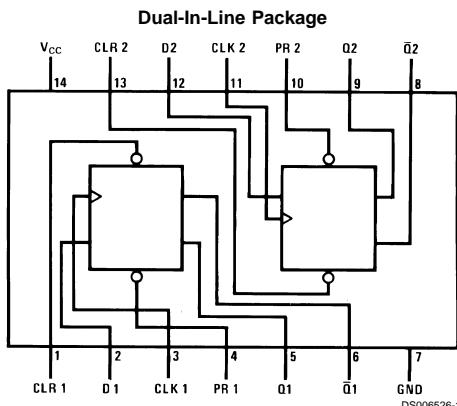


DM7474

Dual Positive-Edge-Triggered D Flip-Flops with Preset, Clear and Complementary Outputs

General Description


This device contains two independent positive-edge-triggered D flip-flops with complementary outputs. The information on the D input is accepted by the flip-flops on the positive going edge of the clock pulse. The triggering occurs at a voltage level and is not directly related to the transition time of the rising edge of the clock. The data on the D input may be changed while the clock is low or high without affecting the outputs as long as the data setup and

hold times are not violated. A low logic level on the preset or clear inputs will set or reset the outputs regardless of the logic levels of the other inputs.

Features

- Alternate Military/Aerospace device (5474) is available. Contact a Fairchild Semiconductor Sales Office/Distributor for specifications.

Connection Diagram

Order Number 5474DMQB, 5474FMQB, DM5474J, DM5474W, DM7474M or DM7474N
See Package Number J14A, M14A, N14A or W14B

Function Table

Inputs				Outputs	
PR	CLR	CLK	D	Q	\bar{Q}
L	H	X	X	H	L
H	L	X	X	L	H
L	L	X	X	H	H
				(Note 1)	
H	H	↑	H	H	L
H	H	↑	L	L	H
H	H	L	X	Q_0	\bar{Q}_0

H = High Logic Level

X = Either Low or High Logic Level

L = Low Logic Level

↑ = Positive-going transition of the clock.

Note 1: This configuration is nonstable; that is, it will not persist when either the preset and/or clear inputs return to their inactive (high) level.
 Q_0 = The output logic level of Q before the indicated input conditions were established.

Absolute Maximum Ratings (Note 2)

Supply Voltage	7V	DM54 and 54	-55°C to +125°C
Input Voltage	5.5V	DM74	0°C to +70°C
Operating Free Air Temperature Range		Storage Temperature Range	-65°C to +150°C

Recommended Operating Conditions

Symbol	Parameter	DM5474			DM7474			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
V_{IL}	Low Level Input Voltage			0.8			0.8	V
I_{OH}	High Level Output Current			-0.4			-0.4	mA
I_{OL}	Low Level Output Current			16			16	mA
f_{CLK}	Clock Frequency (Note 4)	0		15	0		15	MHz
t_W	Pulse Width (Note 4)	Clock High	30		30			ns
		Clock Low	37		37			
		Clear Low	30		30			
		Preset Low	30		30			
t_{SU}	Input Setup Time (Notes 3, 4)	20↑			20↑			ns
t_H	Input Hold Time (Notes 3, 4)	5↑			5↑			ns
T_A	Free Air Operating Temperature	-55		125	0		70	°C

Note 2: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 3: The symbol (↑) indicates the rising edge of the clock pulse is used for reference.

Note 4: $T_A = 25^\circ\text{C}$ and $V_{CC} = 5\text{V}$.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

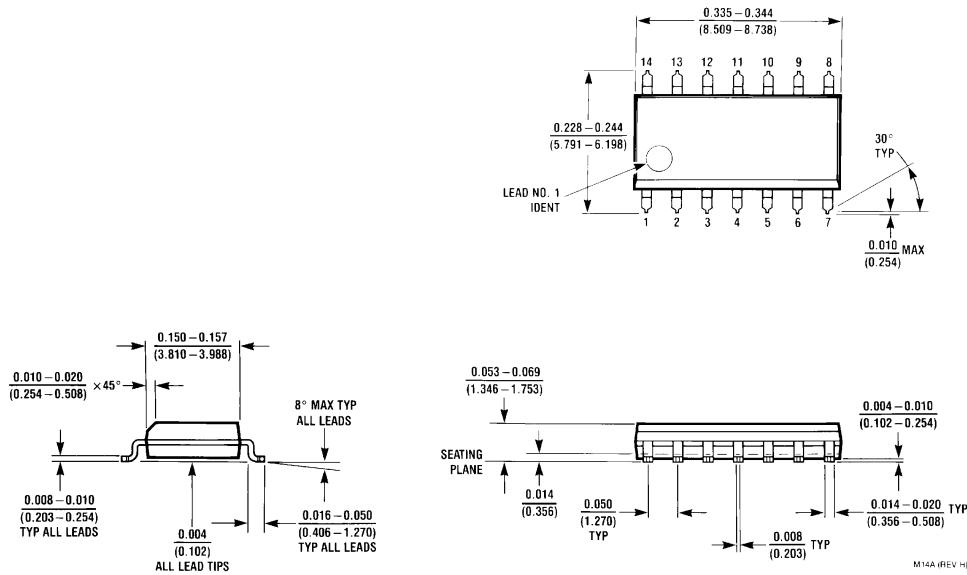
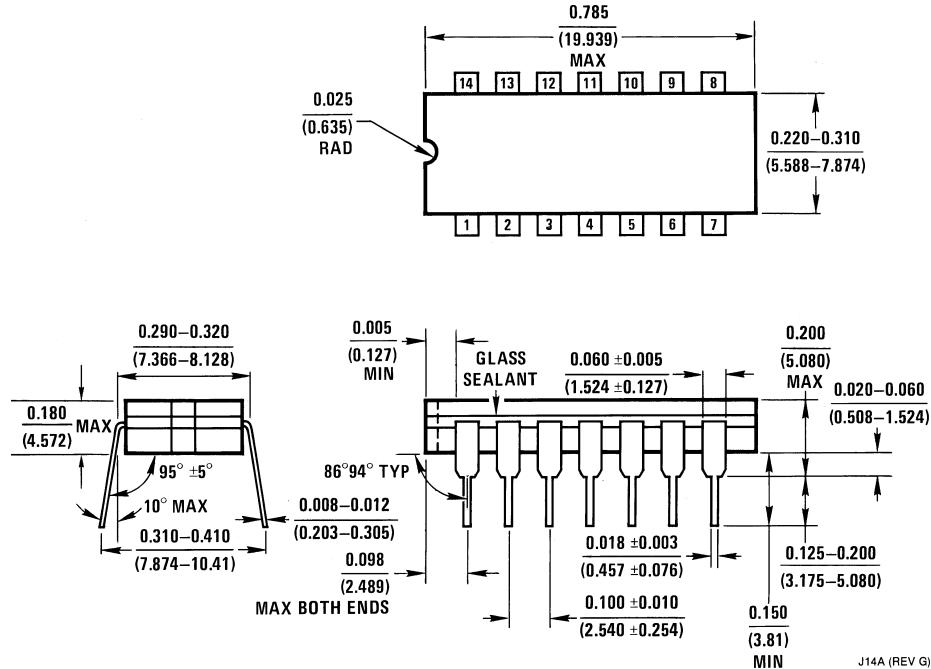
Symbol	Parameter	Conditions		Min	Typ (Note 5)	Max	Units
V_I	Input Clamp Voltage	$V_{CC} = \text{Min}$, $I_I = -12\text{ mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$V_{CC} = \text{Min}$, $I_{OH} = \text{Max}$ $V_{IL} = \text{Max}$, $V_{IH} = \text{Min}$		2.4	3.4		V
V_{OL}	Low Level Output Voltage	$V_{CC} = \text{Min}$, $I_{OL} = \text{Max}$ $V_{IH} = \text{Min}$, $V_{IL} = \text{Max}$			0.2	0.4	V
I_I	Input Current @ Max Input Voltage	$V_{CC} = \text{Max}$, $V_I = 5.5\text{V}$				1	mA
I_{IH}	High Level Input Current	$V_{CC} = \text{Max}$ $V_I = 2.4\text{V}$	D			40	μA
			Clock			80	
			Clear			120	
			Preset			40	
I_{IL}	Low Level Input Current	$V_{CC} = \text{Max}$ $V_I = 0.4\text{V}$ (Note 8)	D			-1.6	mA
			Clock			-3.2	
			Clear			-3.2	
			Preset			-1.6	
I_{OS}	Short Circuit Output Current	$V_{CC} = \text{Max}$ (Note 6)	DM54	-20		-55	mA
			DM74	-18		-55	
I_{CC}	Supply Current	$V_{CC} = \text{Max}$ (Note 7)			17	30	mA

Note 5: All typicals are at $V_{CC} = 5\text{V}$, $T_A = 25^\circ\text{C}$.

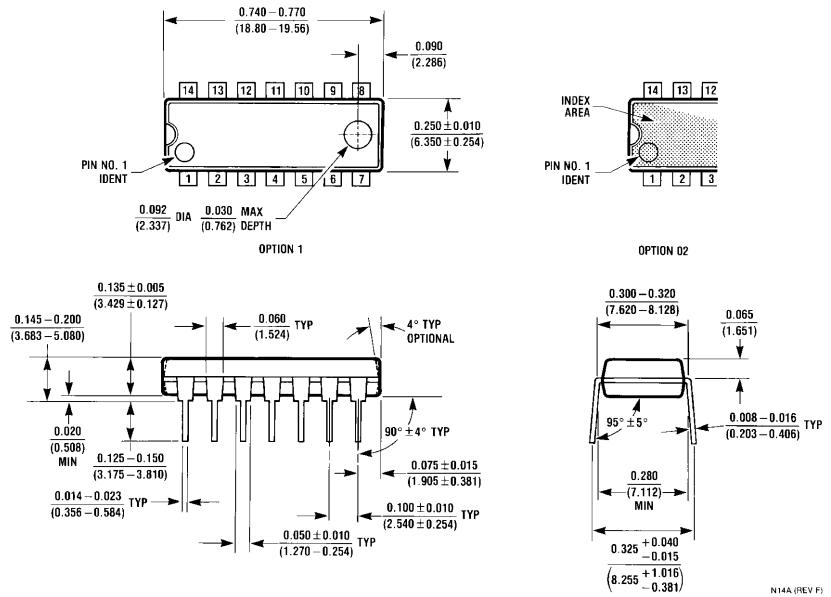
Note 6: Not more than one output should be shorted at a time.

Note 7: With all outputs open, I_{CC} is measured with the Q and \bar{Q} outputs high in turn. At the time of measurement the clock is grounded.

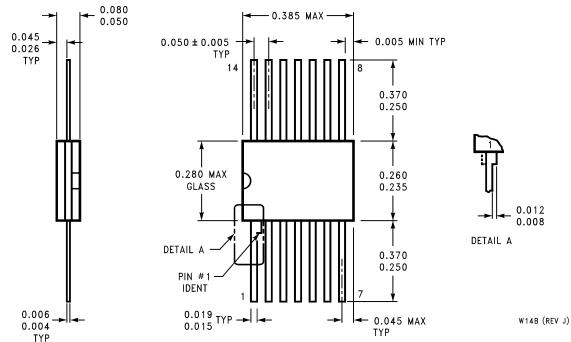
Electrical Characteristics (Continued)



Note 8: Clear is tested with preset high and preset is tested with clear high.

Switching Characteristics


at $V_{CC} = 5V$ and $T_A = 25^\circ C$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$R_L = 400\Omega$ $C_L = 15\text{ pF}$		Units
			Min	Max	
f_{MAX}	Maximum Clock Frequency		15		MHz
t_{PHL}	Propagation Delay Time High to Low Level Output	Preset to \bar{Q}		40	ns
t_{PLH}	Propagation Delay Time Low to High Level Output	Preset to Q		25	ns
t_{PLH}	Propagation Delay Time High to Low Level Output	Clear to Q		40	ns
t_{PLH}	Propagation Delay Time Low to High Level Output	Clear to \bar{Q}		25	ns
t_{PHL}	Propagation Delay Time High to Low Level Output	Clock to Q or \bar{Q}		40	ns
t_{PLH}	Propagation Delay Time Low to High Level Output	Clock to Q or \bar{Q}		25	ns


Physical Dimensions inches (millimeters) unless otherwise noted

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

14-Lead Molded Dual-In-Line Package (N)
Order Number DM7474N
Package Number N14A

14-Lead Ceramic Flat Package (W)
Order Number 5474FMQB or DM5474W
Package Number W14B

DM7474 Dual Positive-Edge-Triggered D Flip-Flops with Preset, Clear and Complementary Outputs

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

**Fairchild Semiconductor
Corporation
Americas**
Customer Response Center
Tel: 1-888-522-5372

www.fairchildsemi.com

**Fairchild Semiconductor
Europe**
Fax: +49 (0) 1 80-530 85 86
Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 8 141-35-0
English Tel: +44 (0) 1 793-85-68-56
Italy Tel: +39 (0) 2 57 5631

**Fairchild Semiconductor
Hong Kong Ltd.**
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd.
Tsimshatsui, Kowloon
Hong Kong
Tel: +852 2737-7200
Fax: +852 2314-0061

**National Semiconductor
Japan Ltd.**
Tel: 81-3-5620-6175
Fax: 81-3-5620-6179