# **Low Current LED Driver**

This device is designed to replace discrete solutions for driving LEDs in AC/DC high voltage applications (up to 200 V). An external resistor allows the circuit designer to set the drive current for different LED arrays. This discrete integration technology eliminates individual components by combining them into a single package, which results in a significant reduction of both system cost and board space. The device is a small surface mount package (SO-8).

#### **Features**

- Supplies Constant LED Current for Varying Input Voltages
- External Resistor Allows Designer to Set Current up to 70 mA
- Offered in Surface Mount Package Technology (SO-8)
- Pb-Free Package is Available

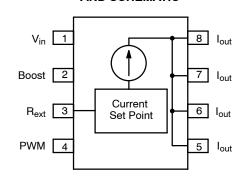
#### **Benefits**

- Maintains a Constant Light Output During Battery Drain
- One Device can be used for Many Different LED Products
- Reduces Board Space and Component Count
- Simplifies Circuit and System Designs

#### **Typical Applications**

- Portables: For Battery Back-up Applications, also Simple Ni-CAD Battery Charging
- Industrial: General Lighting Applications and Small Appliances
- Automotive: Tail Lights, Directional Lights, Back-up Light, Dome Light

#### PIN FUNCTION DESCRIPTION


| Pin        | Symbol           | Description                                                                                                                                                           |  |  |
|------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1          | V <sub>in</sub>  | Positive input voltage to the device                                                                                                                                  |  |  |
| 2          | Boost            | This pin may be used to drive an external transistor as described in the App Note AND8198/D.                                                                          |  |  |
| 3          | R <sub>ext</sub> | An external resistor between $R_{\text{ext}}$ and $V_{\text{in}}$ pins sets different current levels for different application needs                                  |  |  |
| 4          | PWM              | For high voltage applications (higher than 48 V), pin 4 is connected to the LEDs array. For low voltage applications (lower than 48 V), pin 4 is connected to ground. |  |  |
| 5, 6, 7, 8 | l <sub>out</sub> | The LEDs are connected from these pins to ground                                                                                                                      |  |  |



#### ON Semiconductor®

http://onsemi.com

# PIN CONFIGURATION AND SCHEMATIC



#### MARKING DIAGRAM



SO-8 CASE 751



A = Assembly Location

Y = Year WW = Work Week ■ = Pb-Free Package

(Note: Microdot may be in either location)

#### **ORDERING INFORMATION**

| Device      | Package           | Shipping <sup>†</sup> |
|-------------|-------------------|-----------------------|
| NUD4011DR2  | SO-8              | 2500 / Tape & Reel    |
| NUD4011DR2G | SO-8<br>(Pb-Free) | 2500 / Tape & Reel    |

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

# MAXIMUM RATINGS (T<sub>A</sub> = 25°C unless otherwise noted)

| Rating                                                    | Symbol           | Value | Unit |
|-----------------------------------------------------------|------------------|-------|------|
| Input Voltage                                             | V <sub>in</sub>  | 200   | V    |
| Output Current<br>(For V <sub>drop</sub> ≤ 16 V) (Note 1) | l <sub>out</sub> | 70    | mA   |
| Output Voltage                                            | V <sub>out</sub> | 198   | V    |
| Human Body Model (HBM)                                    | ESD              | 500   | V    |

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1.  $V_{drop} = V_{in} - 0.7 \text{ V} - V_{LEDs}$ .

#### THERMAL CHARACTERISTICS

| Characteristic                                                  | Symbol           | Value       | Unit       |
|-----------------------------------------------------------------|------------------|-------------|------------|
| Operating Ambient Temperature                                   | T <sub>A</sub>   | -40 to +125 | °C         |
| Maximum Junction Temperature                                    | T <sub>J</sub>   | 150         | °C         |
| Storage Temperature                                             | T <sub>STG</sub> | -55 to +150 | °C         |
| Total Power Dissipation (Note 2) Derating above 25°C (Figure 3) | P <sub>D</sub>   | 1.13<br>9.0 | W<br>mW/°C |
| Thermal Resistance, Junction-to-Ambient (Note 2)                | $R_{	heta JA}$   | 110         | °C/W       |
| Thermal Resistance, Junction-to-Lead (Note 2)                   | $R_{	heta JL}$   | 77          | °C/W       |

<sup>2.</sup> Mounted on FR-4 board, 2 in sq pad, 1 oz coverage.

# **ELECTRICAL CHARACTERISTICS** (T<sub>A</sub> = 25°C unless otherwise noted)

| Characteristic                                                                               | Symbol            | Min  | Тур  | Max  | Unit |
|----------------------------------------------------------------------------------------------|-------------------|------|------|------|------|
| Output Current1 (Note 3) ( $V_{in}$ = 120 Vdc, $R_{ext}$ = 24 $\Omega$ , $V_{LEDs}$ = 90 V)  | I <sub>out1</sub> | 26.0 | 27.5 | 29.5 | mA   |
| Output Current2 (Note 3) ( $V_{in}$ = 200 Vdc, $R_{ext}$ = 68 $\Omega$ , $V_{LEDs}$ = 120 V) | I <sub>out2</sub> | 11.5 | 14.0 | 15.5 | mA   |
| Bias Current ( $V_{in}$ = 120 Vdc, $R_{ext}$ = Open, $R_{shunt}$ = 80 k $\Omega$ )           | I <sub>Bias</sub> | -    | 1.1  | 2.0  | mA   |
| Voltage Overhead (Note 4)                                                                    | V <sub>over</sub> | 5.0  | _    | _    | V    |

<sup>3.</sup> Device's pin 4 connected to the LEDs array (as shown in Figure 5).
4. V<sub>over</sub> = V<sub>in</sub> - V<sub>LEDs</sub>.

#### **TYPICAL PERFORMANCE CURVES**

(T<sub>A</sub> = 25°C unless otherwise noted)

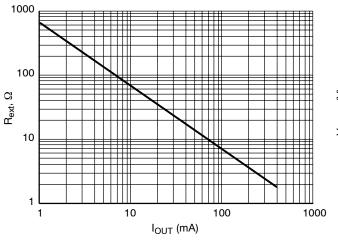



Figure 1. Output Current (I<sub>OUT</sub>) vs. External Resistor (R<sub>ext</sub>)

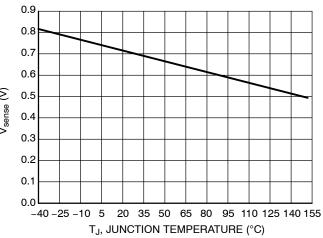



Figure 2. V<sub>sense</sub> vs. Junction Temperature

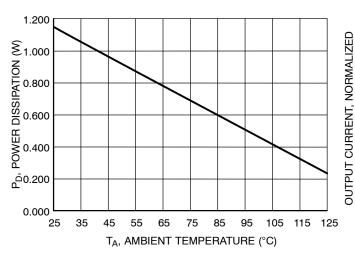



Figure 3. Total Power Dissipation (P<sub>D</sub>) vs. Ambient Temperature (T<sub>A</sub>)

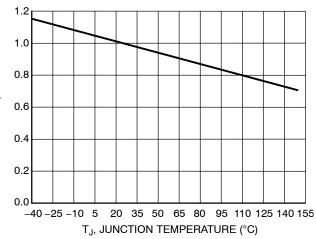



Figure 4. Current Regulation vs. Junction Temperature

#### **APPLICATION INFORMATION**

#### **Design Guide for DC Applications**

- 1. Define LED's current:
  - a.  $I_{LED} = 30 \text{ mA}$
- 2. Calculate Resistor Value for Rext:
  - a.  $R_{ext} = V_{sense}$  (see Figure 2) /  $I_{LED}$
  - b.  $R_{ext} = 0.7(T_J = 25 \, ^{\circ}\text{C}) / 0.030 = 24 \, \Omega$
- 3. Define Vin:
  - a. Per example in Figure 5,  $V_{in} = 120 \text{ Vdc}$
- 4. Define V<sub>LED</sub> @ I<sub>LED</sub> per LED supplier's data sheet: per example in Figure 5,
  - a.  $V_{LED} = 3.0 \text{ V} (30 \text{ LEDs in series})$
  - b.  $V_{LEDs} = 90 \text{ V}$
- 5. Calculate Vdrop across the NUD4001 device:
  - a.  $V_{drop} = V_{in} V_{sense} V_{LEDs}$
  - b.  $V_{drop} = 120 \text{ V} 0.7 \text{ V} 90 \text{ V}$
  - c.  $V_{drop} = 29.3 \text{ V}$
- 6. Calculate Power Dissipation on the NUD4001 device's driver:
  - a.  $P_{D\_driver} = V_{drop} * I_{out}$
  - b.  $P_{D\_driver} = 29.3 \text{ V} \times 0.030 \text{ A}$
  - c.  $P_{D driver} = 0.879 W$
- 7. Establish Power Dissipation on the NUD4001 device's control circuit per below formula:
  - a.  $P_{D \text{ control}} = (V_{in} 1.4 V_{LEDs})^2 / 20,000$
  - b.  $P_{D control} = 0.040 W$
- 8. Calculate Total Power Dissipation on the device:
  - a.  $P_{D_{total}} = P_{D_{driver}} + P_{D_{control}}$
  - b.  $P_{D \text{ total}} = 0.879 \text{ W} + 0.040 \text{ W} = 0.919 \text{ W}$
- If P<sub>D\_total</sub> > 1.13 W (or derated value per Figure 3), then select the most appropriate recourse and repeat steps 1–8:
  - a. Reduce  $V_{in}$
  - b. Reconfigure LED array to reduce V<sub>drop</sub>
  - c. Reduce I<sub>out</sub> by increasing R<sub>ext</sub>
  - d. Use external resistors or parallel device's configuration
- 10. Calculate the junction temperature using the thermal information on Page 8 and refer to Figure 4 to check the output current drop due to the calculated junction temperature. If desired, compensate it by adjusting the value of R<sub>ext</sub>.

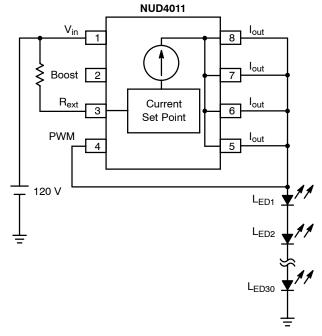



Figure 5. 120 V Application (Series LED's Array)

#### APPLICATION INFORMATION (continued)

#### **Design Guide for AC Applications**

- 1. Define LED's current:
  - a.  $I_{LED} = 30 \text{ mA}$
- 2. Define V<sub>in</sub>:
  - a. Per example in Figure 5,  $V_{in} = 120 \text{ Vac}$
- 3. Define V<sub>LED</sub> @ I<sub>LED</sub> per LED supplier's data sheet:
  - a. Per example in Figure 6,

$$V_{LED}$$
 = 3.0 V (30 LEDs in series)  
 $V_{LEDs}$  = 90 V

4. Calculate Resistor Value for R<sub>ext</sub>:

The calculation of the R<sub>ext</sub> for AC applications is totally different than for DC. This is because current conduction only occurs during the time that the ac cycles' amplitude is higher than V<sub>LEDs</sub>. Therefore R<sub>ext</sub> calculation is now dependent on the peak current value and the conduction time.

a. Calculate  $\theta$  for  $V_{LEDs} = 90 \text{ V}$ :

$$V = V_{peak} \times Sin \theta$$

$$90 V = (120 \times \sqrt{2}) \times Sin \theta$$

$$\theta = 32.027^{\circ}$$

b. Calculate conduction time for  $\theta = 32.027^{\circ}$ . For a sinuousoidal waveform Vpeak happens at  $\theta = 90^{\circ}$ . This translates to 4.165 ms in time for a 60 Hz frequency, therefore 32.027° is 1.48 ms and finally:

Conduction time = 
$$(4.165 \text{ ms} - 1.48 \text{ ms}) \times 2$$
  
=  $5.37 \text{ ms}$ 

c. Calculate the  $I_{peak}$  needed for  $I_{(avg)} = 30 \text{ mA}$ Since a full bridge rectifier is being used (per Figure 6), the frequency of the voltage signal applied to the NUD4011 device is now 120 Hz. To simplify the calculation, it is assumed that the 120 Hz waveform is square shaped so that the following formula can be used:

$$I_{\text{(avg)}} = I_{\text{peak}} \times \text{duty cycle};$$
  
If 8.33 ms is 100% duty cycle, then 5.37 ms is 64.46%, then:

$$I_{peak} = I_{(avg)} / duty cycle$$
  
 $I_{peak} = 30 \text{ mA} / 0.645 = 46 \text{ mA}$ 

d. Calculate Rext

$$R_{ext} = 0.7 \text{ V} / I_{peak}$$
  
 $R_{ext} = 15.21 \Omega$ 

- 5. Calculate V<sub>drop</sub> across the NUD4011 device:
  - a.  $V_{drop} = V_{in} V_{sense} V_{LEDs}$
  - b.  $V_{drop} = 120 \text{ V} 0.7 \text{ V} 90 \text{ V}$
  - c.  $V_{drop} = 29.3 \text{ V}$

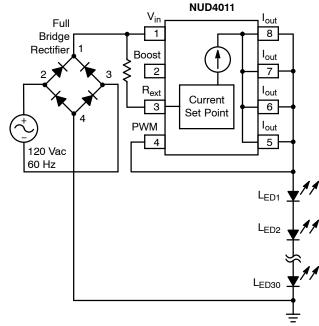



Figure 6. 120 Vac Application (Series LED's array)

6. Calculate Power Dissipation on the NUD4011 device's driver:

a.  $P_{D\_driver} = V_{drop} * I_{(avg)}$ b.  $P_{D\_driver} = 29.3 \text{ V} \times 0.030 \text{ A}$ 

c.  $P_{D driver} = 0.879 W$ 

7. Establish Power Dissipation on the NUD4011device's control circuit per below

a. 
$$P_{D \text{ control}} = (V_{in} - 1.4 - V_{LEDs})^2 / 20,000$$

b. 
$$P_{D control} = 0.040 W$$

8. Calculate Total Power Dissipation on the device:

a. 
$$P_{D \text{ total}} = P_{D \text{ driver}} + P_{D \text{ control}}$$

b. 
$$P_{D \text{ total}} = 0.879 \text{ W} + 0.040 \text{ W} = 0.919 \text{ W}$$

9. If  $P_{D \text{ total}} > 1.13 \text{ W}$  (or derated value per Figure 3), then select the most appropriate recourse and repeat steps 1-8:

a. Reduce  $V_{in}$ 

b. Reconfigure LED array to reduce V<sub>drop</sub>

c. Reduce I<sub>out</sub> by increasing R<sub>ext</sub>

d. Use external resistors or parallel device's configuration

10. Calculate the junction temperature using the thermal information on Page 8 and refer to Figure 4 to check the output current drop due to the calculated junction temperature. If desired, compensate it by adjusting the value of Rext.

# **TYPICAL APPLICATION CIRCUITS**

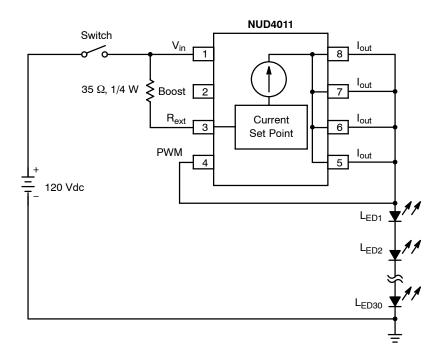



Figure 7. 120 Vdc Application Circuit for a Series Array of 30 LEDs (3.0 V, 20 mA)

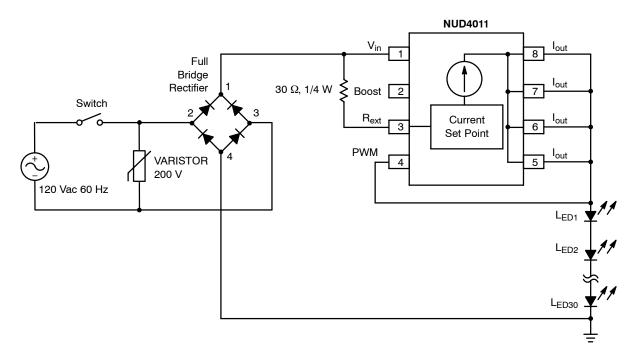



Figure 8. 120 Vac Application Circuit for a Series Array of 30 LEDs (3.0 V, 20 mA)

# **TYPICAL APPLICATION CIRCUITS (continued)**

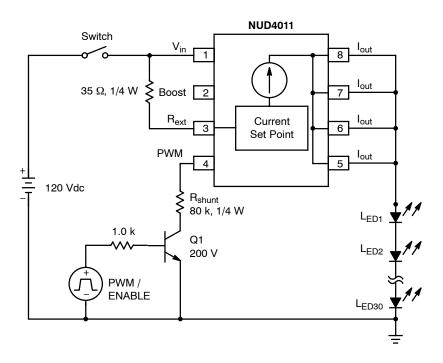



Figure 9. 120 Vdc Application with PWM / Enable Function, 30 LEDs in Series (3.0 V, 20 mA)

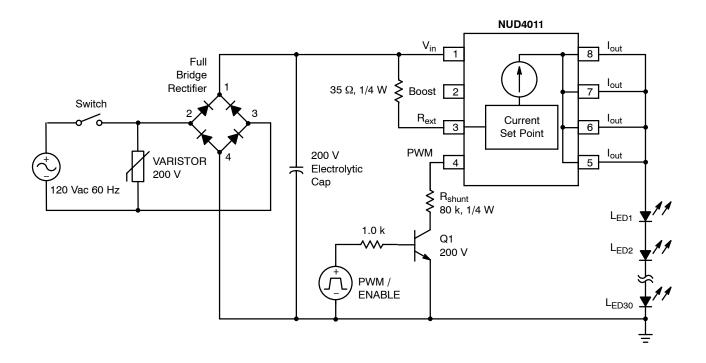



Figure 10. 120 Vac Application with PWM / Enable Function, 30 LEDs in Series (3.0 V, 20 mA)

#### THERMAL INFORMATION

#### **NUD4011 Power Dissipation**

The power dissipation of the SO–8 is a function of the pad size. This can vary from the minimum pad size for soldering to a pad size given for maximum power dissipation. Power dissipation for a surface mount device is determined by  $T_{J(max)}$ , the maximum rated junction temperature of the die,  $R_{\theta JA}$ , the thermal resistance from the device junction to ambient, and the operating temperature,  $T_A$ . Using the values provided on the data sheet for the SO–8 package,  $P_D$  can be calculated as follows:

$$P_D = \frac{T_{Jmax} - T_A}{R_{\theta JA}}$$

The values for the equation are found in the maximum ratings table on the data sheet. Substituting these values into the equation for an ambient temperature  $T_A$  of  $25^{\circ}$ C, one can calculate the power dissipation of the device which in this case is 1.13 W.

$$P_D = \frac{150^{\circ}C - 25^{\circ}C}{110^{\circ}C} = 1.13 \text{ W}$$

The 110°C/W for the SO-8 package assumes the use of a FR-4 copper board with an area of 2 square inches with 2 oz coverage to achieve a power dissipation of 1.13 W. There are other alternatives to achieving higher dissipation from the SOIC package. One of them is to increase the copper area to

reduce the thermal resistance. Figure 11 shows how the thermal resistance changes for different copper areas. Another alternative would be to use a ceramic substrate or an aluminum core board such as Thermal Clad®. Using a board material such as Thermal Clad or an aluminum core board, the power dissipation can be even doubled using the same footprint.

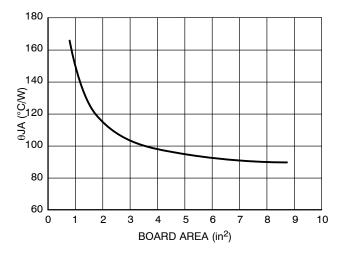



Figure 11. θJA versus Board Area

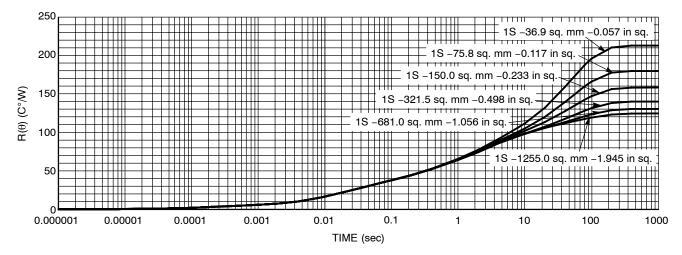
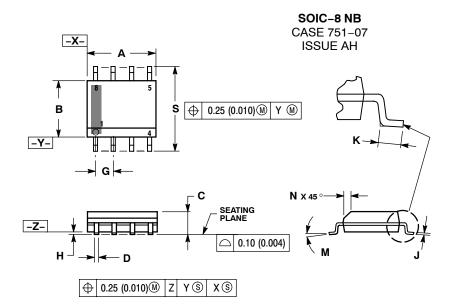
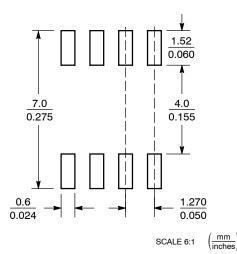




Figure 12. Transient Thermal Response

#### PACKAGE DIMENSIONS




#### NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: MILLIMETER.
  DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
  MAXIMUM MOLD PROTRUSION 0.15 (0.006)
- PER SIDE.
  DIMENSION D DOES NOT INCLUDE DAMBAR
- PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT
- MAXIMUM MATERIAL CONDITION. 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07.

|     | MILLIN   | IETERS | INCHES    |       |  |
|-----|----------|--------|-----------|-------|--|
| DIM | MIN      | MAX    | MIN       | MAX   |  |
| Α   | 4.80     | 5.00   | 0.189     | 0.197 |  |
| В   | 3.80     | 4.00   | 0.150     | 0.157 |  |
| ၁   | 1.35     | 1.75   | 0.053     | 0.069 |  |
| D   | 0.33     | 0.51   | 0.013     | 0.020 |  |
| G   | 1.27 BSC |        | 0.050 BSC |       |  |
| Н   | 0.10     | 0.25   | 0.004     | 0.010 |  |
| J   | 0.19     | 0.25   | 0.007     | 0.010 |  |
| K   | 0.40     | 1.27   | 0.016     | 0.050 |  |
| М   | 0 °      | 8 °    | 0 °       | 8 °   |  |
| N   | 0.25     | 0.50   | 0.010     | 0.020 |  |
| S   | 5.80     | 6.20   | 0.228     | 0.244 |  |

#### SOLDERING FOOTPRINT\*



\*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

Thermal Clad is a registered trademark of the Bergquist Company.

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

#### **PUBLICATION ORDERING INFORMATION**

#### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada

Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative