SECAM chroma signal processor for VHS VCRs

BA7207AS / BA7207AK

The BA7207AS and BA7207AK are LSI components that incorporate the contain circuitry required for SECAM chroma signal processing. The ICs have both recording and playback systems and each includes a bell filter, a bandpass filter, a limiter amplifier, a multiply-by-four circuit, a divide-by-four circuit, and a sync-gate circuit.

Applications

SECAM and VHS format video cassette recorders and camcorders

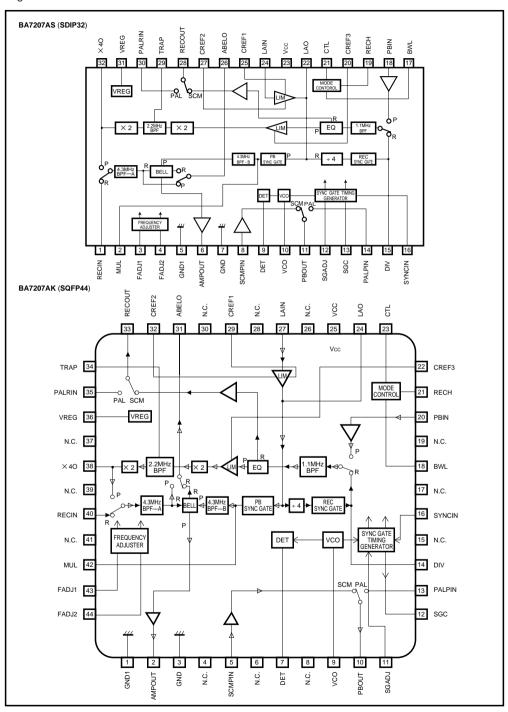
Features

- All filters required for SECAM chroma signal processing are provided.
- 2) Built-in chroma killer circuit.

 Built-in switch circuit for selecting PAL chroma or SECAM chroma for the PB / REC system output.

● Absolute maximum ratings (Ta = 25°C)

Parameter		Symbol	Limits	Unit	
Power supply voltage		Vcc	7	V	
Dower discinction	BA7207AS	7	1400 (SDIP32)*1		
Power dissipation	BA7207AK	Pd	850 (QFP44)*2	mW	
Operating temperature	BA7207AS	Tans	− 25 ~ + 75	°C	
Operating temperature	BA7207AK	Topr	- 25 ~ + 65		
Storage temperature		Tstg	Tstg - 55 ~ + 125		


^{*1} Reduced by 14mW for each increase in Ta of 1°C over 25°C .

● Recommended operating conditions (Ta = 25°C)

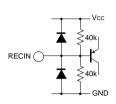
Parameter	Symbol	Min.	Тур.	Max.	Unit
Operating power supply voltage	Vcc	4.5	5.0	5.5	V

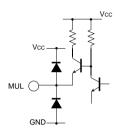
^{*2} When mounted on a 70mm × 70mm, t = 1.6mm glass epoxy board, reduced by 8.5W for each increase in Ta of 1°C over 25°C.

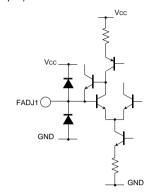
Block diagram

●Pin descriptions

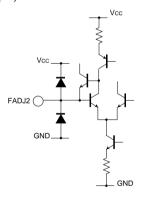
Pin No.	Pin name	Function
1 (40)	RECIN	Recording system input. Input the REC system chroma signal.
2 (42)	MUL	PB sync gate output. Test pin. Outputs the chroma signal after it is multiplied by four and passed through the sync gate. Normally connected to Vcc to prevent interference.
3 (43)	FADJ1	Filter fo adjustment pin 1. Used to adjust fo for the equalizer, 1.1MHz BPF and 2.2MHz BPF. Connect a resistor and variable resistor from this pin to GND.
4 (44)	FADJ2	Filter fo adjustment pin 2. Used to adjust fo for the bell filter, 4.3MHz BPF-A and 4.3MHz BPF-B. Connect a resistor and variable resistor from this pin to GND.
5 (1)	GND1	Ground.
6 (2)	AMPOUT	PB system preamplifier output. Connect to GND via a variable resistor to adjust the level, and input to pin 8.
7 (3)	GND	Ground.
8 (5)	SCMPIN	PB system output amplifier input. Input the level-adjusted PB system SECAM chroma signal.
9 (7)	DET	Phase comparator output. Connect to GND via a RC LPF to obtain the error voltage.
10 (9)	VCO	VCO oscillator frequency control pin. The error voltage is input via a resistor. Connected to GND via free-running frequency setting resistor.
11 (10)	PBOUT	PB system output. Outputs the PB system chroma signal.
12 (11)	SGADJ	Fine adjustment for the sync gate phase. The voltage from a resistor divider is used for fine adjustment of the gate phase of the sync gate. Normally open.
13 (12)	SGC	Sync gate timing output. Test pin. Outputs the REC sync gate timing. Normally open.
14 (13)	PALPIN	PAL PB system input. Input chroma signal for the PAL PB system.
15 (14)	DIV	Divide-by-four divider output. Test pin. Outputs the chroma signal after it has been divided by four. Normally connected to Vcc to prevent interference.
16	SYNCIN	Delayed sync signal input. Input the synchronously-separated composite

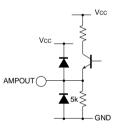

Pin No.	Pin name	Function
17 (18)	BWL	Chroma killer mode setting . "L" sets the IC in chroma killer mode.
18 (20)	PBIN	PB system input . Input chroma signal for the PB system.
19 (21)	RECH	REC / PB mode switch. Set to open or "H" for REC mode, "L" for PB mode.
20 (22)	CREF3	Bias terminal for the limiter amplifier before $\times 2$. Connect to GND via a capacitor.
21 (23)	CTL	SECAM / PAL output switch. Selects the signal output for the REC / PB terminal. Set to open or "H" for SECAM output mode, "L" for PAL mode.
22 (24)	LAO	Limiter amplifier output. Test pin. Outputs the amplitude-limited chroma signal. Normally connected to Vcc to prevent interference.
23 (25)	Vcc	Power supply.
24 (27)	LAIN	Limiter amplifier input. Input the de-emphasised chroma signal.
25 (29)	CREF1	Limiter amplifier bias pin 1. Connect to GND via a capacitor.
26 (31)	ABELO	REC BELL output. When in REC mode, de-emphasised chroma signal is output via REC BELL. When in PB mode, the PB system chroma signal is output after being multiplied by four.
27 (32)	CREF2	Limiter amplifier bias pin 2. Connect to GND via a capacitor.
28 (33)	RECOUT	REC system output. REC system chroma signal output.
29 (34)	TRAP	TRAP connection. Connect TRAP that rejects spurious signal component after × 2 multiplication.
30 (35)	PALRIN	PAL REC system input. PAL REC system chroma signal input.
31 (36)	VREG	Regulated voltage output. Output for the regulated 2.5V reference voltage used for internal biasing. Connect to GND via a bypass capacitor.
32 (38)	×40	× 4 multiply output. Test pin. Outputs the chroma signal after it is multiplied by four. Normally connected to Vcc to prevent interference.


 $\ensuremath{\mathsf{BA7207AK}}$ pin numbers are given in brackets.

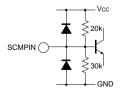


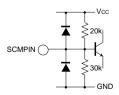
●Input / output circuits

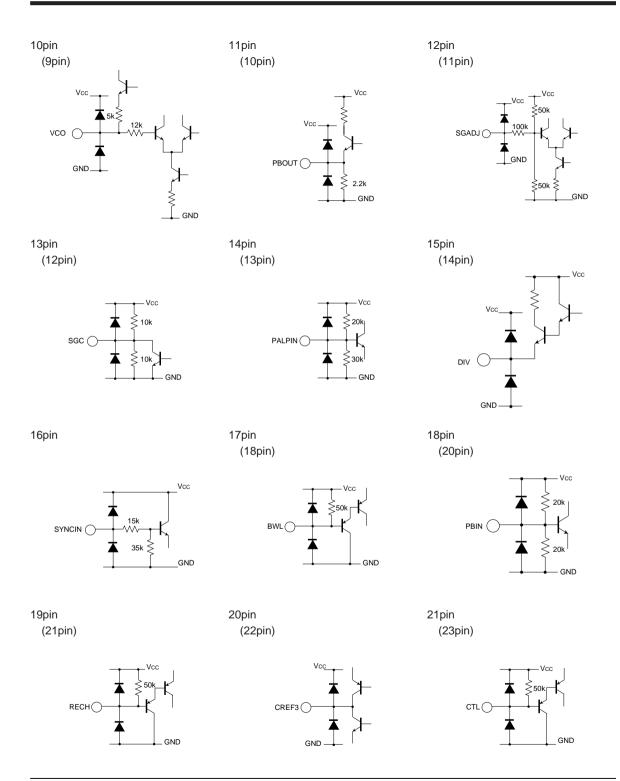

1pin (40pin) 2pin (42pin) 3pin (43pin)

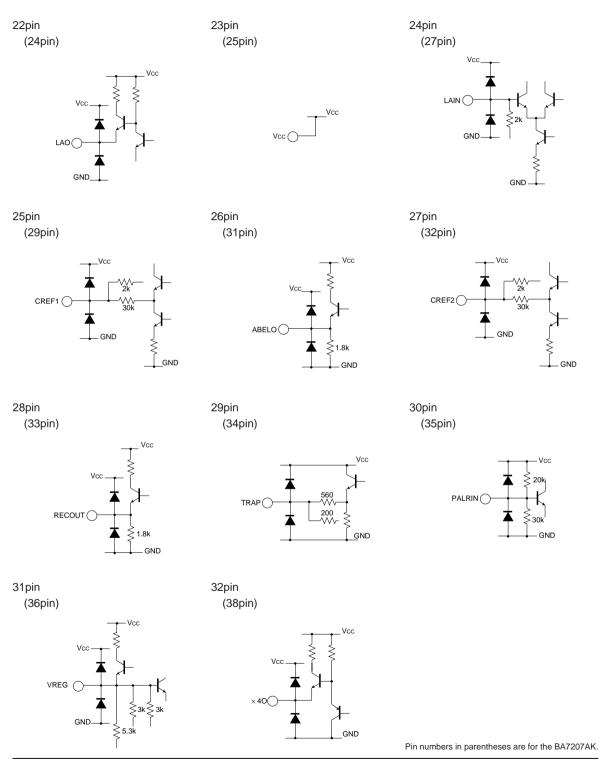

4pin (44pin)

5pin (1pin)




6pin (2pin)




7pin (3pin) 8pin (5pin) 9pin (7pin)

●Electrical characteristics (unless otherwise noted, Ta = 25°C, Vcc = 5.0V)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions	Measurement circuit
[Total device]							
REC mode supply current	IREC	39.2	56.0	72.8	mA	REC mode	Fig.1
PB mode supply current	Ірв	46.9	67.0	87.1	mA	PB mode	Fig.1
Regulator voltage	VREG	2.38	2.53	2.68	V		Fig.1
[Sync-gate block]							
VCO free-running frequency	fosc	13.8	15.625	17.4	kHz		Fig.1
Capture range "H"	СКн	1.8	_	_	kHz	Delayed sync input	Fig.1
Capture range "L"	CR∟	_	_	- 1.8	kHz	Delayed sync input	Fig.1
Lock range "H"	LRн	2.2	_	_	kHz	Delayed sync input	Fig.1
Lock range "L"	LR∟	_	_	- 2.2	kHz	Delayed sync input	Fig.1
[REC system]	•						
RECOUT output amplitude	VREC	187.5	250.0	312.5	mV _{P-P}	Cyan level (cyan frequency)	Fig.1
Unwanted spectrum rejection							
4MHz component	HD _{R4}	_	_	- 25	dB	V1 = 170mV _{P-P} , 4.286MHz	Fig.1
3MHz component	HD _{R3}	_	_	- 25	dB	V1 = 170mV _{P-P} , 4.286MHz	Fig.1
2MHz component	HD _{R2}	_	_	- 25	dB	V1 = 170mV _{P-P} , 4.286MHz	Fig.1
Output switch voltage gain	Grs	- 1	0	1	dB	V ₃₀ = 0.3V _{P-P} , 627kHz	Fig.1
Output switch frequency characteristic	frs	- 1	0	1	dB	V ₃₀ = 0.3V _{P-P} , 5MHz / 100kHz	Fig.1
Output switch crosstalk 1	CT _{R1}	_	- 60	_	dB	V ₁₈ = 25mV _{P-P} , 1.0715MHz	Fig.1
Output switch crosstalk 2	CT _{R2}	_	- 60	_	dB	V ₃₀ = 0.3V _{P-P} , 627kHz	Fig.1
[PB system]	•						
PB output amplitude	V _{PB}	202.5	270.0	337.5	mV _{P-P}	Cyan level (cyan frequency)	Fig.1
Unwanted spectrum rejection							
3MHz component	HD _{P3}	_	_	- 35	dB	V ₁₈ = 25mV _{P-P} , 1.0715MHz	Fig.1
2MHz component	HD _{P2}	_	_	- 35	dB	V ₁₈ = 25mV _{P-P} , 1.0715MHz	Fig.1
1MHz component	HD _{P1}	_	_	- 35	dB	V ₁₈ = 25mV _{P-P} , 1.0715MHz	Fig.1
Output switch voltage gain 1	G _{P1}	5	6	7	dB	V ₈ = 0.3V _{P-P} , 4.3MHz	Fig.1
Output switch frequency characteristic 1	f _{P1}	- 1	0	1	dB	V ₈ = 0.3V _{P-P} , 5MHz / 100kHz	Fig.1
Output switch crosstalk 1	CT _{P1}	_	- 60	_	dB	V ₈ = 0.3V _{P-P} , 4.3MHz	Fig.1
Output switch voltage gain 2	G _{P2}	- 1	0	1	dB	V ₁₄ = 0.3V _{P-P} , 4.43MHz	Fig.1
Output switch frequency characteristic 2	f _{P2}	- 1	0	1	dB	V ₁₄ = 0.3V _{P-P} , 5MHz / 100kHz	Fig.1
Output switch crosstalk 2	CT _{P2}	_	- 60	_	dB	V ₁₄ = 0.3V _{P-P} , 4.43MHz	Fig.1
RECIN crosstalk	CTRIN	_	- 40	- 30	dB	V1 = 0.5V _{P-P} , 4.286MHz	Fig.1
[Control system]	ı	1	1				1
High level voltage	Vн	2.5	_	_	V	Pins 14, 17, 19, 21 and 30 (Pins 13,18,21,23 and 35)*	Fig.1
Low level voltage	VL	_		1.5	V	Pins 14, 17, 19, 21 and 30 (Pins 13,18,21,23 and 35)*	Fig.1

^{*} BA7207AK pin numbers are given in brackets.

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions	Measurement circuit		
[Filter block]									
⟨1.1MHz BPF characteristic⟩									
1.1MHz voltage gain	G _{F11}	- 2.8	0.7	4.2	dB	V ₁₈ = 25mV _{P-P} , 1.0715MHz	Fig.1		
0.5MHz voltage gain	GF12	- 6.5	- 3.0	0.5	dB	V ₁₈ = 25mV _{P-P} , 0.5MHz	Fig.1		
3.2MHz voltage gain	GF13	_	- 35.0	- 26.0	dB	V ₁₈ = 25mV _{P-P} , 3.2145MHz	Fig.1		
⟨4.3MHz BPF - A characteristic⟩									
4.3MHz voltage gain	GF31	- 11.3	- 7.8	- 4.3	dB	V1= 500mV _{P-P} , 4.286MHz	Fig.1		
3.2MHz voltage gain	GF32	- 16.1	- 12.6	- 9.1	dB	V1= 500mV _{P-P} , 3.2MHz	Fig.1		
5.5MHz voltage gain	GF33	- 14.0	- 10.5	- 7.0	dB	V1= 500mV _{P-P} , 5.5MHz	Fig.1		
⟨REC BELL + 4.3MHz BPF - A characte	eristic>				•				
4.3MHz voltage gain	G _{RB1}	- 0.7	2.8	6.3	dB	V ₁ = 170mV _{P-P} , 4.286MHz	Fig.1		
4.1MHz voltage gain	G _{RB2}	- 7.0	- 3.5	0	dB	V1= 170mV _{P-P} , 4.1MHz	Fig.1		
4.5MHz voltage gain	G _{RB3}	- 7.2	- 3.7	- 0.2	dB	V ₁ = 170mV _{P-P} , 4.5MHz	Fig.1		
⟨PB BELL + 4.3MHz BPF - A characteri	stic>		•		•				
4.3MHz voltage gain	G РВ1	- 20.9	- 17.4	- 13.9	dB	V1= 800mV _{P-P} , 4.286MHz	Fig.1		
4.1MHz voltage gain	G PB2	- 16.2	- 12.7	- 9.2	dB	V1= 800mV _{P-P} , 4.1MHz	Fig.1		
4.5MHz voltage gain	G РВ3	- 15.3	- 11.8	- 8.3	dB	V1= 800mV _{P-P} , 4.5MHz	Fig.1		
⟨REC EQ + 1.1MHz BPF characteristic⟩			,				•		
1.1MHz voltage gain	G _{RE1}	- 4.0	- 0.5	3.0	dB	V ₁₈ = 95mV _{P-P} , 1.0715MHz	Fig.1		
1.0MHz voltage gain	G _{RE2}	4.1	7.6	11.1	dB	V ₁₈ = 95mV _{P-P} , 1.0MHz	Fig.1		
1.2MHz voltage gain	G _{RE3}	6.7	10.2	13.7	dB	V ₁₈ = 95mV _{P-P} , 1.2MHz	Fig.1		
⟨PB EQ + 1.1MHz BPF characteristic⟩									
1.1MHz voltage gain	G _{PE1}	2.5	6.0	9.5	dB	V ₁₈ = 25mV _{P-P} , 1.0715MHz	Fig.1		
1.0MHz voltage gain	G _{PE2}	- 5.1	- 1.6	1.9	dB	V ₁₈ = 25mV _{P-P} , 1.0MHz	Fig.1		
1.2MHz voltage gain	G _{PE3}	- 8.9	- 5.4	- 1.9	dB	V ₁₈ = 25mV _{P-P} , 1.2MHz	Fig.1		

●Guaranteed design parameters (unless otherwise noted, Ta = 25°C, Vcc = 5.0V, delayed sync input)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
REC sync-gate phase	T _{DR}	1.3	2.4	3.5	μs	DIV (pin 14 / pin 15), REC mode
PB sync-gate phase	T _{DP}	0.5	1.6	2.7	μs	MUL (pin 2 / pin 42), PB mode
REC sync-gate amplitude	Twr	4.9	5.2	5.5	μs	DIV (pin 15 / pin 14), REC mode
PB sync-gate amplitude	Twp	6.1	6.4	6.7	μs	MUL (pin 2 / pin 42), PB mode

The pin numbers in brackets are for the BA7207AS and the BA7207AK respectively.

●Reference design data

(unless otherwise noted, Ta = 25°C, Vcc = 5.0V, fo (REC BELL) = 4.286MHz, fo (PB EQ) = 1.0715MHz)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
⟨1.1MHzBPF⟩						
1.1MHz gain	G _{F11}	_	1.0	_	dB	VIN= 0.3VP-P, 1.0715MHz
0.5MHz suppression ratio	GF12	_	- 4.0	_	dB	VIN= 0.3VP-P, 0.5MHz
3.2MHz suppression ratio	G _{F13}	_	- 30.0	_	dB	V _{IN} = 0.3V _{P-P} , 3.2145MHz
Groupe delay time	D _{F1}	370	420	470	nS	VIN= 0.3V _{P-P} , 1.0715MHz
⟨2.2MHzBPF⟩						
2.2MHz gain	GF21	_	- 6.0	_	dB	V _{IN} = 0.3V _{P-P} , 2.143MHz
1.1MHz suppression ratio	GF22	_	- 25.0	_	dB	VIN= 0.3VP-P, 1.0715MHz
3.2MHz suppression ratio	GF23	_	- 25.0	_	dB	VIN= 0.3VP-P, 3.2145MHz
Groupe delay time	DF2	180	230	280	ns	VIN= 0.3VP-P, 2.143MHz
⟨4.3MHz BPF - A⟩	•			•		
4.3MHz gain	GF31	_	7.0	_	dB	V _{IN} = 0.1V _{P-P} , 4.286MHz
3.2MHz suppression ratio	GF32	_	- 3.0	_	dB	V _{IN} = 0.1V _{P-P} , 3.2MHz
5.5MHz suppression ratio	GF33	_	- 3.0	_	dB	VIN= 0.1VP-P, 5.5MHz
Groupe delay time	DF3	160	210	260	nS	VIN= 0.1VP-P, 4.286MHz
⟨4.3MHz BPF - B⟩	•	•		•	•	
4.3MHz gain	GF41	_	9.0	_	dB	VIN= 0.1VP-P, 4.286MHz
3.5MHz suppression ratio	GF42	_	- 3.0	_	dB	V _{IN} = 0.1V _{P-P} , 3.5MHz
5.2MHz suppression ratio	GF43	_	- 3.0	_	dB	VIN= 0.1V _{P-P} , 5.2MHz
Groupe delay time	DF4	250	300	350	nS	VIN= 0.1VP-P, 4.286MHz
⟨REC BELL⟩	•	•		•	•	
4.3MHz gain	G _{RB1}	_	19.5	_	dB	V _{IN} = 0.3V _{P-P} , 4.286MHz
4.1MHz suppression ratio	G _{RB2}	_	- 5.0	_	dB	VIN= 0.3VP-P, 4.1MHz
4.5MHz suppression ratio	GRB3	_	- 5.5	_	dB	VIN= 0.3VP-P, 4.5MHz
⟨PB BELL⟩	•	•		•		
4.3MHz gain	G PB1	_	- 19.5	_	dB	V _{IN} = 0.3V _{P-P} , 4.286MHz
4.1MHz gain	G PB2	_	5.0	_	dB	VIN= 0.3VP-P, 4.1MHz
4.5MHz gain	G РВ3	_	5.5	_	dB	VIN= 0.3VP-P, 4.5MHz
Center frequency ratio	dfов	- 1	0	1	%	dfob = (fo(PB) - fo(REC)) / fo(REC)
⟨PB EQ⟩						
1.1MHz gain	GRE1	_	19.5	_	dB	VIN= 0.3VP-P, 1.0715MHz
1.0MHz suppression ratio	G _{RE2}	_	- 8.0	_	dB	VIN= 0.3VP-P, 1.0MHz
1.2MHz suppression ratio	G _{RE3}	_	- 11.0	_	dB	VIN= 0.3VP-P, 1.2MHz
⟨REC EQ⟩		•	•	•		•
1.1MHz gain	G _{PE1}	_	- 19.5	_	dB	VIN= 0.3VP-P, 1.0715MHz
1.0MHz gain	G _{PE2}	_	8.0	_	dB	VIN= 0.3VP-P, 1.0MHz
1.2MHz gain	G РЕ3	_	11.0	_	dB	VIN= 0.3VP-P, 1.2MHz
Center frequency ratio	dfoe	- 1	0	1	%	dfoe = (fo(REC) - fo(PB)) / fo(PB)

Measurement circuits

BA7207AS (SDIP32)

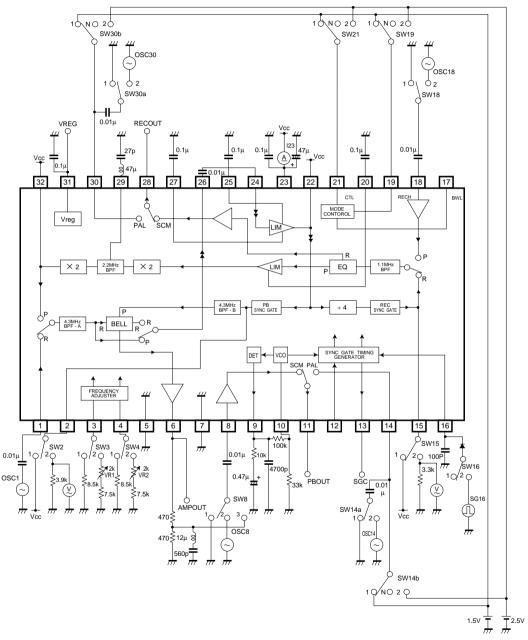


Fig. 1

BA7207AK (QFP44)

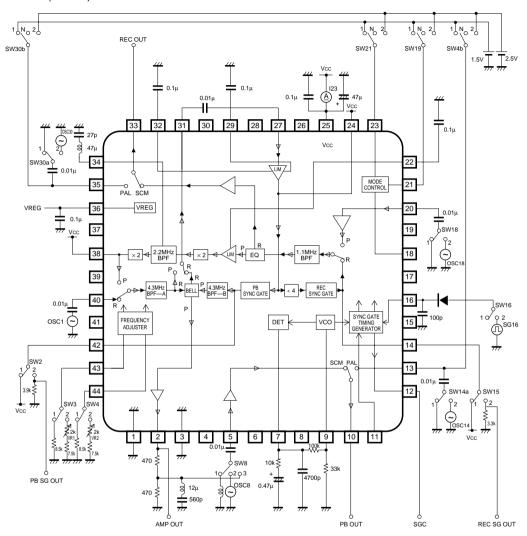


Fig. 2

Circuit operation

(1) Recording system (REC)

The input to REC IN is passed through the 4.3MHz BPF-A to remove unwanted frequency components, and is flattened by REC BELL which has an anti-bell characteristic. The flattened signal is wave-shaped by the limiter amplifer, and processed by the divide-by-four and sync gate circuits. Finally, unwanted frequency components are removed by the 1.1MHz BPF and the REC EQ prepares the signal for recording playback and the signal is output on REC OUT. Refer to Fig. 3.

Fig. 3

(2) Playback system (PB)

The input to PB IN is passed through the 1.1MHz BPF to remove unwanted frequency components, and is flattened by the PB EQ circuit. The amplitude of the flattened signal fixed by the 1st-stage limiter amplifier, and the frequency is multiplied by four by the multiplier circuit. Unwanted frequency components generated by the multiplier circuit are removed by the 2.2MHz BPF and 4.3MHz BPF-A. The signal is wave-shaped by the limiter amplifier, and has gate applied to it by the sync gate circuit then is passed through the 4.3MHz BPF-B to remove unwanted frequency components. The PB BELL circuit restores the original bell characteristic and the signal is output on PB OUT. Refer to Fig. 4.

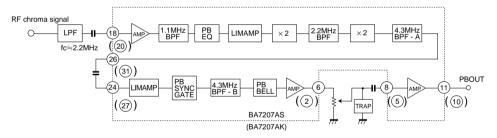


Fig. 4

(3) Sync gate timing circuit

REC and PB SYNC gate operation is as follows. The gate closes closes in synchronous with the SYNC IN input pulse during the synchronous signal pulse (SYNC) horizontal scan interval ($64\mu s$ period). During vertical retrace ($32\mu S$ period), the input pulse period becomes shorter than the horizontal scan interval. This is detected by the built-in vertical synchronous detector circuit which closes the gate. Refer to Fig. 5.

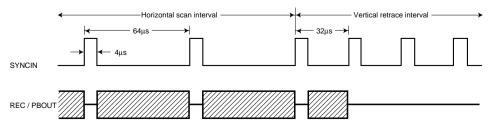
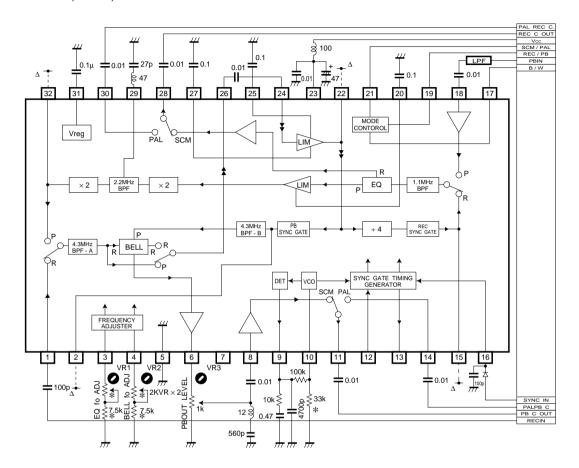
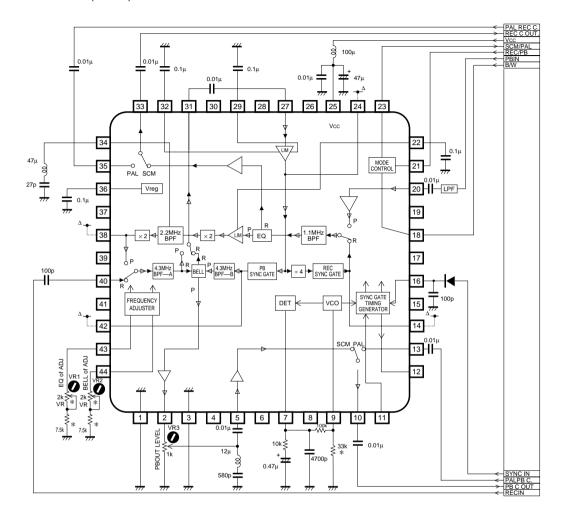



Fig. 5

Application examples

BA7207AS (SDIP32)


^{*} To cancel the temperature characteristic of the ID, the resistors marked with asterisks should be of the metal film, and have a temperature coefficient ± 100ppm / °C.

The 100pF capacitor connected to pin 16 is intended to reduce temperature disper of the gate phase.It should have a static capacitance tolerance of \pm 10% or Ic and a temperature coefficient of \pm 30ppm / °C (-55° C to + 125°C) A (CG).

Fig. 6

 $[\]Delta$: Test pin. Connect to Vcc if unused.

BA7207AK (QFP44)

* To cancel the temperature characteristic of the ID, the resistors marked with asterisks should be of the metal film, and have a temperature coefficient \pm 100ppm / °C.

 Δ : Test pin. Connect to Vcc if unused.

The 100pF capacitor connected to pin 16 is intended to reduce temperature disper of the gate phase. It should have a static capacitance tolerance of \pm 10% or Ic and a temperature coefficient of \pm 30ppm / °C (- 55°C to + 125°C) A (CG).

●Control pin logic

	Pin	Low	High (Open)
REC / PB setting switch	RECH (19pin / 21pin)	PB	REC
Output select switch	CTL (21pin / 23pin)	PAL	SECAM
Chroma killer switch	BWL (17pin / 18pin)	Chroma killer	NORMAL

(BA7207AS / BA7207AK)

Fig. 7

Operation notes

(1) Equalizer fo adjustment

Set to PB mode and input a $25mV_{P-P}$, 1.0715MHz sine wave to PBIN. Adjust the variable resistor connected between FADJ1 and GND to maximize the REC OUT output. This adjustment also adjusts the 1.1MHz and 2.2MHz band-pass filters. The value of the variable resistor must be at least $2k\Omega$. If it is less than this, adjustment may not be possible.

(2) Bell filter fo adjustment

Set to REC mode and input a 170mV_{P-P}, 4.286MHz sine wave to RECIN. Adjust the variable resistor connected between FADJ2 and GND to maximize the AMP OUT output. This adjustment also adjusts the 4.3MHz and 4.3MHz A and B band-pass filters. The value of the variable resistor must be at least $2k\Omega$. If it is less than this, adjustment may not be possible.

(3) Test pins

The MUL, DIV, LAO and 4XO pins are test terminals. By connecting these pins to GND via a $3.6 k\Omega$ resistor, it is possible to monitor there waveforms. When unused, connect these pins to Vcc to prevent interference.

(4) REC / PB input levels

The frequency characteristics of the built-in filters can change. For this reason use the following input signal levels:

RECIN: $540 \text{mV}_{P-P} + / - 6 \text{dB}$ (cyan level) PBIN: $75 \text{mV}_{P-P} + / - 6 \text{dB}$ (cyan level)

(5) Capacitor connected to VREG

Use a ceramic with a static capacitance of $0.1\mu F$. The filter may not operate correctly with other capacitance values.

(6) PBIN input

If there is a chroma component imposed on the FM brightness signal, use a low-pass filter (with an fc of about 2.2MHz) to remove the FM brightness signal component, and ensure that only the chroma component is input to PBIN.

(7) RECIN input

In the case of composite video input, connect a 100pF capacitor to ensure that only the chroma component is input to RECIN.

(8) Sync-gate phase adjustment

Perform fine adjustment of the sync-gate phase by applying a voltage to the SGADJ terminal, or using a resistor divider connected between Vcc and GND. The adjustment sensitivity is shown in Fig. 6.

SGADJ pin voltage when open: $V_{SGADJ} = 2.5V$ Input impedance $Z = 125k\Omega$

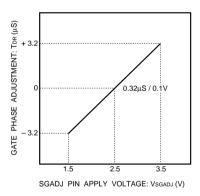


Fig. 8 Sync-gate phase

Electrical characteristic curves

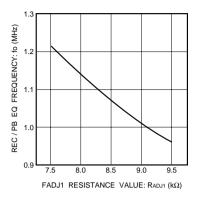


Fig. 9 REC / PB EQ fo frequency adjustment range

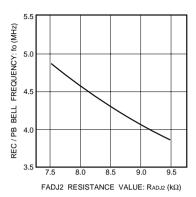


Fig. 10 REC / PB BELL fo frequency adjustment range

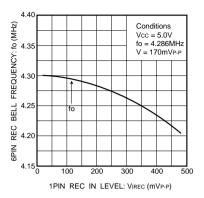


Fig. 11 REC / BELL fo frequency variation

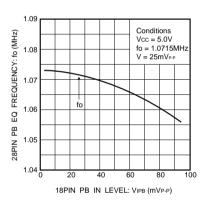


Fig. 12 PB EQ fo frequency variation characteristics

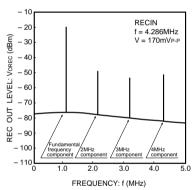


Fig. 13 REC OUT spurious characteristics

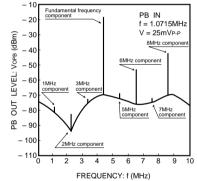



Fig. 14 PB OUT spurious characteristics

●External dimensions (Units: mm)

Notes

- No technical content pages of this document may be reproduced in any form or transmitted by any
 means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the
 product described in this document are for reference only. Upon actual use, therefore, please request
 that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard
 use and operation. Please pay careful attention to the peripheral conditions when designing circuits
 and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or
 otherwise dispose of the same, no express or implied right or license to practice or commercially
 exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document use silicon as a basic material.
 Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).

Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

About Export Control Order in Japan

Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control Order in Japan.

In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause) on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.

