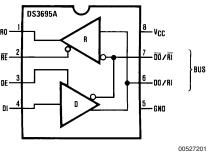


DS3695A/DS3695AT/DS3696A Multipoint RS485/RS422 Transceivers

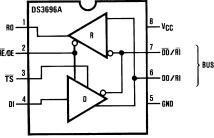
General Description

The DS3695A and DS3696A are high speed differential TRI-STATE® bus/line transceivers designed to meet the requirements of EIA standard RS485 with extended common mode range (+12V to -7V), for multipoint data transmission. In addition they are compatible with requirements of RS-422.

The driver and receiver outputs feature TRI-STATE capability. The driver outputs remain in TRI-STATE over the entire common mode range of +12V to -7V. Bus faults that cause excessive power dissipation within the device trigger a thermal shutdown circuit, which forces the driver outputs into the high impedance state. The DS3696A provides an output pin (TS) which reports the thermal shutdown of the device. TS is an "open collector" pin with an internal 10 $k\Omega$ pull-up resistor. This allows the TS outputs of several devices to be wire OR-ed.


Both AC and DC specifications are guaranteed over the 0°C to 70°C temperature and 4.75V to 5.25V supply voltage range.

Features


- Meets EIA standard RS485 for multipoint bus transmission and is compatible with RS-422
- 10 ns driver propagation delays (typical)
- Single +5V supply
- -7V to +12V bus common mode range permits ±7V ground difference between devices on the bus
- Thermal shutdown protection
- High impedance to bus with driver in TRI-STATE or with power off, over the entire common mode range allows the unused devices on the bus to be powered down
- Combined impedance of a driver output and receiver input is less than one RS485 unit load, allowing up to 32 transceivers on the bus
- 70 mV typical receiver hysteresis
- Available in SOIC packaging

Connection and Logic Diagram

Molded Package, Small Outline (M)

Top View

00527202

TS was LF (Line Fault) on previous datasheets, TS goes low upon thermal shutdown.

Top View Order Number DS3695AM, DS3695ATM or DS3696AM See NS Package Number M08A

TRI-STATE® is a registered trademark of National Semiconductor Corporation.

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage, V_{CC} 7V
Control Input Voltages 7V
Driver Input Voltage 7V
Driver Output Voltages +15V/-10V
Receiver Input Voltages +15V/-10V
Receiver Output Voltage 5.5V

Continuous Power Dissipation @

25°C

M Package 630 mW (Note 4)

Storage Temp. Range -65°C to +150°C Lead Temp. (Soldering 4 seconds) 260°C

Recommended Operating Conditions

	IVIII	IVIAX	Units
Supply Voltage, V _{CC}	4.75	5.25	V
Bus Voltage	-7	+12	V
Operating Free Air Temp. (T_A)			
Commercial (DS3695AM)	0	+70	°C
Industrial (DS3695ATM)	-40	+85	°C
Commercial (DS3696AM)	0	+70	°C

Electrical Characteristics (Notes 2, 3)

 $0\,^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq 70\,^{\circ}\text{C},~4.75\text{V}~<\text{V}_{\text{CC}} < 5.25\text{V}$ unless otherwise specified

Symbol	Paramet	er	Conditions			Тур	Max	Units
V _{OD1}	Differential Driver Outp	ut	I _O = 0				5	V
	Voltage (Unloaded)						5	V
V_{OD2}	Differential Driver Outp	ut	$R = 50\Omega$; (RS-422) (Note 5)		2			V
	Voltage (with Load)			$R = 27\Omega$; (RS-485)	1.5			V
ΔV_{OD}	Change in Magnitude of	of Driver						
	Differential Output Volt	age For					0.2	V
	Complementary Output	States						
V _{OC}	Driver Common Mode	Output Voltage		$R = 27\Omega$			3.0	V
$\Delta V_{OC} $	Change in Magnitude of	of Driver						
	Common Mode Output	Voltage					0.2	V
	For Complementary Ou	utput States						
V _{IH}	Input High Voltage				2			V
V _{IL}	Input Low Voltage	1	DI, DE,				0.8	V
V _{CL}	Input Clamp Voltage	RE	, RE /DE	$I_{IN} = -18 \text{ mA}$			-1.5	V
I _{IL}	Input Low Current			$V_{IL} = 0.4V$			-200	μΑ
I _{IH}	Input High Current			V _{IH} = 2.4V			20	μΑ
I _{IN}	Input Current		$V_{CC} = 0V \text{ or } 5.25V$	V _{IN} = 12V			+1.0	mA
		RI, RI	DE or \overline{RE} /DE = 0V	$V_{IN} = -7V$			-0.8	mA
V_{TH}	Differential Input Thres	erential Input Threshold			-0.2		+0.2	V
	Voltage for Receiver				0.2		10.2	
ΔV_{TH}	Receiver Input Hystere	sis	$V_{CM} = 0V$			70		mV
V _{OH}	Receiver Output High \	/oltage	$I_{OH} = -400 \ \mu A$		2.4			V
V_{OL}	Output Low Voltage	RO	I _{OL} = 16 mA (Note 5)				0.5	V
		TS	I _{OL} = 8 mA				0.45	V
I_{OZR}	OFF-State (High Imped	dance)	V _{CC} = Max				±20	μA
	Output Current at Rece	eiver	$0.4V \le V_O \le 2.4V$					
R _{IN}	Receiver Input Resista	nce	$-7V \le V_{CM} \le +12V$		12			kΩ
I_{CC}	Supply Current		No Load	Driver Outputs Enabled		42	60	mA
			(Note 5)	Driver Outputs Disabled		27	40	mA
I_{OSD}	Driver Short-Circuit		$V_O = -7V$ (Note 5)				-250	mA
	Output Current		V _O = +12V (Note 5)				+250	mA
I_{OSR}	Receiver Short-Circuit		$V_O = 0V$		-15		-85	mA
	Output Current							

Note 1: "Absolute maximum ratings" are those beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation.

Note 2: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to device ground unless otherwise specified.

Note 3: All typicals are given for $V_{CC} = 5V$ and $T_A = 25^{\circ}C$.

Note 4: Derate linearly at 6.5 mW/°C to 337 mW at 70°C.

Note 5: All limits for which Note 5 is applied must be derated by 10% for DS3695AT. Other parameters remain the same for this extended temperature range device $(-40^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq +85^{\circ}\text{C})$.

Switching Characteristics

 $0^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq 70^{\circ}\text{C},~4.75\text{V} < \text{V}_{\text{CC}} < 5.25\text{V}$ unless otherwise specified (Note 3)

Receiver Switching Characteristics

(Figures 1, 2 and Figure 3)

Symbol	Conditions	Min	Тур	Max	Units
t _{PLH}	C _L = 15 pF	15	28	42	ns
t _{PHL}	S1 and S2	15	28	42	ns
It _{PLH} -t _{PHL} I	Closed	0	3		ns
t _{PLZ}	C _L = 15 pF, S2 Open	5	29	35	ns
t _{PHZ}	C _L = 15 pF, S1 Open	5	12	16	ns
t _{PZL}	C _L = 15 pF, S2 Open	7	15	28	ns
t _{PZH}	C _L = 15 pF, S1 Open	7	15	20	ns

Driver Switching Characteristics

Symbol	Conditions	Min	Тур	Max	Units		
SINGLE ENDED CHARACTERISTICS (Figures 4, 5 and Figure 7)							
t _{PLH}	$R_{LDIFF} = 60\Omega$	9	15	22	ns		
t _{PHL}	$C_{L1} = C_{L2} = 100 \text{ pF}$	9	15	22	ns		
t _{SKEW} lt _{PLH} -t _{PHL} l		0	2	8	ns		
t _{PLZ}	C _L = 15 pF, S2 Open	7	15	30	ns		
t _{PHZ}	C _L = 15 pF, S1 Open	7	15	30	ns		
t _{PZL}	C _L = 100 pF, S2 Open	30	35	50	ns		
t _{PZH}	C _L = 100 pF, S1 Open	30	35	50	ns		
DIFFERENTIAL SWITCHING CHARACTERISTICS (Figure 7)							
t _r , t _f	$R_{LDIFF} = 60\Omega$ $C_{L1} = C_{L2} = 100 \text{ pF}$	6	10	18	ns		

AC Test Circuits and Switching Waveforms

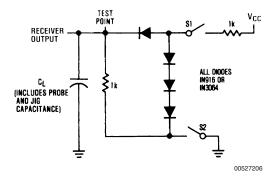
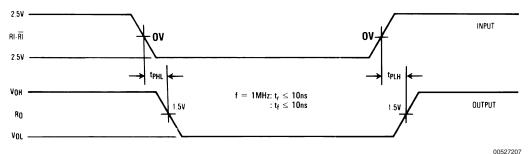



FIGURE 1. Receiver Propagation Delay Test Circuit

AC Test Circuits and Switching Waveforms (Continued)

Differential input voltage may be realized by grounding RI and pulsing RI between +2.5V and -2.5V

FIGURE 2. Receiver Input-to-Output Propagation Delay Timing

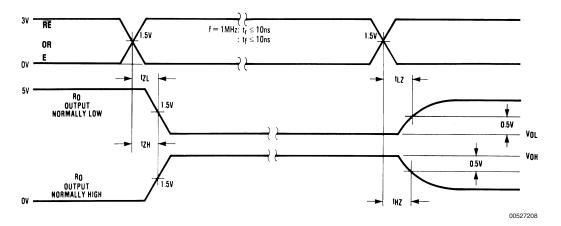
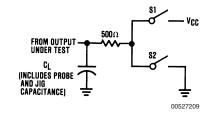



FIGURE 3. Receiver Enable/Disable Propagation Delay Timing

Unless otherwise specified the switches are closed.

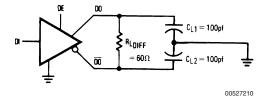
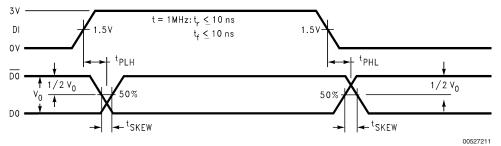



FIGURE 4. Driver Propagation Delay Test Circuits

AC Test Circuits and Switching Waveforms (Continued)

 t_{PLH} and t_{PHL} are measured to the respective 50% points. t_{SKEW} is the difference between propagation delays of the complementary outputs.

FIGURE 5. Driver Input-to-Output Propagation Delay Timing (Single-Ended)

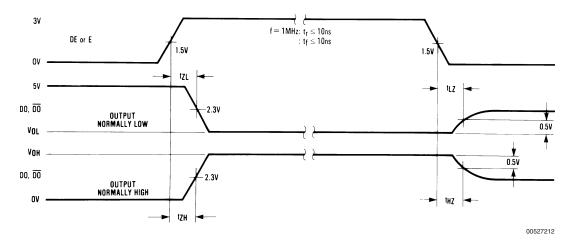


FIGURE 6. Driver Enable/Disable Propagation Delay Timing

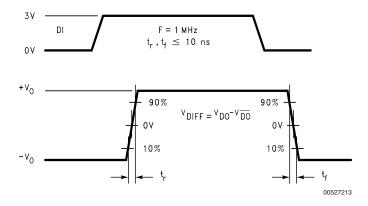
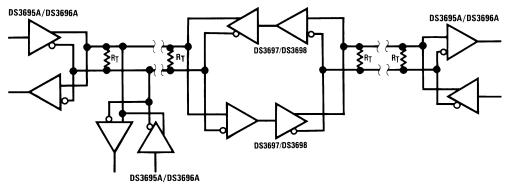


FIGURE 7. Driver Differential Transition Timing

Function Tables

DS3695A/DS3696A Transmitting

	Inputs		Line	Outputs		
RE	DE	DI	Condition	DO	DO	TS * (DS3696A Only)
Х	1	1	No Fault	0	1	Н
X	1	0	No Fault	1	0	Н
X	0	Х	X	Z	Z	Н
X	1	Х	Fault	Z	Z	L

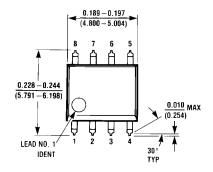

DS3695A/DS3696A Receiving

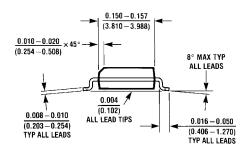
	Inp	uts	Output		
RE	DE	RI-RI	RO TS * (DS3696A O		
0	0	≥+0.2V	1	Н	
0	0	≤-0.2V	0	Н	
0	0	Inputs Open**	1	н	
1	0	X	Z	Н	

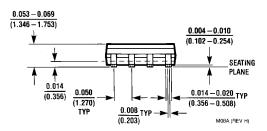
X — Don't care condition

Fault — Improper line conditions causing excessive power dissipation in the driver, such as shorts or bus contention situations

Typical Application


00527218


Repeater control logic not shown. See AN-702.


Z — High impedance state

^{*} \overline{TS} is an "open collector" output with an on-chip 10 k Ω pull-up resistor. ** This is a fail safe condition

Physical Dimensions inches (millimeters) unless otherwise noted

Molded SOIC Package (M)
Order Number DS3695AM, DS3695ATM or DS3696AM
NS Package Number M08A

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

For the most current product information visit us at www.national.com.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BANNED SUBSTANCE COMPLIANCE

National Semiconductor certifies that the products and packing materials meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no "Banned Substances" as defined in CSP-9-111S2.

National Semiconductor Americas Customer Support Center

Email: new.feedback@nsc.com Tel: 1-800-272-9959

www.national.com

National Semiconductor
Europe Customer Support Center
Fax: +49 (0) 180-530 85 86
Email: europe.support@nsc.com

Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +44 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790 National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560