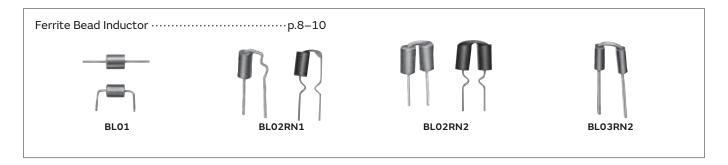


Contents

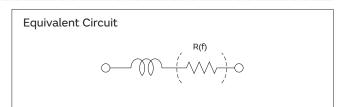
Product specifications are as of January 2016.

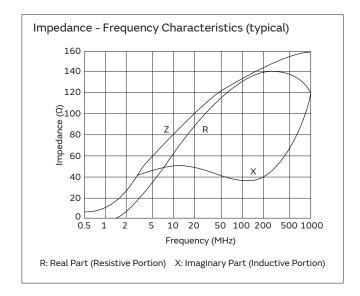
$$\begin{split} & \text{EMIFIL}^{\otimes}, \text{EMIGUARD}^{\otimes}, \\ & \text{"EMIFIL" and "EMIGUARD" in this catalog are} \\ & \text{the trademarks of Murata Manufacturing Co., Ltd.} \end{split}$$

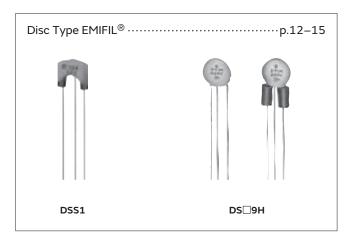

Product Guide / Effective Frequency Range	p2
Outline of EMI Suppression Filters (EMIFIL [®]) for DC Line	рЗ
Ferrite Beads Inductors	_
Part Numbering ·····	р7
BL01/02/03 Series	p8
Disc Type EMIFIL®	
Part Numbering ·····	p11
DSS1 Series ·····	p12
Heavy-duty Type DSN9H/DST9H Series ····	p14
EMIGUARD® (EMIFIL® with Varistor Function)	
Part Numbering ·····	p16
VFC2H/VFR3V/VFS6V/VFS9V Series ·······	p17
Noise Suppression Effect of VFR/VFS Series…	p21
Common Mode Choke Coils	
Part Numbering ·····	p25
PLT09H Series ·····	p26
⚠Caution / Notice ······	p27
Soldering and Mounting	p28
Packaging ·····	p30

Please check the MURATA website (http://www.murata.com/) if you cannot find a part number in this catalog.

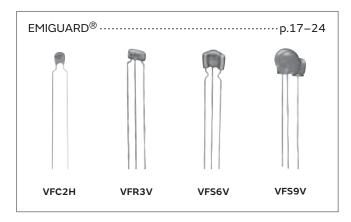
Product Guide/Effective Frequency Range


Туре	Series	Effective Frequency Range
Туре	Jeries	10kHz 100kHz 1MHz 10MHz100MHz 1GHz 10GHz
Disc Type EMIFIL® Ferrite Bead Inductor		
	BL01/02/03	
-	DSN9H DSS1	
	DST9H	
EMIGUARD [®]		
(EMI Filters with varistor functions)		
A	VFC2H	
	VFR3V VFS6V/9V	
Common Mode Choke Coils		
	PLT09H	

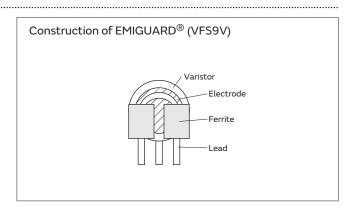

Ferrite Bead Inductor


Outline

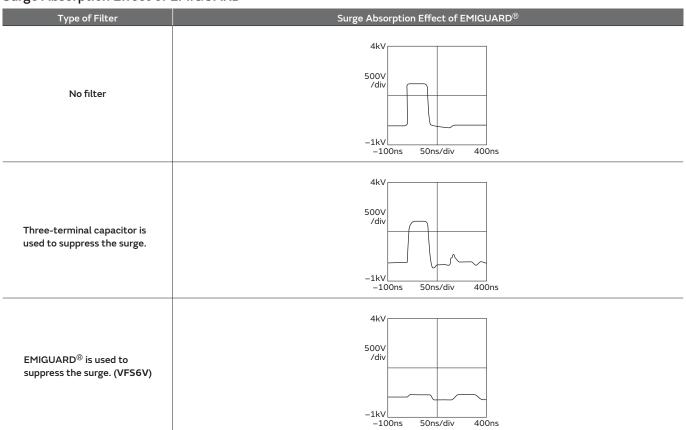
- Ferrite Bead Inductors are effective for frequencies ranging from a few MHz to a few GHz. Ferrite Bead Inductors are widely used as a low noise countermeasure, as well as a universal noise suppression component.
- Ferrite Bead Inductors produce a micro inductance in a low frequency range. At high frequencies, however, the resistive component of the inductor produces the primary impedance. When inserted in series in the noise producing circuit, the resistive impedance of the inductor prevents noise propagation.


●Disc Type EMIFIL®

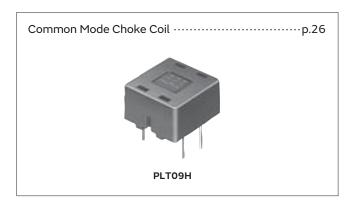
Outline


- This capacitor type EMI suppression filter has a large noise suppression effect at frequencies ranging from a few MHz to hundreds of MHz. This type of filter is used widely as a universal, high performance EMI suppression component.
- Three-terminal construction reduces residual inductance, thereby substantially improving noise suppression at frequencies over 10MHz.

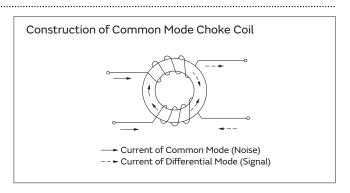
● EMIGUARD®

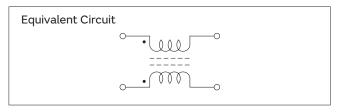


Outline


- EMIGUARD® eliminates both surge noise and EMI noise applying some unique design like the use of dielectric varistor material to a 3 terminal capacitor.
- Effective when high frequency noise and high voltage surge suppression are required, and also in situations when surging starts at extremely high speeds. This type of surging cannot be eliminated with general type varistors.

Surge Absorption Effect of EMIGUARD®


Common Mode Choke Coil



Outline

 These choke coils reduce common mode noise, which causes problems on balanced transmission lines, and are effective against common mode noise in the several MHz to several 100MHz frequency range.
 They are ideally suited for noise suppression on DC power

They are ideally suited for noise suppression on DC power supply lines and interface cables.

7

EMI Suppression Filters (Lead Type EMIFIL®)

Ferrite Beads Inductors Part Numbering

Ferrite Beads Inductors

(Part Number)

BL 02 RN 2 R1 M 2 B

1 2 3 4 5 6 7 3

1 Product ID

Product ID	
BL	Ferrite Beads Inductors

2 Series

Code	Series
01	Beads ø3.6
02	Beads ø3.4
03	Beads ø2.3 max.

3Beads Core Material

Code	Beads Core Material
RN	Standard Type

4 Numbers of Beads Core

Code	Numbers of Beads Core
1	1
2	2

5Lead Type

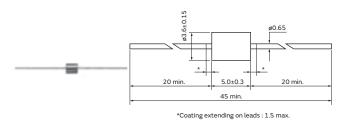
Code	Lead Type	Series
A1	Axial Straight Type	BL01
A2	Axial Crimp Type	BL01
R1	Radial Straight Type	BL02/BL03
R2	Radial Straight and Wave Formed Leads Type	BL02
R3	Radial Incrimp Type	BL02

6Lead Length, Space

Code	Lead Length, Space	Series	
Α	Bulk, Axial Type, 3.7mm		
D	Bulk, Axial Type, 45.0mm		
E	Taping, Axial Type, 26.0mm	BL01	
F	Taping, Axial Type, 52.0mm		
J	Bulk, Radial Type, 5.0mm		
М	M Bulk, Radial Type, 10.0mm		
N	N Taping, Radial Type, 16.5mm BL02/BL0		
Р	Taping, Radial Type, 18.5mm	aping, Radial Type, 18.5mm	
Q	Taping, Radial Type, 20.0mm		

Lead Diameter

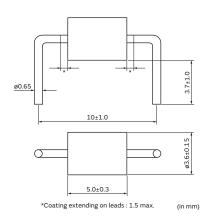
Code	Lead Diameter
1	ø0.60mm
2	ø0.65mm

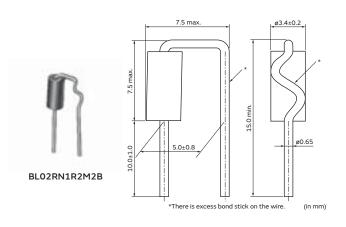

8 Packaging

Code	Packaging	Series
Α	Ammo Pack	BL01/BL02/BL03
В	Bulk	All Series

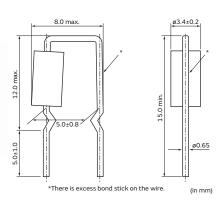
● Ferrite Beads Inductors BL01/02/03 Series

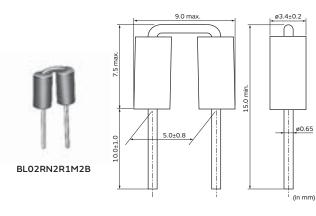
Features

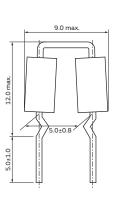

BL01/02/03 series are ferrite beads with lead wires to produce a high frequency loss for suppression of noise. Simple construction and easy-to-use, effective for low impedance circuits such as power supplies and grounds. Effective also for preventing overshoot and undershoot of digital signal in clocks or the like, and suppressing the higher harmonic wave. Suitable for prevention of abnormal oscillation at high frequency amplifying circuit.

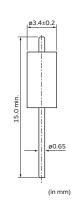


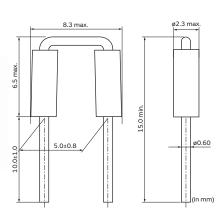
BL01RN1A1D2B

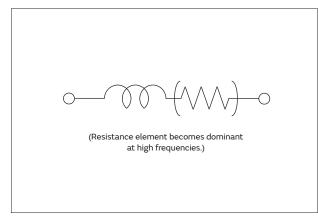

(in mm)



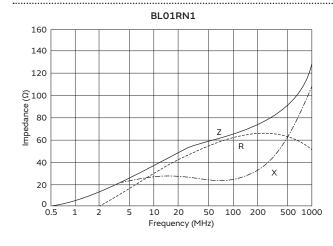


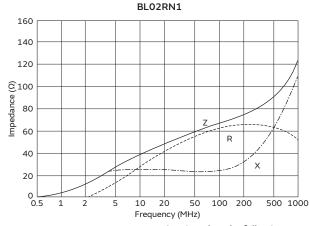






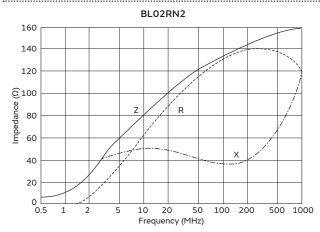
■ BL01/BL02/BL03 Series

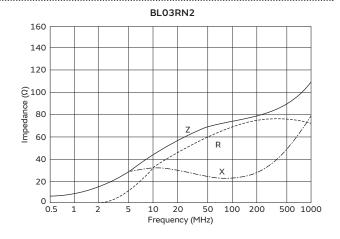

Part Number	Rated Current (A)	Operating Temperature Range
BL01RN1A1D2B	7	-40 to +85°C
BL01RN1A1E1A	6	-40 to +85°C
BL01RN1A1F1A	6	-40 to +85°C
BL01RN1A2A2B	7	-40 to +85°C
BL02RN1R2M2B	7	-40 to +85°C
BL02RN1R2N1A	6	-40 to +85°C
BL02RN1R2P1A	6	-40 to +85°C
BL02RN1R2Q1A	6	-40 to +85°C
BL02RN1R3J2B	7	-40 to +85°C
BL02RN1R3N1A	6	-40 to +85°C
BL02RN2R1M2B	7	-40 to +85°C
BL02RN2R1N1A	6	-40 to +85°C
BL02RN2R1P1A	6	-40 to +85°C
BL02RN2R1Q1A	6	-40 to +85°C
BL02RN2R3J2B	7	-40 to +85°C
BL02RN2R3N1A	6	-40 to +85°C
BL03RN2R1M1B	6	-40 to +85°C
BL03RN2R1N1A	6	-40 to +85°C
BL03RN2R1P1A	6	-40 to +85°C
BL03RN2R1Q1A	6	-40 to +85°C


Please refer to p.30, "Packaging" for Dimensions of Part Numbers Except for 'B' for the last code.

Equivalent Circuit

Impedance - Frequency Characteristics




Continued on the following page. ${\cal J}$

Continued from the preceding page. ${f \Sigma}$

Impedance - Frequency Characteristics

⚠Note • Please read rating and ⚠CAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc.
• This catalog has only typical specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

Disc Type EMIFIL[®] Part Numbering

Disc Type EMIFIL®

(Part Number) DS N 9 H B3 2E 101 Q92 A

1Product ID

Product ID	
DS	Three-terminal Capacitor

2Structure

Code	Structure
N	No Ferrite Beads Type
s	Built-in Ferrite Beads Type
Т	with Ferrite Beads Type

Style

Code	Style				
1	Francesed by a letter				
9	Expressed by a letter.				

4 Category

Code	Category
N	for General Use
н	for Heavy-duty

5Temperature Characteristics

Code	Capacitance Change
В3	±10% (Temperature Range: -25°C to +85°C)

6 Rated Voltage

Code	Rated Voltage
1H	50V
2A	100V
2E	250V

Capacitance

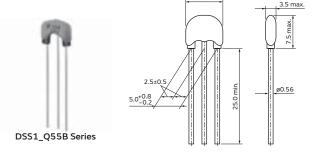
Expressed by three alphanumerics. The unit is in pico-farad (pF). The first and second figures are significant digits, and the third figure expresses the number of zeros that follow the two figures.

8Lead Type/**9**Packaging

Code	Lead Type	Lead Length* (mm)	Packaging	Series	
Q55B		25.0 min.	Bulk	All series	
Q50B		4.0±0.5		DST9H	
Q91A	Straight	20.0±1.0		DSN9H, DSS1N	
Q92A		16.5±1.0	Ammo Pack	DS□9H	
Q93A		18.5±1.0			

^{*}Lead Distance between Reference and Bottom Planes Except for Bulk.

● Disc Type EMIFIL® DSS1 Series

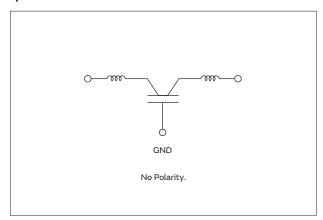

Features

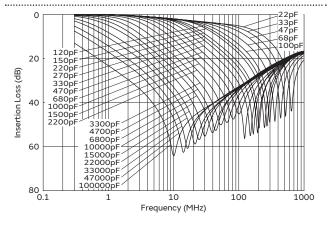
DSS1 series is a compact, high performance lead type 3 terminal capacitor which can be mounted in 2.54mm pitch.

Its three terminal structure enables nice high frequency performance.

Wide capacitance variation enables flexible selection for various noise frequencies.

High speed mounting is available with automatic insertion machine.

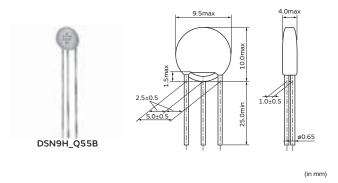

(in mm)

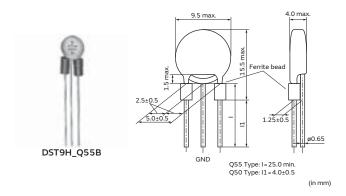

Built-in Ferrite Beads DSS1 Series

Part Number	Capacitance (pF)	Rated Voltage (Vdc)	Rated Current (A)	Operating Temperature Range
DSS1NB32A220	22 ±10%	100	6	-40 to +85°C
DSS1NB32A330	33 ±10%	100	6	-40 to +85°C
DSS1NB32A470	47 ±10%	100	6	-40 to +85°C
DSS1NB32A680	68 ±10%	100	6	-40 to +85°C
DSS1NB32A101	100 ±10%	100	6	-40 to +85°C
DSS1NB32A121	120 ±10%	100	6	-40 to +85°C
DSS1NB32A151	150 ±10%	100	6	-40 to +85°C
DSS1NB32A221	220 ±10%	100	6	-40 to +85°C
DSS1NB32A271	270 ±10%	100	6	-40 to +85°C
DSS1NB32A331	330 ±10%	100	6	-40 to +85°C
DSS1NB32A471	470 ±10%	100	6	-40 to +85°C
DSS1NB32A681	680 ±10%	100	6	-40 to +85°C
DSS1NB32A102	1000 ±10%	100	6	-40 to +85°C
DSS1NB32A152	1500 ±10%	100	6	-40 to +85°C
DSS1NB32A222	2200 ±10%	100	6	-40 to +85°C
DSS1NB32A332	3300 ±10%	100	6	-40 to +85°C
DSS1NB32A472	4700 ±10%	100	6	-40 to +85°C
DSS1NB32A682	6800 ±10%	100	6	-40 to +85°C
DSS1NB32A103	10000 ±10%	100	6	-40 to +85°C
DSS1NB32A153	15000 ±10%	100	6	-40 to +85°C
DSS1NB32A223	22000 ±10%	100	6	-40 to +85°C
DSS1NB31H333	33000 ±10%	50	6	-40 to +85°C
DSS1NB31H473	47000 ±10%	50	6	-40 to +85°C
DSS1NB31H104	100000 ±10%	50	6	-40 to +85°C

Please refer to Part Numbering for Type and Length of Lead.

Equivalent Circuit

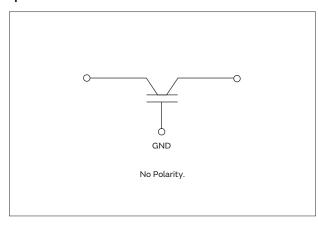

● Disc Type EMIFIL[®] Heavy-duty Type DSN9H/DST9H Series

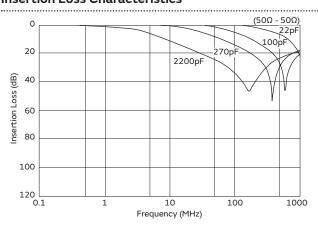

Features

DS_9H is a basic type EMI suppression filter which can obtain high insertion loss in a wide frequency range. Its three terminal structure enables nice high frequency performance. High rated voltage of 250Vdc and wide operating temperature range from -40 degrees C to 105 degrees C are suitable for high reliability circuits.

Supplement

Diameter of lead is 0.6mm for taping type. Taping type is three terminal in-line arrangement.

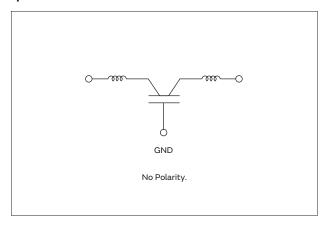


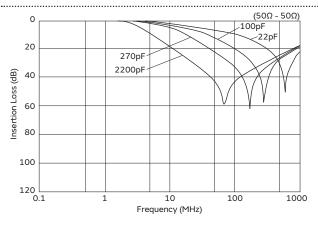

DSN9H Series

Part Number	Capacitance (pF)	Rated Voltage (Vdc)	Rated Current (A)	Operating Temperature Range
DSN9HB32E220	22 ±20%	250	6	-40 to +105°C
DSN9HB32E101	100 ±20%	250	6	-40 to +105°C
DSN9HB32E271	270 ±20%	250	6	-40 to +105°C
DSN9HB32E222	2200 ±20%	250	6	-40 to +105°C

Please refer to Part Numbering for Type and Length of Lead.

Equivalent Circuit




With Ferrite Beads DST9H Series

Part Number	Capacitance (pF)	Rated Voltage (Vdc)	Rated Current (A)	Operating Temperature Range
DST9HB32E220	22 ±20%	250	6	-40 to +105°C
DST9HB32E101	100 ±20%	250	6	-40 to +105°C
DST9HB32E271	270 ±20%	250	6	-40 to +105°C
DST9HB32E222	2200 ±20%	250	6	-40 to +105°C

Please refer to Part Numbering for Type and Length of Lead.

Equivalent Circuit

■ EMIGUARD[®] (EMIFIL[®] with Varistor Function) Part Numbering

EMIGUARD® (EMIFIL® with Varistor Function)

(Part Number)

VF	s	6	٧	D8	1E	221			T51	В
_	_	_	_	6	_	_			10	_
VF	С	2	Н	R7	1D	105	K	2	T51	В
a	a	a	A	B	a	•	8	9	•	A

1 Product ID

Product ID	
VF	EMIGUARD® Lead Type

2Structure

Code	Structure			
S	Built-in Ferrite Beads Type			
R	with Resistance			
С	Built-in Capacitor			

Style

Code	Style					
2						
3	Size is expressed by a digit					
6	Size is expressed by a digit					
9						

4 Features

Code	Features				
V	with Varistor Function				
Н	with Varistor Function (for Automotive)				

5Temperature Characteristics

Code	Capacitance Change
D8	+20/-30% (Temperature Range: -40°C to +105°C)
D3	+20/-30% (Temperature Range: -25°C to +85°C)
R7	±15% (Temperature Range: -55°C to +125°C)

6Rated Voltage

Code	Rated Voltage
1B	12V
1D	22V
1E	25V

Capacitance

Expressed by three alphanumerics. The unit is in pico-farad (pF). The first and second figures are significant digits, and the third figure expresses the number of zeros that follow the two figures.

8 Capacitance

Code	Capacitance
К	±10%

Code	Varistor Voltage
2	27V

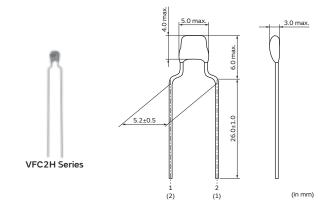
①Lead Type/①Packaging

Code	Lead Type	Lead Length* Packaging		Series	
T51B	Inquiren	25.0mm min.	Bulk	VFR3/VFS6	
U31A	Incrimp	18.5±1.0mm	Ammo Pack	VFR3/VF36	
Q55B		25.0mm min.	Bulk		
Q91J	Straight	20.0±1.0mm		VFS9	
Q92J		16.5±1.0mm	Paper Reel (ø320mm)	VF39	
Q931		18.5±1.0mm			

^{*}Lead Distance between Reference and Bottom Planes Except for Bulk.

Code	Lead Type	Lead Length* Packaging		Series
K1B		26.0±1.0mm	Bulk	
M1A	Inside Crimp	18.0±1.0mm	Ammo Pack	VFC2
M1J		18.0±1.0111111	Paper Reel (ø320mm)	

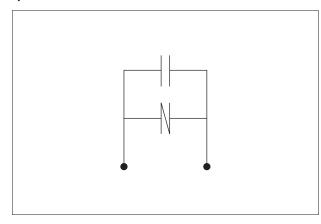
^{*}From bottom of the crimp.


■ EMIGUARD[®] (EMIFIL[®] with Varistor Function) VFC2H/VFR3V/VFS6V/VFS9V Series

● VFC2H Series

VFC2H series is EMI suppression filters of lead type that combines the varistor and capacitor.

Features


- 1. Suitable for absorbing surge voltages occurred from inductive load of motors, relays, etc.
- 2. High maximum energy
- 3. Smaller size, High capacitance
- 4. Taping is capable of fast implementation of automatic insertion.

Part Number	Varistor Voltage (Vdc)	Capacitance (µF)	Temperature Characteristics		Rated Current	Insulation Resistance (min.) (M ohm)	Operating Temperature Range
VFC2HR71D105K2	27 +5/-3V	1.0 ±10%	R7 (±15%)	22	-	1	-55 to 125°C

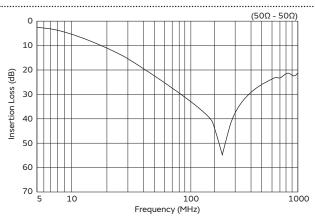
Please refer to Part Numbering for Type and Length of Lead.

Equivalent Circuit


Semiconductor Protection VFR3V Series

Features

VFR3V series is designed for ESD surge protection of IC. It efficiently absorbs ESD surges rushed into IC's I/O terminal.

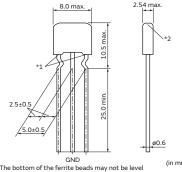

Applications

Elimination of noise and protection of semiconductors in office equipment, including computers and peripheral equipment, copy machines, and communication terminals.

Part Number	Varistor Voltage (Vdc)	Capacitance (pF)	Rated Voltage (Vdc)	Rated Current (mA)	Peak Pulse Current (A)	Operating Temperature Range
VFR3VD31E131	50 ±20%	130 ±20%	25	20	30	-25 to 85°C

Please refer to Part Numbering for Type and Length of Lead.

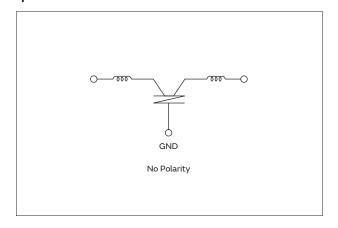
Signal Line VFS6V Series

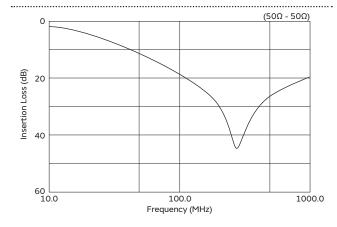

Features

VFS6V series is designed for surge protection of signal line. It protects electric circuit from surges such as static electricity and suppresses EMI noise. Built-in ferrite bead gives excellent EMI suppression.

Applications

Elimination of noise and protection of electric circuits in office equipment, including computers and peripheral equipment, copy machines, and communication terminals.



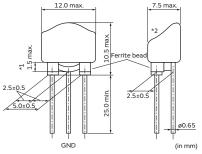

- with each other.
 *2 There may be a hole on the top of ferrite beads,

Part Number	Varistor Voltage (Vdc)	Capacitance (pF)	Rated Voltage (Vdc)	Rated Current (A)	Peak Pulse Current (A)	Operating Temperature Range
VFS6VD81E221	50 ±20%	220 ±20%	25	6	100	-40 to 105°C

Please refer to Part Numbering for Type and Length of Lead.

Equivalent Circuit

Large Current VFS9V Series


Features

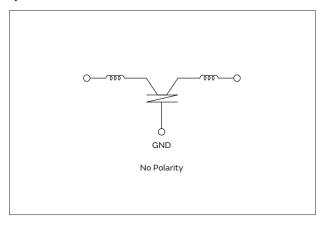
VFS9V series is designed for surge protection of the power supply. It protects electric circuits from surge such as static electricity and suppresses EMI noise. Its large capacitance value enables high insertion loss for EMI noise.

Applications

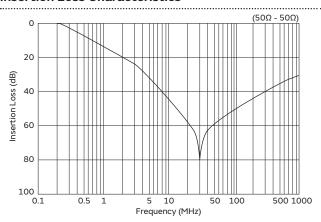
For circuit protection and noise suppression in electronics equipment such as computers and DC motors, and in electronics systems installed in cars such as car audio equipment and engine controllers.

*1 Coating extending on leads does not exceed the tangent line. Exposed electrode, if any, is covered by solder, etc. *2 If there is a hole in the top of the filter, the ferrite bead should not

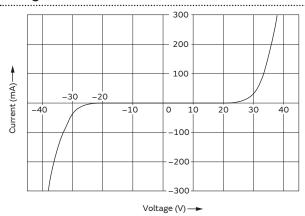
Part Number	Varistor Voltage	Capacitance	Rated Voltage	Rated Current	Operating
	(Vdc)	(pF)	(Vdc)	(A)	Temperature Range
VFS9VD31B223	22 ±20%	22000 +50/-20%	12	7	-40 to 100°C


①Note • Please read rating and ①CAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc.
• This catalog has only typical specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

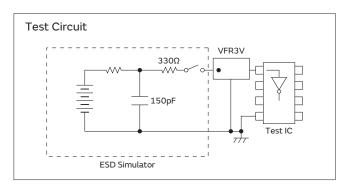
Rated current is 7A for bulk type and 6A for taping type.

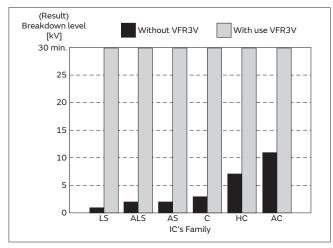

Rated current of taping type is 6A because the diameter of the lead is 0.6mm and its lead layout is the in-line type.

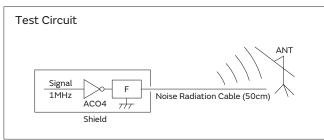
Please refer to Part Numbering for Type and Length of Lead.

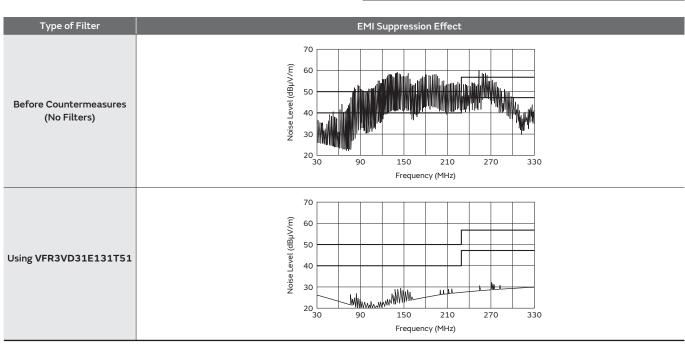

Equivalent Circuit

Insertion Loss Characteristics

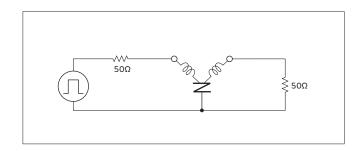


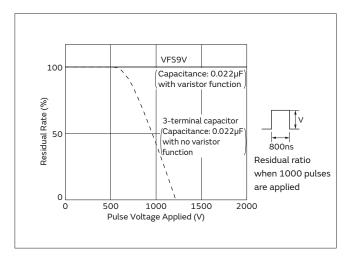

Voltage - Current Characteristics


Example of IC Protection (VFR3V)

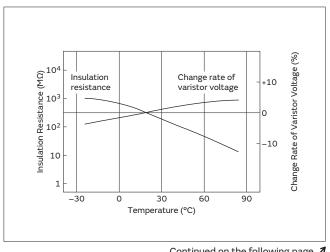

- Testing Method
- 1. Put ESD surge to IC (7404 family) input terminal with ESD simulator based on IEC 801-2.
- 2. Check IC's operation.
- If IC's operation is normal, increase ESD voltage in 1kV steps
- 4. Continue above steps 1 to 3 till IC's operation becomes abnormal.
- Result Varistor VFR3V can protect IC from ESD.

Example of EMI Suppression Effect



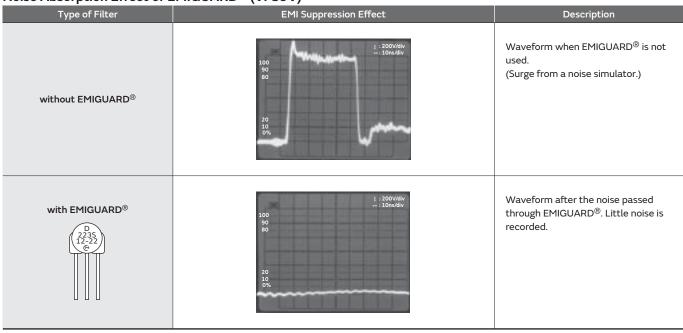

Features (VFS9V)

Items	Test methods	Rated values		
Overload	1.4 times the varistor voltage (V1) is applied for 5 minutes at room temperature.			
Surge Test (1)	At room temperature, Surges are applied 10 ⁵ times every 2 seconds. Then after 1 or 2 hours, the sample is measured.	Items Specifications Rated Capacitance Change Within±15%		
Surge Test (2)	At room temperature, the capacitor "C" is charged with 70V, then discharged to apply the voltage to the sample. Tested once (resuming JASO A-1). $ \begin{array}{c} 0.80 \\ 70V \\ \hline \end{array} $	Insulation Resistance $500kΩ$ min. Rated of Change in Varistor Voltage V1* Within±15% Voltage Rate 1.30 max.		
High Temperature Load	At a temperature of $85\pm3^{\circ}$ C, the varistor voltage V ₁ is continuously applied to the sample for 1000 to 1024 hours. Then it is left at room temperature, for 4 to 24 hours before measuring.	*V1: Voltage when 1mA is applied		


Pulse-Voltage Breakdown Characteristic (VFS9V)

VFS9V EMIGUARD® use a self healing varistor- capacitor, so that it can be used under a 500 to 600V surge that would break conventional disc type EMI filters. As shown in the figure below EMIGUARD® withstands 2000V impulses applied 1000 times.

Temperature Characteristics of Varistor Voltage - Insulation Resistance (VFS9V)



Continued on the following page. 7

Continued from the preceding page.

Noise Absorption Effect of EMIGUARD® (VFS9V)

Comparative Data (VFS9V)

1. Absorption of quick-rising, high-frequency noise (10ns/div, 100V/div)

Type of Filter	EMI Suppression Effect	Description
Without Filters	50ns ++ 000 02	
Conventional varistor	100 90 80 80 0%	As with the two-terminal capacitor
Two-terminal capacitor (with varistor function)	30 30 30 30 30 30 30 30	The two-terminal capacitor is influenced by lead line inductance, leaving behind some of the rising and falling edges. The residual noise can cause the system to malfunction.
VFS9V	100 90 90 90 20 10 0%	The three-terminal structure eliminates most of the lead line inductance. This allows VFS9V to completely absorb the rising and falling edges of the applied pulses.

Continued on the following page. 7

⚠Note • Please read rating and ⚠CAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc.
• This catalog has only typical specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

Continued from the preceding page.

2. Absorption of wide-pulse noise (50ns/div, 200V/div)

	2. Absorption of wide-pulse noise (SOns/div, 200V/div)				
Type of Filter	EMI Suppression Effect	Description			
Without Filters	200ns				
Two-terminal capacitor	100 80 80 00 00	In capacitors the voltage of the residual surge (1300V) is higher than that of the above example. The wave height is almost the same as the original.			
Three-terminal capacitor (with ferrite bead)	190 90 80 80	Conventional EMI filters do not work for wide-pulse noise because the capacitors are saturated. In this example, the residual 1200V surge can cause the system to break down.			
VFS9V	100 90 80 20 10 0%	Bypassing the high voltage to the ground suppresses the voltage.			

■ Common Mode Choke Coils Part Numbering

Common Mode Choke Coils

(Part Number) PL T 09H N 200 3R0 P 1 B

1 Product ID

Product ID	
PL	Common Mode Choke Coils

2Type

Code	Туре	
Т	DC Type	

3Applications

Code	Applications	
09H	for DC Line High-frequency Type	

4 Features

Code	Features
N	General Use

6 Inductance

Expressed by three figures. The unit is micro-henry (μ H). The first and second figures are significant digits, and the third figure expresses the number of zeros that follow the two figures.

6 Rated Current

Expressed by three-digit alphanumerics. The unit is in amperes (A). A decimal point is expressed by the capital letter "R". In this case, all figures are significant digits.

Winding Mode

Code	Winding Mode	
Р	Aligned Winding Type	

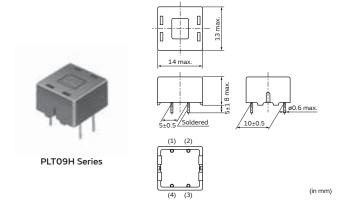
8Lead Dimensions

Code	Lead Dimensions
1	5mm

Packaging

Code	Packaging	Series
В	Bulk	All series

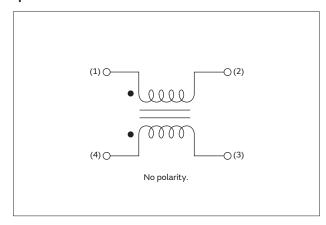
● Common Mode Choke Coils (for DC Line) PLT09H Series

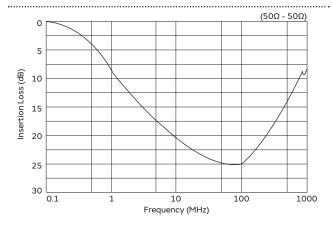

PLT09H series is a common mode choke coil for DC lines. It is effective against the common mode noise that can cause radiative noise in power supply lines and interface lines. The additional normal mode inductance enables high suppression effect to radiation noise.

Features

- 1. This is a wide frequency range type, applicable in applications ranging from a few MHz to several 100MHz.
- 2. It features a low-profile design.

Applications


- 1. Noise suppression of SW power supply, DC-DC converter
- 2. DC power lines in AC adapter of Portable equipment



Part Number	Rated Current	Rated Voltage	Withstand Voltage	Common Mode Inductance
	(A)	(Vdc)	(Vdc)	(µH)
PLT09HN2003R0P1	3	50	125	20 min.

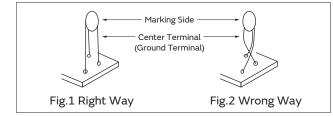
Operating Temperature Range: -40 to +85°C

Equivalent Circuit

∴ Caution/Notice

∴ Caution

Rating


Do not use products beyond the rated current and rated voltage as this may create excessive heat and deteriorate the insulation resistance.

Soldering and Mounting

- Mounting holes should be designed as specified in these specifications. Other designs than those shown in these specifications may cause cracks in ceramics that may lead to smoking or firing.
- 2. DSN9H/DST9H/VFS9V Series

Mounting for PCB. (Applis only to bulk type.)

The form of the mounting hole of the bulk item is a triangle. The product should be inserted and soldered to each hole in the correct way as in Fig.1. (The center terminal and the other terminals become parallel when viewing the product from the side.) Smoking and firing maybe caused by incorrect mounting as in Fig.2. (The center terminal and the other terminals cross when viewing the product from the side.)

 Take care not to apply any mechanical stress to product body at the lead terminal bending process for product angle adjustment after insertion.

Notice

Storage and Operating Conditions

<Operating Environment>

- 1. Do not use products in a chemical atmosphere such as chlorine gas, acid or sulfide gas.
- Do not use products near water, oil or organic solvents. Avoid environments where dust or dirt may adhere to the product.
- <Storage and Handling Requirements>
- 1. Storage Period

Use the products within 12 months after delivery. Solderability should be checked if this period is exceeded.

- 2. Storage Conditions
- (1) Storage temperature: -10 to 40 degrees C
 Relative humidity: 15 to 85%

Avoid sudden changes in temperature and humidity.

- (2) Do not store products in a chemical atmosphere such as chlorine gas, acid or sulfide gas.
- (3) When restoring taping type (BL01RN1A1F1J), please attach the spacer between the flanges of the reel. The spacer is corrugated paper that is attached when shipping.
- <Using EMIGUARD® effectively>
- Terminal (with mark) should be properly connected to the line of incoming electrostatic surge. (There is polarity.) Otherwise, no effect in ESD suppression can be expected (VFR3V).

Example of input terminal Incoming Electrostatic Surges Incoming Electrostatic Surges

- 2. Products should be used at rated voltage or less and rated current or less.
- Products should not be applied for the absorption of surges that have large energy (e.g., induced lightning surges, switching surges) because it is designed for the absorption of electrostatic surges (VFR3V).
- 4. Electrostatic testing should be done on the following conditions (VFR3V).
 - $n \cdot [C/R \cdot V^2]^2 < 8.0 \times 10^5$
 - n: Times applied
 - C: Charging Capacitance (pF)
 - V: Testing Voltage (kV)
 - R: Charging Resistance (Ω)

Soldering and Mounting

1. Washing

Failure and degradation of a product are caused by the washing method. When you wash in conditions that are not in the mounting information, please contact Murata engineering.

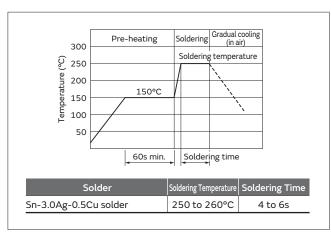
2. Soldering

Reliability decreases with improper soldering methods. Please solder by the standard soldering conditions shown in the mounting information.

3. Other

Noise suppression levels resulting from Murata's EMI suppression filters EMIFIL® may vary, depending on the circuits and ICs used, type of noise, mounting pattern, lead wire length, mounting location, and other operating conditions. Be sure to check and confirm in advance the noise suppression effect of each filter, in actual circuits, etc. before applying the filter in a commercial-purpose equipment design.

Soldering and Mounting


1. Mounting Hole

Mounting holes should be designed as specified below.

Part Number	Bulk Type (in mm)	Taping Type (in mm)
VFR3V VFS6V DSS1	2.5±0.2 2.5±0.2	
DSN9H	<u>Ø</u> 0.8-3	ø1.0-3
DST9H	2.5±0.2 2.5±0.2	2.5±0.2 2.5±0.2
VFS9V	2.5±0.2	
VFC2H	Ø0.8-2 5.2±0.4	Ø1.0-2

2. Soldering

- (1) Use Sn-3.0Ag-0.5Cu solder.
- (2) Use Rosin-based flux. Do not use strong acidic flux with halide content exceeding 0.2wt% (chlorine conversion
- (3) Products and the leads should not be subjected to any mechanical stress during the soldering process, or while subjected to the equivalent high temperatures.
- (4) Standard flow soldering profile.

Continued on the following page. 🖊

Soldering and Mounting

Continued from the preceding page. \searrow

3. Cleaning Conditions

Do not clean VFR3V, PLT09H and VFS6V series. Clean other parts in the following conditions.

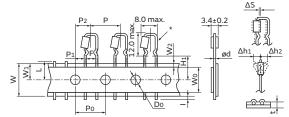
- (1) Cleaning temperature should be limited to 60°C max. (40°C max for alcohol type cleaner).
- (2) Ultrasonic cleaning should comply with the following conditions, avoiding the resonance phenomenon at the mounted products and PCB.

Power: 20 W / ℓ max. Frequency: 28 to 40kHz Time: 5 min. max.

- (3) Cleaner
 - (a) Alcohol type cleaner Isopropyl alcohol (IPA)
 - (b) Aqueous agent (PLT series cannot be cleaned)
 PINE ALPHA ST-100S

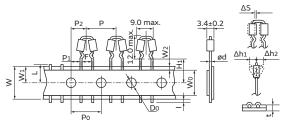
- (4) There should be no residual flux or residual cleaner left after cleaning.
 - In the case of using aqueous agent, products should be dried completely after rinsing with de-ionized water in order to remove the cleaner.
- (5) The surface of products may become dirty after cleaning, but there is no deterioration on mechanical, electrical characteristics and reliability.
- (6) Other cleaning: Please contact us.

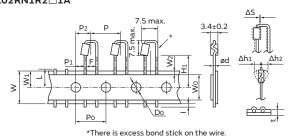
Packaging


Minimum Quantity (Pcs.)

Series	Bulk	Ammo Pack	ø320mm Paper Reel
BL01RN	500	1000	2000
BL02RN	500	1500	_
BL03RN	1000	2000	_

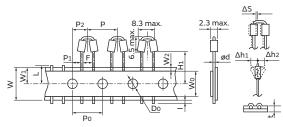
Taping Dimensions


BL01RN_A wax ± Direction of feed. xew 0 3.2 min. 0.8 max. 6.0±1.0 |L1 - L2 | ≦1.5 *L BL01RN1A1F1A:52+2/-1 BL01RN1A1E1A:26+1.5/-0



*There is excess bond stick on the wire.

BL02RN2R3N1A



BL02RN1R2 1A

BL03RN2R1□1A

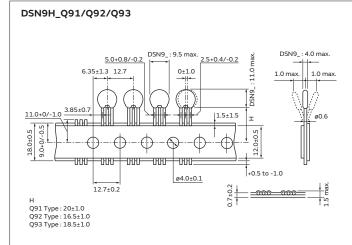
(in mm)

Description	Symbol	ol Dimension (mm)		Remarks
Pitch of component	P 12.7		Product inclination ΔS determines tolerance	
Pitch of sprocket hole	Po	12.7±0.2		
Lead spacing F		5.0 ^{+0.8} _{-0.2}		
Hole center to lead	P1	3.85±0.7		
Hole center to component center	P2	6.35±1.3		Tape deviation in feeding direction
Offset of bead	ΔS	±1.0		Including the offset caused by lead bend
Carrier tape width	W	18.0±0.5		
Position of sprocket hole	W1	9.0 ⁺⁰		Tape with deviation
1 d abb b ab a b	H1	Lead Length Number : N	16.5±0.5	BL02, BL03
Lead length between sprocket		Lead Length Number : Q	20.0±0.5	BL02RN1R2/2R1, BL03
hole and forming position		Lead Length Number : P	18.5±0.5	BL02, BL03
Protruding length	ı	+0.5 to -1.0		
Diameter of sprocket hole	Do	ø4.0±0.1		
Lead Diameter	ød	ø0.60		
Total tape thickness	t	0.7±0.2		Including bonding tape thickness
Deviation across tape, Deviation across tape rear	Δh1, Δh2	1.0 max.		
Cutting position of failure	L	11.0 +0		
Hold down tape width	Wo	12.0±0.5		
Hold down tape position	W2	1.5±1.5		

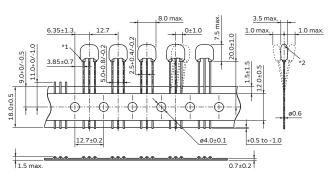
31

Packaging

Minimum Quantity

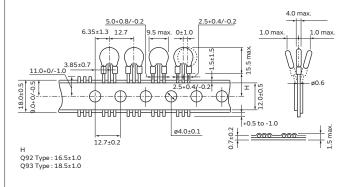

	Minimum Order Quantity (order in sets only) (pcs.)			
Part Number	Ammo Pack	ø320mm Paper Reel	Bulk (Bag)	
VFR3V Series	2000	_	250	
VFS6V Series	2000	_	250 T51	
DSN9H Series	2000	_	250 Q55	
VFS9V Series	_	800	200	
VFC2H Series	2000	2000	500	
DSS1 Series	1500	1500	250	

Lead Type Code

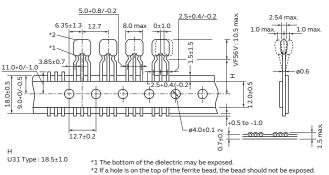

Lead Ty	1 d 1 th (1)	
Straight Type	Incrimp Type	Lead Length (H)
Q91	-	20.0±1.0mm
Q92	-	16.5±1.0mm
Q93	U31	18.5±1.0mm

Lead Type Code Inside Crimp	Lead Length (from bottom of the crimp)	
K1B	26.0±1.0mm	
M1A	18.0±1.0mm	

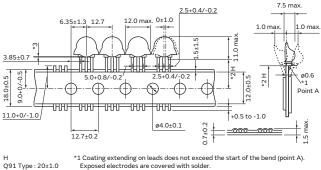
Taping Dimensions



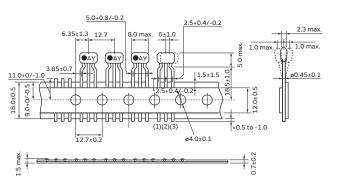
DSS1_Q91



- *1 The bottom of the dielectric may be exposed.
 *2 If a hole is on the top of the ferrite bead, the bead should not be exposed


DST9H_Q92/Q93

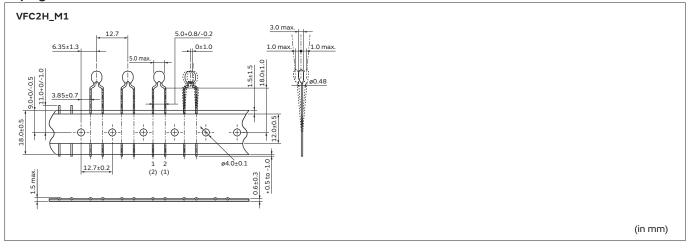
VFS6V_U31



VFS9V_Q91/Q92/Q93

- H Q91 Type : 20±1.0 Q92 Type : 16.5±1.0 Q93 Type : 18.5±1.0
- *2 H. to be measured from the forming point A.
 *3 The deviation between two ferrite beads should be less than 1.2mm

VFR3V_U31



(in mm)

Packaging

Continued from the preceding page.

Taping Dimensions

⚠Note • Please read rating and ⚠CAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc.
• This catalog has only typical specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

Global Locations

For details please visit www.murata.com

Note

1 Export Control

For customers outside Japan:

No Murata products should be used or sold, through any channels, for use in the design, development, production, utilization, maintenance or operation of, or otherwise contribution to (1) any weapons (Weapons of Mass Destruction [nuclear, chemical or biological weapons or missiles] or conventional weapons) or (2) goods or systems specially designed or intended for military end-use or utilization by military end-users.

For customers in Japan:

For products which are controlled items subject to the "Foreign Exchange and Foreign Trade Law" of Japan, the export license specified by the law is required for export.

- 2 Please contact our sales representatives or product engineers before using the products in this catalog for the applications listed below, which require especially high reliability for the prevention of defects which might directly damage a third party's life, body or property, or when one of our products is intended for use in applications other than those specified in this catalog.
 - Aircraft equipment
 - Aerospace equipment
 - 3 Undersea equipment
 - Power plant equipment
 - Medical equipment
 - Transportation equipment (vehicles, trains, ships, etc.)
 - Traffic signal equipment
 - S Disaster prevention / crime prevention equipment
 - Data-processing equipment
 - Application of similar complexity and/or reliability requirements to the applications listed above

- 3 Product specifications in this catalog are as of January 2016. They are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering. If there are any questions, please contact our sales representatives or product engineers.
- 4 Please read rating and \(\Delta\)CAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc.
- This catalog has only typical specifications.
 Therefore, please approve our product
 specifications or transact the approval sheet
 for product specifications before ordering.
- Please note that unless otherwise specified, we shall assume no responsibility whatsoever for any conflict or dispute that may occur in connection with the effect of our and/or a third party's intellectual property rights and other related rights in consideration of your use of our products and/or information described or contained in our catalogs. In this connection, no representation shall be made to the effect that any third parties are authorized to use the rights mentioned above under licenses without our consent.
- No ozone depleting substances (ODS) under the Montreal Protocol are used in our manufacturing process.

Murata Manufacturing Co., Ltd.

www.murata.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Murata:

```
DSS9NC51H223Q55B DSS9ND31H223Q55B DSN9ND31H223Q55B DSN6NB31H102Q55B VFS9VD31B223Q50B
 VFS9VD31B223Q55B VFM41RN222N1CL BL01RN1A1F1J DSN6NB31H101Q55B DSS6NF31C223Q91A
DSN9NC51C104Q55B DSS6NF31C223Q55B DST9NC51H223Q55B DST310H55B271M250 BL01RN1A1D2B
VFS6VD81E221T51B DSN6NB31H470Q55B DSS9NC52A101Q91J DSS9NB32A470Q55B DSS9NC52A222Q91J
DST9NC52A222Q91J DSN9NC52A222Q55B DST9NC51H223Q91J DSS9NC51H223Q91J BL02RN2R1M2B
DSS9NC51H223Q50B DSN9NC51H223Q55B BL03RN2R1M1B DSS9NB32A271Q55B DSN9NB32A271Q55B
DST9NB32A271Q55B DSS9NC52A271Q50B DST6NC51H222Q55B DSN9NC51H223Q91A DSS9NC52A470Q55B
PLT09HN2003R0P1B VFR3VD31E131T51B DSN6NB31H271Q55B DSN6NZ81H103Q55B DSS9NB32A220Q55B
DSN9NC52A271Q55B BL02RN2R1P1A BL02RN2R1Q1A DSS9ND31H223Q54B DSS9NC51H223Q56B
DSS9NC51H223Q93J VFS9VD31B223Q93J BL02RN2R1N1A DSS9NC52A271Q91J DST9NC52A271Q91J
VFS6VD81E221U31A DSS6NF31C223T51B BL03RN2R1P1A DST9NC52A222Q55B DSS9NC52A222Q55B
DSN6NB31H222Q55B VFS9VD31B223Q91J DSN6NB31H220Q55B VFR3VD31E131U31A BL01RN1A2A2B
DSN6NB31H330Q55B DSS9NB32A101Q55B DSS9NC52A220Q55B DSS9NC52A470Q91J BL02RN1R2N1A
DSS9NB32A222Q55B DST9NB32A222Q55B DSS9NT31H223Q55B BL02RN1R2P1A DSN6NZ81H103Q91A
DSS9NC52A101Q55B DSN9NC52A101Q55B DST9NC52A271Q55B DSS9NC52A271Q55B PLT08CN0R53R0T0B
PLT08CN2003R0T0B BL02RN1R2M2B PLT08CN1R53R0T0B DSN9ND31C104Q55B DSS9NP32A222Q55B
DSN6NZ81H103Q54B DSN6NZ81H103Q56B DSN6NZ81H103Q93A DSS6NF31C223Q54B DSS6NF31C223Q56B
DSS6NF31C223Q92A DSS6NF31C223Q93A DSS6NF31C223T41B DSS6NF31C223U21A DSS6NF31C223U31A
DSN9NC51C104Q91A DSN9NC51C104Q92A DSN9NC51C104Q93A DSN9NC51H223Q54B DSN9NC51H223Q92A
 DSN9NC51H223Q93A DSN9NC52A222Q91A DSN9NC52A222Q93A DSS9NC51H223Q54B DSS9NC51H223Q92J
```