

Video signal switcher

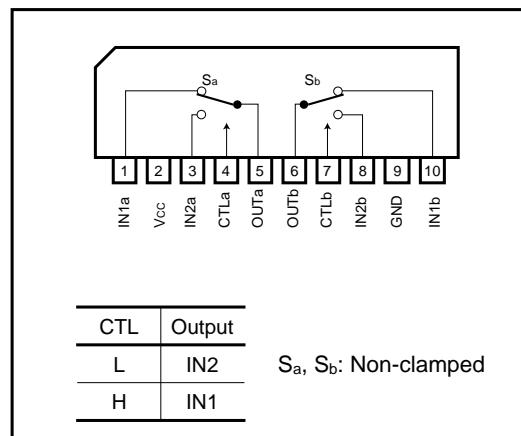
BA7604N

The BA7604N is a switching IC developed for use in VCRs. It has two-channel analog multiplexers, and features wide dynamic range, and wide operating frequency range, and is suitable for switching audio and video signals.

● Applications

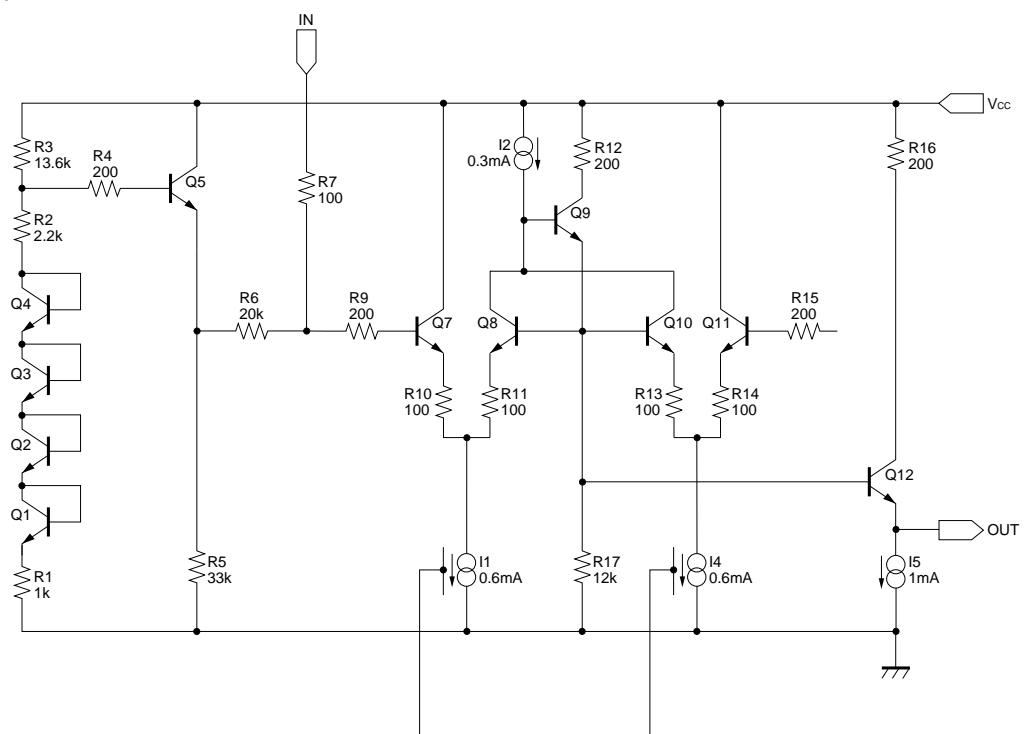
VCRs and TVs

● Features

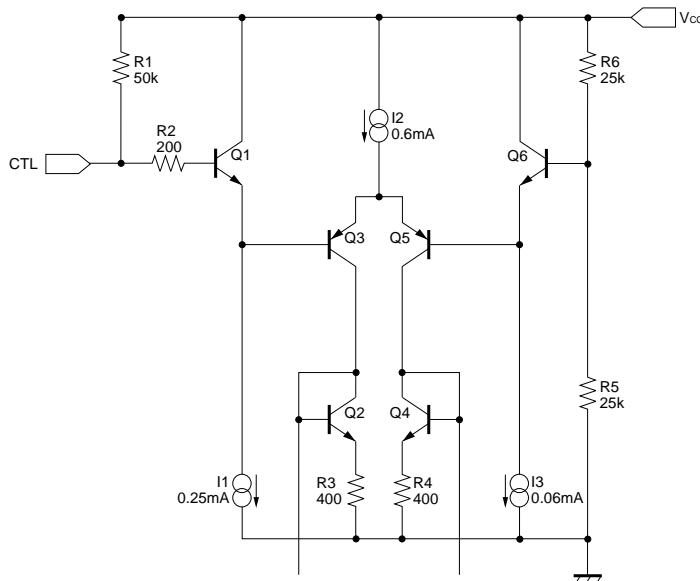

- 1) Two 2-input / 1-output switches.
- 2) 5V power supply.
- 3) Low power consumption (42mW Typ.).
- 4) Excellent frequency characteristics (10MHz, 0dB, Typ.).
- 5) Wide dynamic range (3.0V_{P-P} Typ.).
- 6) High input impedance (20kΩ Typ.).
- 7) Fast switching speed (50ns Typ.).

● Absolute maximum ratings (Ta = 25°C)

Parameter	Symbol	Limits	Unit
Power supply voltage	V _{CC}	9	V
Power dissipation	P _D	500*	mW
Operating temperature	T _{OPR}	-40 ~ +85	°C
Storage temperature	T _{STG}	-55 ~ +125	°C


* Reduced by 5.0mW for each increase in Ta of 1°C over 25°C.

● Block diagram



● Equivalent circuits

Sa, Sb

CTL

● Electrical characteristics (unless otherwise noted, $T_a = 25^\circ\text{C}$ and $V_{CC} = 5.0\text{V}$)

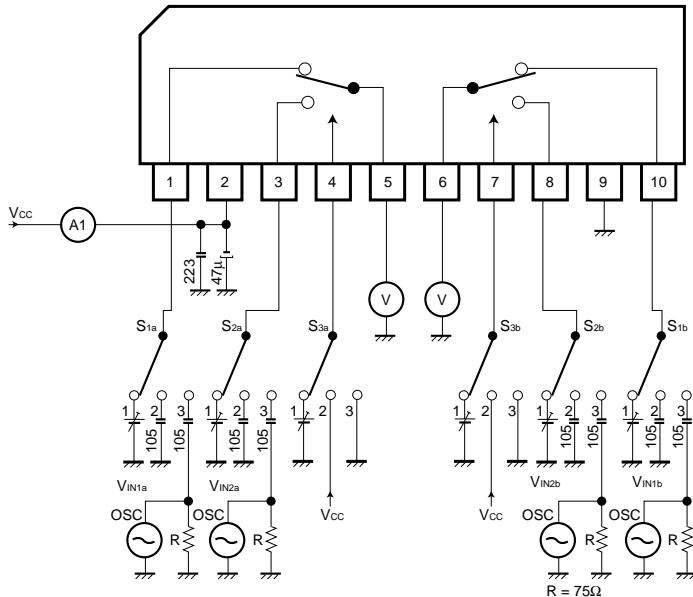
Parameter	Symbol	Min.	Typ.	Max.	Unit	Conditions
Operating voltage	V_{CC}	4.5	5.0	5.5	V	—
Supply current	I_{CC}	—	8.4	13.0	mA	—
Maximum output level	V_{OM}	2.7	3.0	—	V_{P-P}	$f = 1\text{kHz}$, THD = 0.5%
Voltage gain	G_V	-0.5	0	0.5	dB	$f = 1\text{MHz}$, $V_{IN} = 1V_{P-P}$
Interchannel crosstalk	C_T	—	-65	—	dB	$f = 4.43\text{MHz}$, $V_{IN} = 1V_{P-P}$
Frequency characteristic	G_f	-3	0	1	dB	10MHz / 1MHz, $V_{IN} = 1V_{P-P}$
Total-harmonic distortion	THD	—	0.007	—	%	$f = 1\text{MHz}$, $V_{IN} = 1V_{P-P}$
CTL pin switch level	V_{TH}	2.0	2.5	3.0	V	—
Input impedance	Z_{IN}	14	20	26	$\text{k}\Omega$	—

Note: Refer to the measurement circuit given in Fig. 1.

● Reference data

Pin DC voltages (reference values)

Units: Vdc


Pin No.	DC voltage	Pin No.	DC voltage
1	2.48	6	1.76
2	5.00	7	4.91
3	2.48	8	2.48
4	4.91	9	0
5	1.76	10	2.48

Electrical characteristics

Parameter	Min.	Typ.	Max.	Unit
Input impedance (no clamp)	—	20k	—	Ω
Output impedance	—	30	—	Ω

The input coupling capacitor values should be $0.1\mu\text{F}$ to $1\mu\text{F}$.

● Measurement circuit

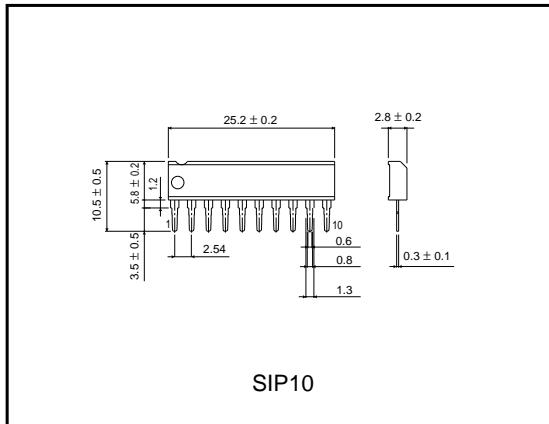
● Measurement conditions

Parameter		Symbol	Switch settings						Measurement method
			S _{1a}	S _{2a}	S _{3a}	S _{1b}	S _{2b}	S _{3b}	
Current dissipation	I _{CC}		2	2	2	2	2	2	Ammeter
Maximum output level	I _{N1a}	V _{om}	3	2	2	2	2	2	Note 1
	I _{N2a}	V _{om}	2	3	3	2	2	2	
	I _{N1b}	V _{om}	2	2	2	3	2	2	
	I _{N2b}	V _{om}	2	2	2	2	3	3	
	I _{N1a}	G _V	3	2	2	2	2	2	
Voltage gain	I _{N2a}	G _V	2	3	3	2	2	2	Note 2
	I _{N1b}	G _V	2	2	2	3	2	2	
	I _{N2b}	G _V	2	2	2	2	3	3	
	I _{N1a}	C _T	2	3	2	2	2	2	
Interchannel crosstalk	I _{N2a}	C _T	3	2	3	2	2	2	Note 3
	I _{N1b}	C _T	2	2	2	2	3	2	
	I _{N2b}	C _T	2	2	2	3	2	3	
	I _{N1a}	G _f	3	2	2	2	2	2	
Frequency characteristic	I _{N2a}	G _f	2	3	3	2	2	2	Note 4
	I _{N1b}	G _f	2	2	2	3	2	2	
	I _{N2b}	G _f	2	2	2	2	3	3	
	CTLa	V _{TH}	3	2	1	2	2	2	Note 5
CTL pin switching level	CTLb	V _{TH}	2	2	2	3	2	1	
Total-harmonic distortion	I _{N1a}	THD	3	2	2	2	2	2	Note 6
	I _{N2a}	THD	2	3	3	2	2	2	
	I _{N1b}	THD	2	2	2	3	2	2	
	I _{N2b}	THD	2	2	2	2	3	3	
Input impedance	I _{N1a}	Z _{IN}	1	2	2	2	2	2	Note 7
	I _{N2a}	Z _{IN}	2	1	3	2	2	2	
	I _{N1b}	Z _{IN}	2	2	2	1	2	2	
	I _{N2b}	Z _{IN}	2	2	2	2	1	3	

Note 1: Connect a distortion meter to the output, and input a $f = 1\text{kHz}$ sine wave. Adjust the output level until the output distortion is 0.5%. This output voltage at this time is the maximum output level V_{om} (V_{p-p}).

Note 2: Input a 1V_{p-p}, 1MHz sine wave. The voltage gain is given by $G_V = 20 \log (V_{OUT} / V_{IN})$.

Note 3: Input a 1V_{p-p}, 4.43MHz sine wave. The interchannel crosstalk is given by $C_T = 20 \log (V_{OUT} / V_{IN})$.


Note 4: Input 1V_{p-p}, 1MHz and 10MHz sine waves. The frequency characteristic is given by $G_f = 20 \log (V_{OUT} (f = 10\text{MHz}) / V_{OUT} (f = 1\text{MHz}))$.

Note 5: Input a 1V_{p-p}, 1MHz sine wave. Reduce the CTL pin voltage from V_{CC}. The CTL pin switching level (V_{TH}) is the CTL pin voltage at which the V_{OUT} level drops below 20mV_{p-p}.

Note 6: Input a 1V_{p-p}, 1kHz sine wave and measure the total-harmonic distortion of the output using a total-harmonic distortion meter.

Note 7: Measure the input pin voltage V_{IN50} when a current of DC50μA is flowing into the input pin. Measure the input pin open-circuit voltage. The input impedance is given by $Z = (V_{IN50} - V_{IN0}) / 50 \times 10^{-6} [\Omega]$.

● External dimensions (Units: mm)

Appendix

Notes

- No technical content pages of this document may be reproduced in any form or transmitted by any means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the product described in this document are for reference only. Upon actual use, therefore, please request that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or otherwise dispose of the same, no express or implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document use silicon as a basic material.

Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).

Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

About Export Control Order in Japan

Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control Order in Japan.

In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause) on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.