYC222, NYC226, NYC228

Description

Designed and tested for repetitive peak operation required for CD ignition, fuel ignitors, flash circuits, motor controls and low-power switching applications.


Features

- Blocking Voltage to 600 V
- High Surge Current – 15 A
- Very Low Forward “On” Voltage at High Current
- Low-Cost Surface Mount SOT-223 Package
- These are Pb-Free Devices

Functional Diagram

Pin Out

Additional Information

Datasheet

Resources

Samples

Maximum Ratings ($T_J = 25^\circ\text{C}$ unless otherwise noted)

Rating	Symbol	Value	Unit
Peak Repetitive Off-State Voltage (Note 1) ($R_{GK} = I_K, T_J = 40$ to $+110^\circ\text{C}$, Sine Wave, 50 to 60 Hz)	V_{DRM} , V_{RRM}	50	V
NYC222		400	
NYC226		600	
On-State RMS Current (180° Conduction Angles; $T_C = 80^\circ\text{C}$)	$I_{\text{T(RMS)}}$	1.5	A
Average On-State Current, ($T_C = 65^\circ\text{C}$, $f = 60$ Hz, Time = 1 sec)	$I_{\text{T(RMS)}}$	2.0	A
Peak Non-repetitive Surge Current, $@T_A = 25^\circ\text{C}$, (1/2 Cycle, Sine Wave, 60 Hz)	I_{TSM}	15	A
Circuit Fusing Considerations ($t = 8.3$ ms)	I^2t	0.9	A2s
Forward Peak Gate Power (Pulse Width ≤ 1.0 sec, $T_A = 25^\circ\text{C}$)	P_{GM}	0.5	W
Forward Average Gate Power ($t = 8.3$ msec, $T_A = 25^\circ\text{C}$)	$P_{\text{GM(AV)}}$	0.1	W
Forward Peak Gate Current (Pulse Width ≤ 1.0 s, $T_A = 25^\circ\text{C}$)	I_{FGM}	0.2	A
Reverse Peak Gate Voltage (Pulse Width ≤ 1.0 μs , $T_A = 25^\circ\text{C}$)	V_{RGM}	5.0	V
Operating Junction Temperature Range @ Rated V_{RRM} and V_{DRM}	T_J	-40 to +110	$^\circ\text{C}$
Storage Temperature Range	T_{stg}	-40 to +150	$^\circ\text{C}$

Thermal Characteristics

Rating	Symbol	Value	Unit
Thermal Resistance, Junction-to-Ambient PCB Mounted	R_{8JA}	156	mW
Thermal Resistance, Junction-to-Tab Measured on MT2 Tab Adjacent to Epoxy	R_{8JT}	25	$^\circ\text{C/W}$
Maximum Device Temperature for Soldering Purposes for 10 Secs Maximum	T_L	260	$^\circ\text{C}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

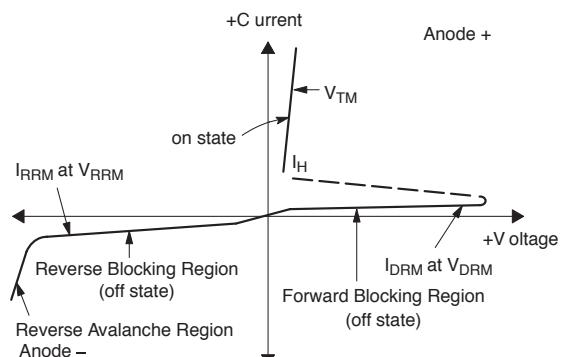
Electrical Characteristics - OFF ($T_J = 25^\circ\text{C}$ unless otherwise noted)

Characteristic		Symbol	Min	Typ	Max	Unit
Peak Repetitive Forward or Reverse Blocking Current (Note 3) (V_{AK} = Rated V_{DRM} or V_{RRM} , $R_{GK} = 1000 \text{ k}\Omega$)	$T_J = 25^\circ\text{C}$	I_{DRM}	-	-	1.0	μA
	$T_J = 110^\circ\text{C}$		-	-	200	

Electrical Characteristics - ON ($T_J = 25^\circ\text{C}$ unless otherwise noted; Electricals apply in both directions)

Characteristic		Symbol	Min	Typ	Max	Unit
Peak Forward On-State Voltage (Note 2) ($I_{TM} = 2.2 \text{ A Peak}$)		V_{TM}	-	1.2	1.7	V
HGate Trigger Current (Note 3) ($V_D = 12 \text{ V}$, $R_L = 100 \Omega$, $T_c = 25^\circ\text{C}$)	$T_c = 25^\circ\text{C}$	I_{GT}	-	30	200	μA
	$T_c = -40^\circ\text{C}$		-	-	500	
Gate Trigger Voltage (dc) (Note 3) ($V_{AK} = 7 \text{ Vdc}$, $R_L = 100\Omega$)	$T_c = 25^\circ\text{C}$	V_{GT}	-	-	0.8	V
	$T_c = -40^\circ\text{C}$		-	-	1.2	
Gate Non-Trigger Voltage ($V_{AK} = V_{DRM}$, $R_L = 100 \Omega$)	$T_c = 110^\circ\text{C}$	V_{GD}	0.1	-	-	V
Holding Current ($V_{AK} = 12 \text{ V}$, $R_{GK} = 1000 \Omega$) Initiating Current = 200 mA	$T_c = 25^\circ\text{C}$	I_H	-	2.0	5.0	V
	$T_c = -40^\circ\text{C}$		-	-	10	

Dynamic Characteristics


Characteristic		Symbol	Min	Typ	Max	Unit
Critical Rate-of-Rise of Off State Voltage ($T_c = 110^\circ\text{C}$)		dv/dt	-	25	-	$\text{V}/\mu\text{s}$
Critical Rate of Rise of On-State Current ($T_c = 110^\circ\text{C}$, $I_G = 2 \times I_{GT}$, $R_{GK} = 1 \text{ k}\Omega$)		di/dt	-	20	-	$\text{A}/\mu\text{s}$

2. Pulse Width = 1.0 ms, Duty Cycle $\leq 1\%$.

3. RGK Current not included in measurement.

Voltage Current Characteristic of SCR

Symbol	Parameter
V_{DRM}	Peak Repetitive Forward Off State Voltage
I_{DRM}	Peak Forward Blocking Current
V_{RRM}	Peak Repetitive Reverse Off State Voltage
I_{RRM}	Peak Reverse Blocking Current
V_{TM}	Maximum On State Voltage
I_H	Holding Current

Current Derating

Figure 1. Maximum Case Temperature

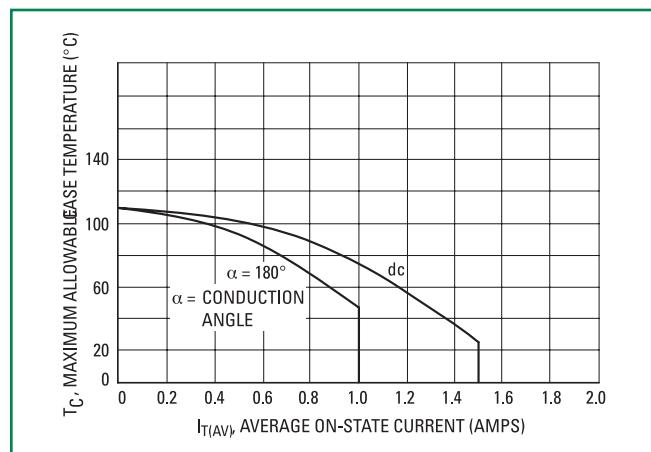
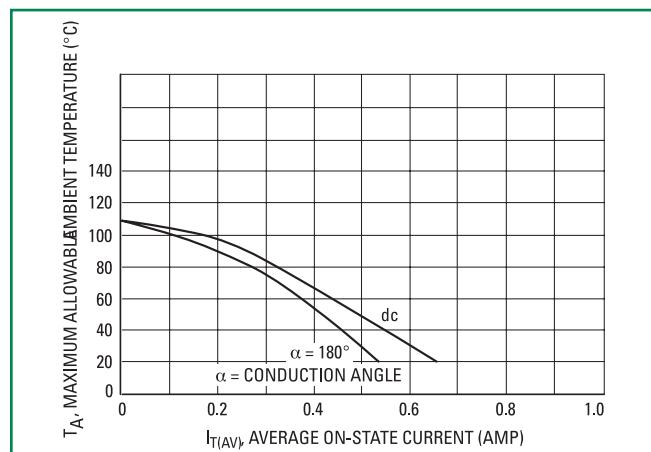
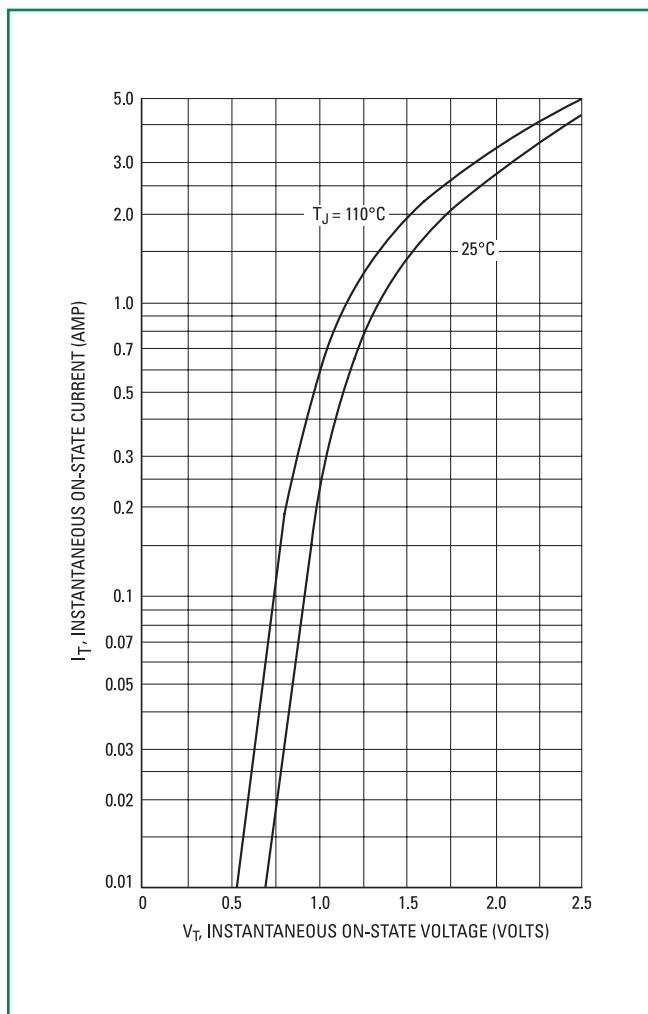
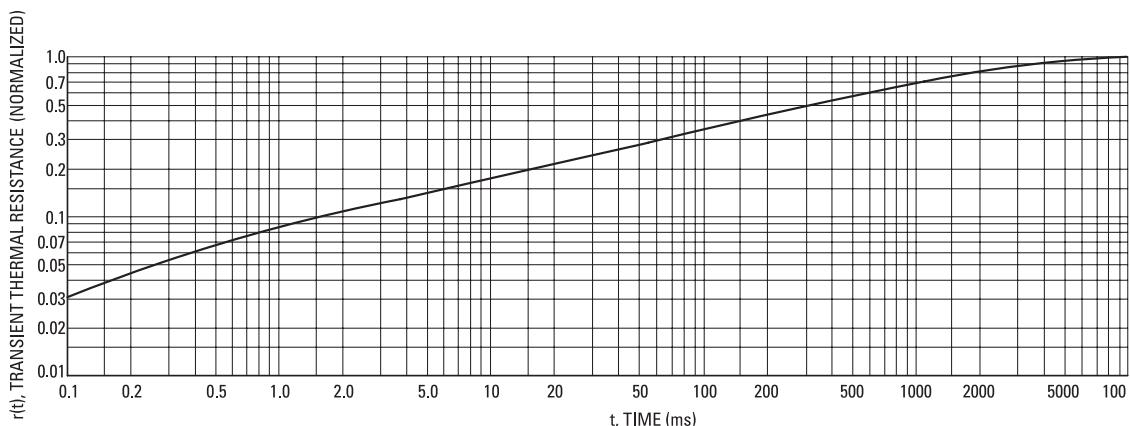
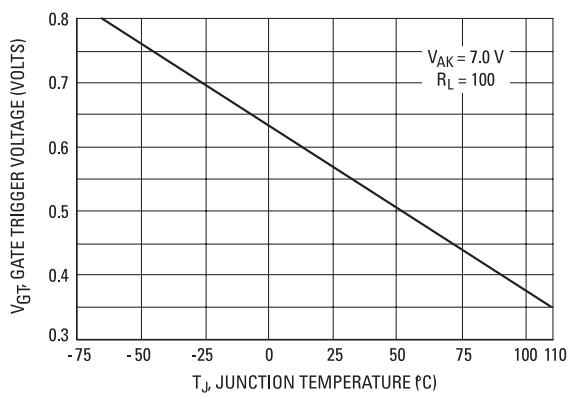
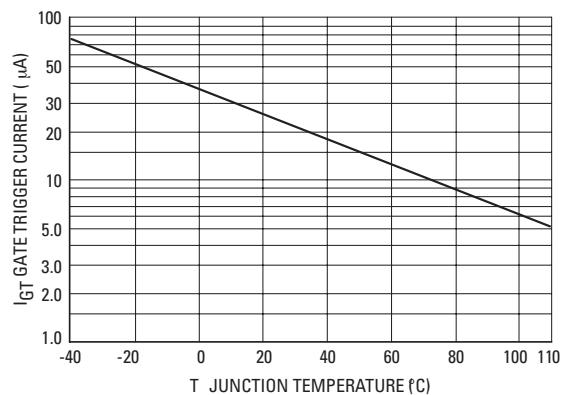
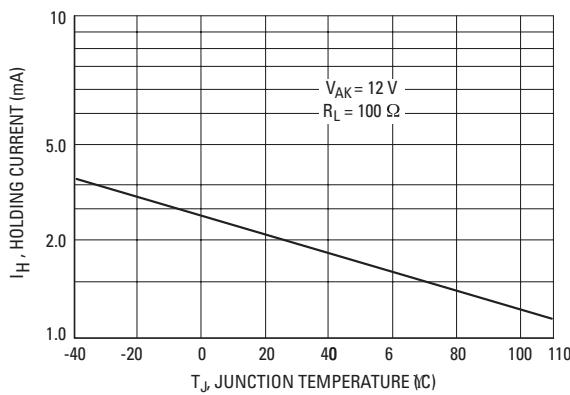


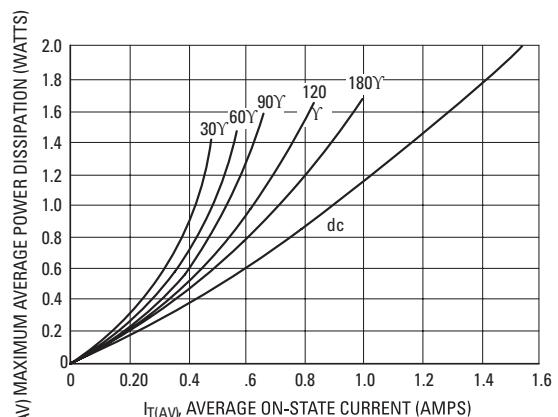
Figure 2. Maximum Ambient Temperature

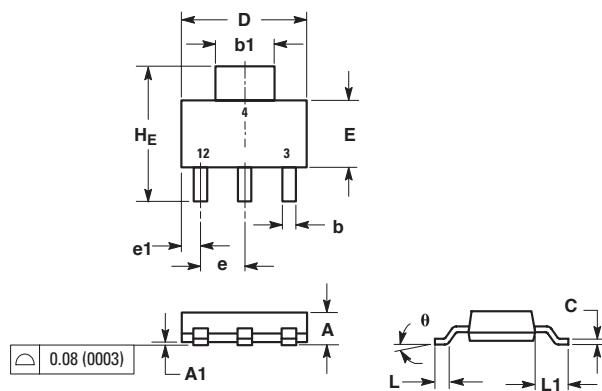




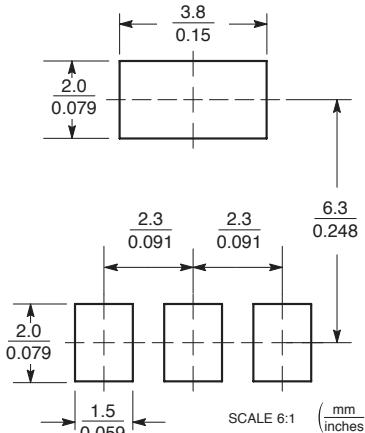

Figure 3. Typical Forward Voltage


Figure 4. Thermal Response


Figure 5. Typical Gate Trigger Voltage

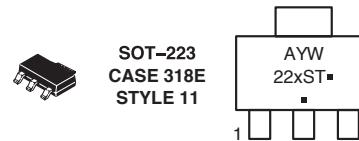

Figure 6. Typical Gate Trigger Current


Figure 7. Typical Holding Current


Figure 8. Power Dissipation

Dimensions

Soldering Footprint



Dim	Inches			Millimeters		
	Min	Nom	Max	Min	Nom	Max
A	1.50	1.63	1.75	0.060	0.064	0.068
A1	0.02	0.06	0.10	0.001	0.002	0.004
b	0.60	0.75	0.89	0.024	0.030	0.035
b1	2.90	3.06	3.20	0.115	0.121	0.126
c	0.24	0.29	0.35	0.009	0.012	0.014
D	6.30	6.50	6.70	0.249	0.256	0.263
E	3.30	3.50	3.70	0.130	0.138	0.145
e	2.20	2.30	2.40	0.087	0.091	0.094
e1	0.85	0.94	1.05	0.033	0.037	0.041
L	0.20	---	---	0.008	---	---
L1	1.50	1.75	2.00	0.060	0.069	0.078
H _E	6.70	7.00	7.30	0.264	0.276	0.287
0		-			-	

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

2. CONTROLLING DIMENSION: INCH.

Part Marking System

A= Assembly Location
 Y= Year
 W= Work Week
 22xST= Specific Device Code
 x = 2, 6 or 8
 ■ = Pb-Free Package

(Note: Microdot may be in either location)

Pin Assignment

1	K (Cathode)
2	A (Anode)
3	G (Gate)
4	A (Anode)

Ordering Information

Device	Package	Shipping
NYC222STT1G	SOT-223 (Pb-Free)	1000/Tape & Reel
NYC226STT1G	SOT-223 (Pb-Free)	
NYC228STT1G	SOT-223 (Pb-Free)	

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at: www.littelfuse.com/disclaimer-electronics