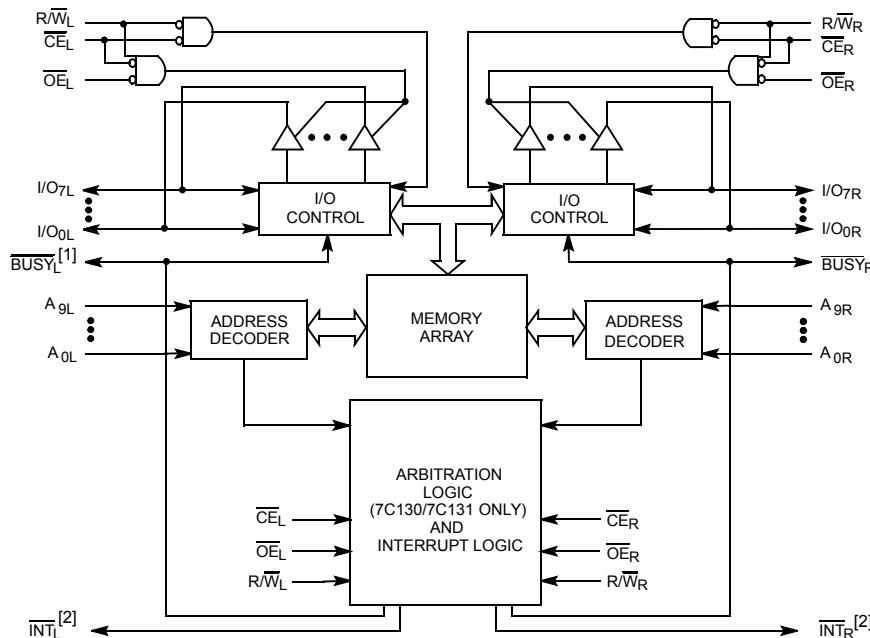


1K x 8 Dual-Port Static RAM

Features

- True Dual-Ported memory cells which allow simultaneous reads of the same memory location
- 1K x 8 organization
- 0.65-micron CMOS for optimum speed/power
- High-speed access: 15 ns
- Low operating power: $I_{CC} = 110$ mA (max.)
- Fully asynchronous operation
- Automatic power-down
- Master CY7C130/CY7C131 easily expands data bus width to 16 or more bits using slave CY7C140/CY7C141
- BUSY output flag on CY7C130/CY7C131; BUSY input on CY7C140/CY7C141
- INT flag for port-to-port communication
- Available in 48-pin DIP (CY7C130/140), 52-pin PLCC, 52-pin Pb-Free PLCC, 52-Pin TQFP and 52-Pin Pb-Free TQFP.

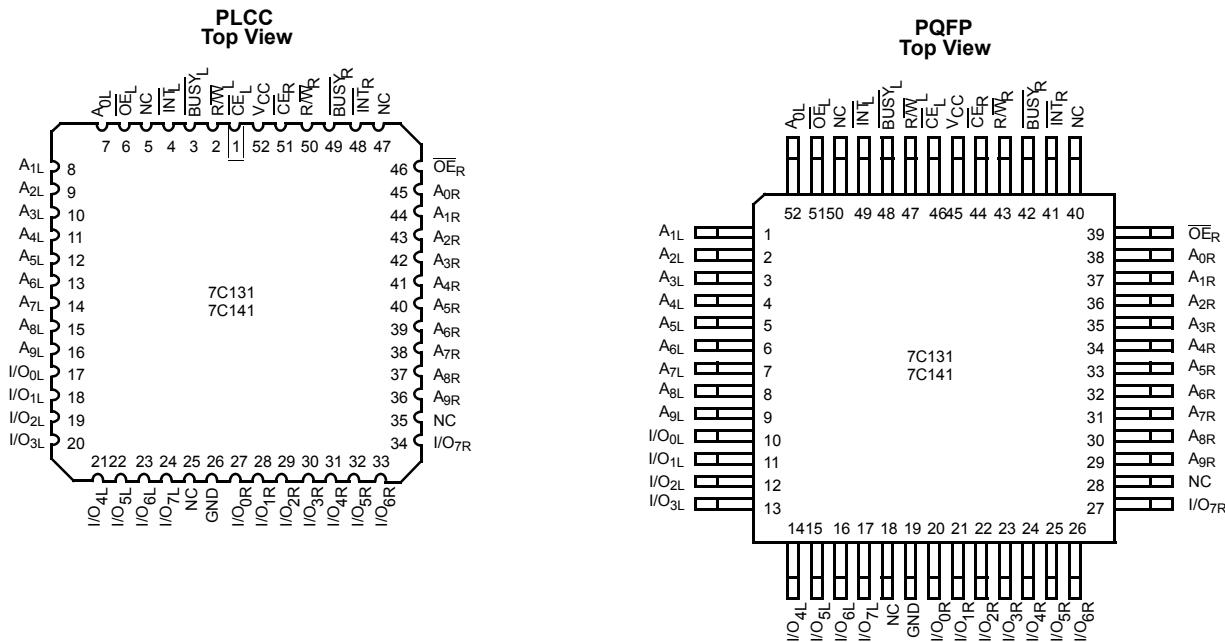

Functional Description

The CY7C130/CY7C131/CY7C140 and CY7C141 are high-speed CMOS 1K by 8 dual-port static RAMs. Two ports are provided permitting independent access to any location in memory. The CY7C130/CY7C131 can be utilized as either a standalone 8-bit dual-port static RAM or as a master dual-port RAM in conjunction with the CY7C140/CY7C141 slave dual-port device in systems requiring 16-bit or greater word widths. It is the solution to applications requiring shared or buffered data, such as cache memory for DSP, bit-slice, or multiprocessor designs.

Each port has independent control pins: chip enable (\overline{CE}), write enable ($\overline{R/W}$), and output enable (\overline{OE}). Two flags are provided on each port, BUSY and INT. BUSY signals that the port is trying to access the same location currently being accessed by the other port. INT is an interrupt flag indicating that data has been placed in a unique location (3FF for the left port and 3FE for the right port). An automatic power-down feature is controlled independently on each port by the chip enable (\overline{CE}) pins.

The CY7C130 and CY7C140 are available in 48-pin DIP. The CY7C131 and CY7C141 are available in 52-pin PLCC, 52-pin Pb-free PLCC, 52-pin PQFP and 52-pin Pb-free PQFP.

Logic Block Diagram



Pin Configurations

DIP Top View	
\overline{CE}_L	1
$\overline{R/W}_L$	2
BUSY _L	3
INT _L	4
\overline{OE}_L	5
A _{9L}	6
A _{8L}	7
A _{7L}	8
A _{6L}	9
A _{5L}	10
A _{4L}	11
A _{3L}	12
A _{2L}	13
A _{1L}	14
A _{0L}	15
I/O _{7L}	16
I/O _{6L}	17
I/O _{5L}	18
I/O _{4L}	19
I/O _{3L}	20
I/O _{2L}	21
I/O _{1L}	22
I/O _{0L}	23
GND	24
\overline{CE}_R	48
$\overline{R/W}_R$	47
BUSY _R	46
INT _R	45
\overline{OE}_R	44
A _{9R}	43
A _{8R}	42
A _{7R}	41
A _{6R}	40
A _{5R}	39
A _{4R}	38
A _{3R}	37
A _{2R}	36
A _{1R}	35
A _{0R}	34
I/O _{7R}	33
I/O _{6R}	32
I/O _{5R}	31
I/O _{4R}	30
I/O _{3R}	29
I/O _{2R}	28
I/O _{1R}	27
I/O _{0R}	26

Note:

- CY7C130/CY7C131 (Master): BUSY is open drain output and requires pull-up resistor
CY7C140/CY7C141 (Slave): BUSY is input.
- Open drain outputs: pull-up resistor required.

Pin Configuration (continued)

Pin Definitions

Left Port	Right Port	Description
\overline{CE}_L	\overline{CE}_R	Chip Enable
$\overline{R/W}_L$	$\overline{R/W}_R$	Read/Write Enable
\overline{OE}_L	\overline{OE}_R	Output Enable
$A_{0L}-A_{11/12L}$	$A_{0R}-A_{11/12R}$	Address
$I/O_{0L}-I/O_{15/17L}$	$I/O_{0R}-I/O_{15/17R}$	Data Bus Input/Output
\overline{INT}_L	\overline{INT}_R	Interrupt Flag
\overline{BUSY}_L	\overline{BUSY}_R	Busy Flag
V_{CC}		Power
GND		Ground

Selection Guide

		7C131-25^[3]	7C141-25	7C130-30	7C131-30	7C140-30	7C141-30	7C130-35	7C131-35	7C140-35	7C141-35	7C130-45	7C131-45	7C140-45	7C141-45	7C130-55	7C131-55	7C140-55	7C141-55	Unit
Maximum Access Time		15		25		30		35		45		55		ns						
Maximum Operating Current		Com'l/Ind	190		170		170		120		120		110			mA				
		Military							170		170		120							
Maximum Standby Current		Com'l/Ind	75		65		65		45		45		35			mA				
		Military							65		65		45							

Shaded areas contain preliminary information.

Note:

3. 15 and 25-ns version available only in PLCC/PQFP packages.

Maximum Ratings^[4]

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature -65°C to $+150^{\circ}\text{C}$

Ambient Temperature with

Power Applied -55°C to $+125^{\circ}\text{C}$

Supply Voltage to Ground Potential

(Pin 48 to Pin 24) -0.5V to $+7.0\text{V}$

DC Voltage Applied to Outputs

in High Z State -0.5V to $+7.0\text{V}$

DC Input Voltage -3.5V to $+7.0\text{V}$

Output Current into Outputs (LOW) 20 mA

Static Discharge Voltage $>2001\text{V}$
 (per MIL-STD-883, Method 3015)

Latch-Up Current $>200\text{ mA}$

Operating Range

Range	Ambient Temperature	V_{CC}
Commercial	0°C to $+70^{\circ}\text{C}$	$5\text{V} \pm 10\%$
Industrial	-40°C to $+85^{\circ}\text{C}$	$5\text{V} \pm 10\%$
Military ^[5]	-55°C to $+125^{\circ}\text{C}$	$5\text{V} \pm 10\%$

Electrical Characteristics Over the Operating Range^[6]

Parameter	Description	Test Conditions		7C130-30 ^[3]		7C130-35,45		7C130-55		Unit	
				7C131-15 ^[3]	7C140-30	7C141-25,30	7C141-35,45	7C141-55	7C141-55		
V_{OH}	Output HIGH Voltage	$V_{CC} = \text{Min.}$, $I_{OH} = -4.0\text{ mA}$		2.4		2.4		2.4		V	
V_{OL}	Output LOW Voltage	$I_{OL} = 4.0\text{ mA}$			0.4		0.4		0.4	V	
		$I_{OL} = 16.0\text{ mA}$ ^[7]			0.5		0.5		0.5		
V_{IH}	Input HIGH Voltage			2.2		2.2		2.2		V	
V_{IL}	Input LOW Voltage				0.8		0.8		0.8	V	
I_{IX}	Input Leakage Current	$\text{GND} \leq V_I \leq V_{CC}$		-5	+5	-5	+5	-5	+5	μA	
I_{OZ}	Output Leakage Current	$\text{GND} \leq V_O \leq V_{CC}$, Output Disabled		-5	+5	-5	+5	-5	+5	μA	
I_{OS}	Output Short Circuit Current ^[8, 9]	$V_{CC} = \text{Max.}$, $V_{OUT} = \text{GND}$			-350		-350		-350	mA	
I_{CC}	V_{CC} Operating Supply Current	$\overline{CE} = V_{IL}$, Outputs Open, $f = f_{MAX}^{[10]}$	Com'l		190		170		120	110	mA
			Mil						170	120	
I_{SB1}	Standby Current Both Ports, TTL Inputs	\overline{CE}_L and $\overline{CE}_R > V_{IH}$, $f = f_{MAX}^{[10]}$	Com'l		75		65		45	35	mA
			Mil						65	45	
I_{SB2}	Standby Current One Port, TTL Inputs	\overline{CE}_L or $\overline{CE}_R \geq V_{IH}$, Active Port Outputs Open, $f = f_{MAX}^{[10]}$	Com'l		135		115		90	75	mA
			Mil						115	90	
I_{SB3}	Standby Current Both Ports, CMOS Inputs	\overline{CE}_L and $\overline{CE}_R \geq V_{CC} - 0.2\text{V}$, $V_{IN} \geq V_{CC} - 0.2\text{V}$ or $V_{IN} \leq 0.2\text{V}$, $f = 0$	Com'l		15		15		15	15	mA
			Mil						15	15	

Shaded areas contain preliminary information.

Note:

4. The Voltage on any input or I/O pin cannot exceed the power pin during power-up.

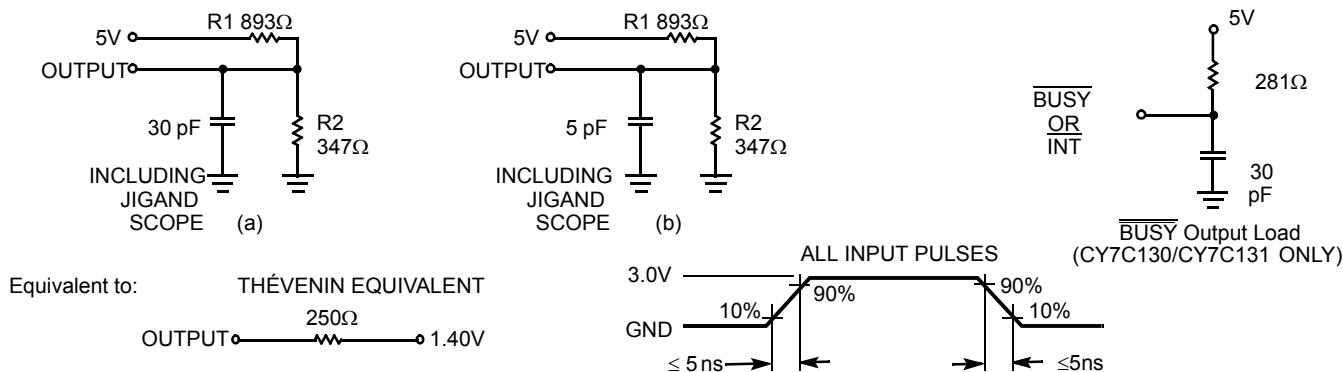
5. T_A is the "instant on" case temperature

6. See the last page of this specification for Group A subgroup testing information.

7. BUSY and INT pins only.

8. Duration of the short circuit should not exceed 30 seconds.

9. This parameter is guaranteed but not tested.


10. At $f=f_{MAX}$, address and data inputs are cycling at the maximum frequency of read cycle of $1/t_{RC}$ and using AC Test Waveforms input levels of GND to 3V.

Electrical Characteristics Over the Operating Range^[6] (continued)

				7C131-15 ^[3] 7C141-15	7C130-30 ^[3] 7C131-25,30 7C140-30 7C141-25,30	7C130-35,45 7C131-35,45 7C140-35,45 7C141-35,45	7C130-55 7C131-55 7C140-55 7C141-55	
I _{SB4}	Standby Current One Port, CMOS Inputs	One Port \overline{CE}_L or $\overline{CE}_R \geq V_{CC} - 0.2V$, $V_{IN} \geq V_{CC} - 0.2V$ or $V_{IN} \leq 0.2V$, Active Port Outputs Open, $f = f_{MAX}^{[10]}$	Com'l Mil	125	105	85	70	mA

Capacitance^[9]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^\circ C$, $f = 1$ MHz, $V_{CC} = 5.0V$	15	pF
C _{OUT}	Output Capacitance		10	pF

AC Test Loads and Waveforms

Switching Characteristics Over the Operating Range^[6,11]

Parameter	Description	7C131-15 ^[3] 7C141-15		7C130-25 ^[3] 7C131-25 7C140-25 7C141-25		7C130-30 7C131-30 7C140-30 7C141-30		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
t_{RC}	Read Cycle Time	15		25		30		ns
t_{AA}	Address to Data Valid ^[12]		15		25		30	ns
t_{OHA}	Data Hold from Address Change	0		0		0		ns
t_{ACE}	\overline{CE} LOW to Data Valid ^[12]		15		25		30	ns
t_{DOE}	\overline{OE} LOW to Data Valid ^[12]		10		15		20	ns
t_{LZOE}	\overline{OE} LOW to Low Z ^[9,13, 14]	3		3		3		ns
t_{HZOE}	\overline{OE} HIGH to High Z ^[9,13, 14]		10		15		15	ns
t_{LZCE}	\overline{CE} LOW to Low Z ^[9,13, 14]	3		5		5		ns
t_{HZCE}	\overline{CE} HIGH to High Z ^[9,13, 14]		10		15		15	ns
t_{PU}	\overline{CE} LOW to Power-Up ^[9]	0		0		0		ns
t_{PD}	\overline{CE} HIGH to Power-Down ^[9]		15		25		25	ns
WRITE CYCLE ^[15]								
t_{WC}	Write Cycle Time	15		25		30		ns
t_{SCE}	\overline{CE} LOW to Write End	12		20		25		ns
t_{AW}	Address Set-Up to Write End	12		20		25		ns
t_{HA}	Address Hold from Write End	2		2		2		ns
t_{SA}	Address Set-Up to Write Start	0		0		0		ns
t_{PWE}	R/W Pulse Width	12		15		25		ns
t_{SD}	Data Set-Up to Write End	10		15		15		ns
t_{HD}	Data Hold from Write End	0		0		0		ns
t_{HZWE}	R/W LOW to High Z ^[14]		10		15		15	ns
t_{LZWE}	R/W HIGH to Low Z ^[14]	0		0		0		ns

Shaded area contains preliminary information.

Note:

11. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance.
12. AC Test Conditions use $V_{OH} = 1.6V$ and $V_{OL} = 1.4V$.
13. At any given temperature and voltage condition for any given device, t_{HZCE} is less than t_{LZCE} and t_{HZOE} is less than t_{LZOE} .
14. t_{LZCE} , t_{LZWE} , t_{HZOE} , t_{LZOE} , t_{HZCE} and t_{HZWE} are tested with $C_L = 5pF$ as in part (b) of AC Test Loads. Transition is measured ± 500 mV from steady state voltage.
15. The internal write time of the memory is defined by the overlap of CS LOW and R/W LOW. Both signals must be low to initiate a write and either signal can terminate a write by going high. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.

Switching Characteristics Over the Operating Range^[6,11] (continued)

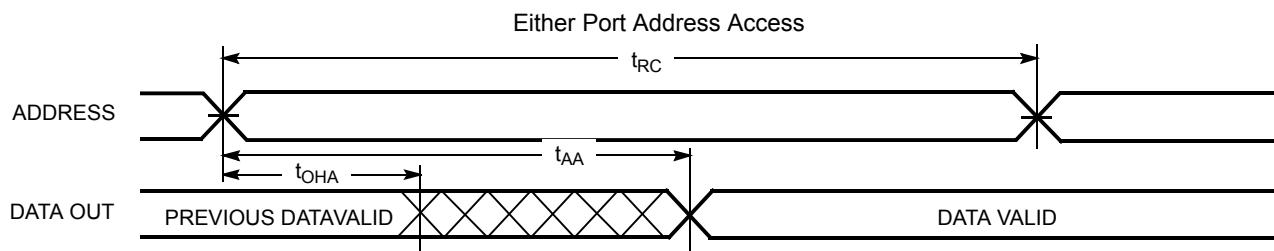
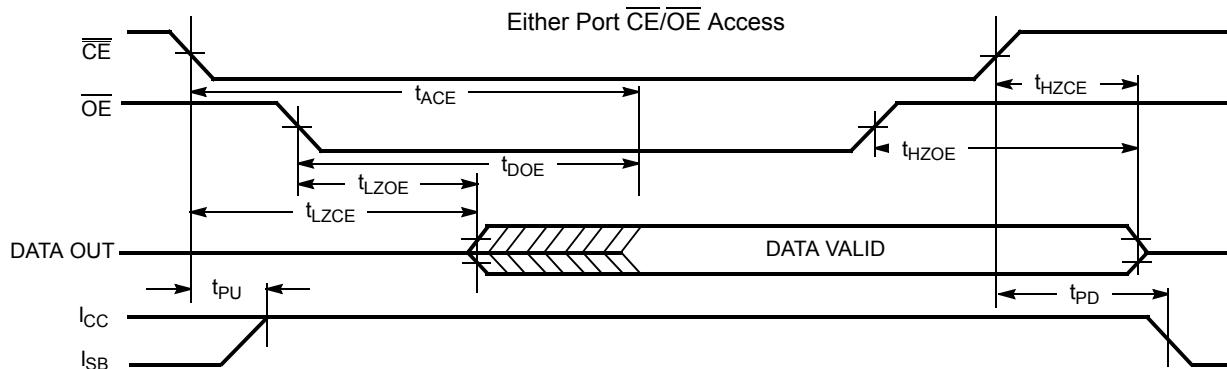
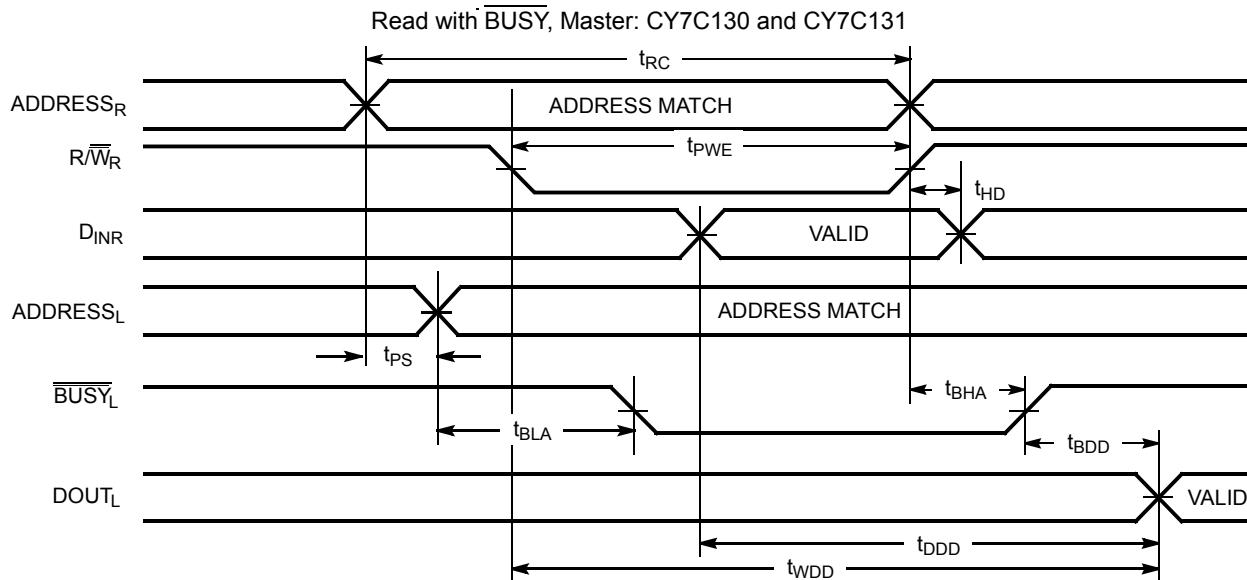
Parameter	Description	7C131-15 ^[3] 7C141-15		7C130-25 ^[3] 7C131-25 7C140-25 7C141-25		7C130-30 7C131-30 7C140-30 7C141-30		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
BUSY/INTERRUPT TIMING								
t_{BLA}	BUSY LOW from Address Match		15		20		20	ns
t_{BHA}	BUSY HIGH from Address Mismatch ^[16]		15		20		20	ns
t_{BLC}	BUSY LOW from \overline{CE} LOW		15		20		20	ns
t_{BHC}	BUSY HIGH from \overline{CE} HIGH ^[16]		15		20		20	ns
t_{PS}	Port Set Up for Priority	5		5		5		ns
$t_{WB}^{[17]}$	R/W LOW after BUSY LOW	0		0		0		ns
t_{WH}	R/W HIGH after BUSY HIGH	13		20		30		ns
t_{BDD}	BUSY HIGH to Valid Data		15		25		30	ns
t_{DDD}	Write Data Valid to Read Data Valid			Note 18		Note 18		Note 18
t_{WDD}	Write Pulse to Data Delay			Note 18		Note 18		Note 18
INTERRUPT TIMING								
t_{WINS}	R/W to INTERRUPT Set Time		15		25		25	ns
t_{EINS}	\overline{CE} to INTERRUPT Set Time		15		25		25	ns
t_{INS}	Address to INTERRUPT Set Time		15		25		25	ns
t_{OINR}	\overline{OE} to INTERRUPT Reset Time ^[16]		15		25		25	ns
t_{EINR}	\overline{CE} to INTERRUPT Reset Time ^[16]		15		25		25	ns
t_{INR}	Address to INTERRUPT Reset Time ^[16]		15		25		25	ns

Shaded area contains preliminary information.

Note:

16. These parameters are measured from the input signal changing, until the output pin goes to a high-impedance state.

17. CY7C140/CY7C141 only.

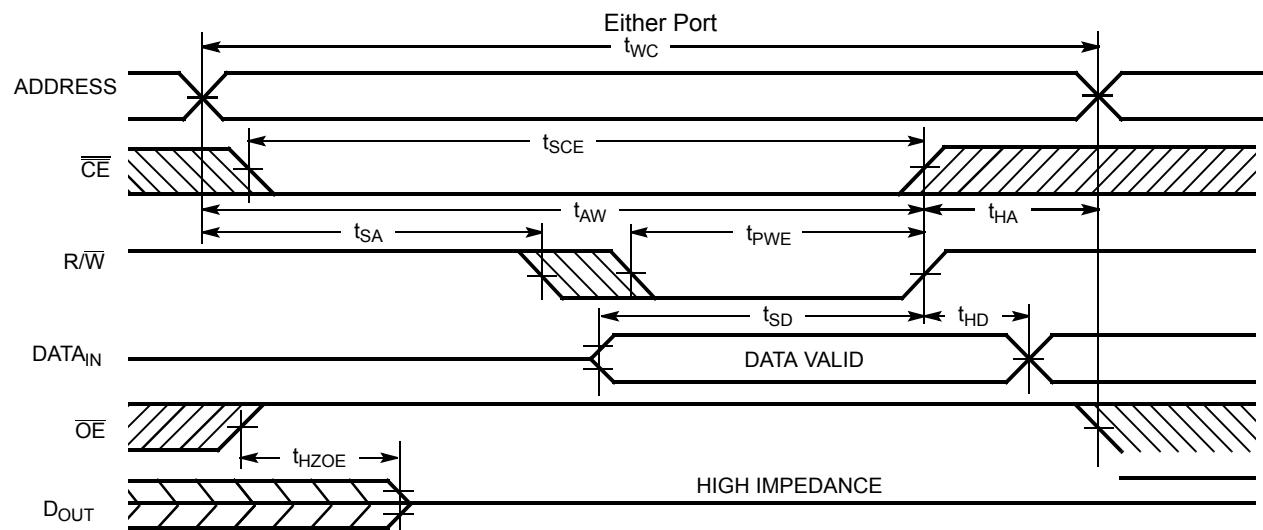
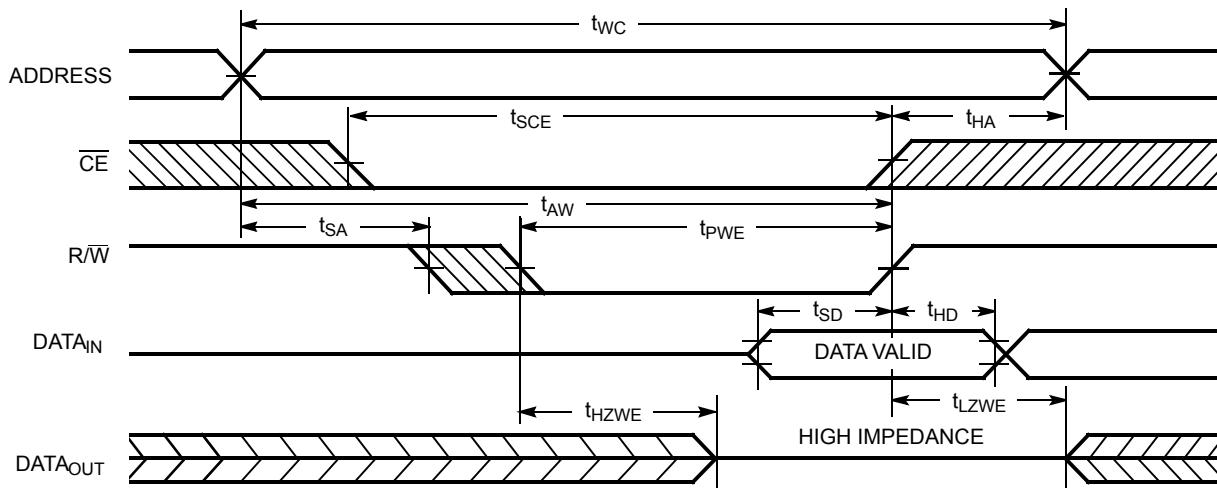



18. A write operation on Port A, where Port A has priority, leaves the data on Port B's outputs undisturbed until one access time after one of the following:
 • \overline{BUSY} on Port B goes HIGH.
 • Port B's address is toggled.
 • \overline{CE} for Port B is toggled.
 • R/W for Port B is toggled during valid read.

Switching Characteristics Over the Operating Range^[6,11]

Parameter	Description	7C130-35 7C131-35 7C140-35 7C141-35		7C130-45 7C131-45 7C140-45 7C141-45		7C130-55 7C131-55 7C140-55 7C141-55		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
t_{RC}	Read Cycle Time	35		45		55		ns
t_{AA}	Address to Data Valid ^[12]		35		45		55	ns
t_{OHA}	Data Hold from Address Change	0		0		0		ns
t_{ACE}	\overline{CE} LOW to Data Valid ^[12]		35		45		55	ns
t_{DOE}	\overline{OE} LOW to Data Valid ^[12]		20		25		25	ns
t_{LZOE}	\overline{OE} LOW to Low Z ^[9,13, 14]	3		3		3		ns
t_{HZOE}	\overline{OE} HIGH to High Z ^[9,13, 14]		20		20		25	ns
t_{LZCE}	\overline{CE} LOW to Low Z ^[9,13, 14]	5		5		5		ns

Switching Characteristics Over the Operating Range^[6,11] (continued)

Parameter	Description	7C130-35	7C130-45	7C130-55	Unit	
		7C131-35	7C131-45	7C131-55		
7C140-35	7C140-45	7C140-55	7C141-35	7C141-45	7C141-55	
t_{HZCE}	CE HIGH to High Z ^[9,13, 14]		20		20	ns
t_{PU}	CE LOW to Power-Up ^[9]	0		0	0	ns
t_{PD}	CE HIGH to Power-Down ^[9]		35		35	ns
WRITE CYCLE^[15]						
t_{WC}	Write Cycle Time	35		45		55
t_{SCE}	CE LOW to Write End	30		35		40
t_{AW}	Address Set-Up to Write End	30		35		40
t_{HA}	Address Hold from Write End	2		2		2
t_{SA}	Address Set-Up to Write Start	0		0		0
t_{PWE}	R/W Pulse Width	25		30		30
t_{SD}	Data Set-Up to Write End	15		20		20
t_{HD}	Data Hold from Write End	0		0		0
t_{HZWE}	R/W LOW to High Z ^[14]		20		20	25
t_{LZWE}	R/W HIGH to Low Z ^[14]	0		0		0
BUSY/INTERRUPT TIMING						
t_{BLA}	BUSY LOW from Address Match		20		25	30
t_{BHA}	BUSY HIGH from Address Mismatch ^[16]		20		25	30
t_{BLC}	BUSY LOW from CE LOW		20		25	30
t_{BHC}	BUSY HIGH from CE HIGH ^[16]		20		25	30
t_{PS}	Port Set Up for Priority	5		5		5
$t_{WB}^{[17]}$	R/W LOW after BUSY LOW	0		0		0
t_{WH}	R/W HIGH after BUSY HIGH	30		35		35
t_{BDD}	BUSY HIGH to Valid Data		35		45	45
t_{DDD}	Write Data Valid to Read Data Valid		Note 18		Note 18	Note 18
t_{WDD}	Write Pulse to Data Delay		Note 18		Note 18	Note 18
INTERRUPT TIMING						
t_{WINS}	R/W to INTERRUPT Set Time		25		35	45
t_{EINS}	CE to INTERRUPT Set Time		25		35	45
t_{INS}	Address to INTERRUPT Set Time		25		35	45
t_{OINR}	OE to INTERRUPT Reset Time ^[16]		25		35	45
t_{EINR}	CE to INTERRUPT Reset Time ^[16]		25		35	45
t_{INR}	Address to INTERRUPT Reset Time ^[16]		25		35	45



Switching Waveforms
Read Cycle No. 1^[19, 20]

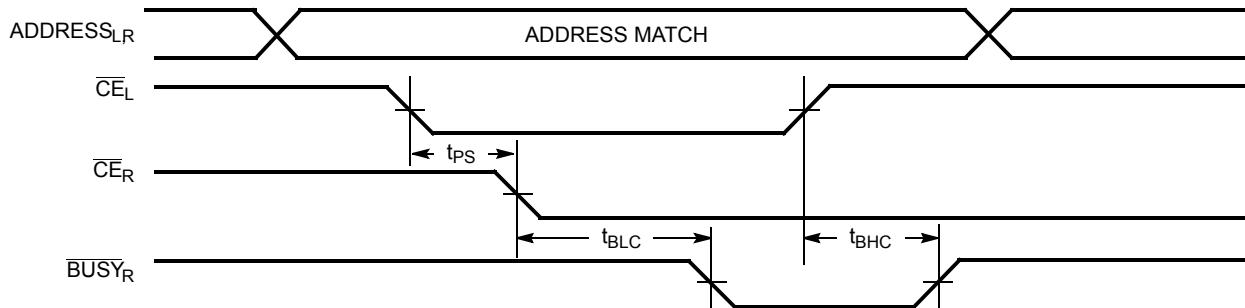
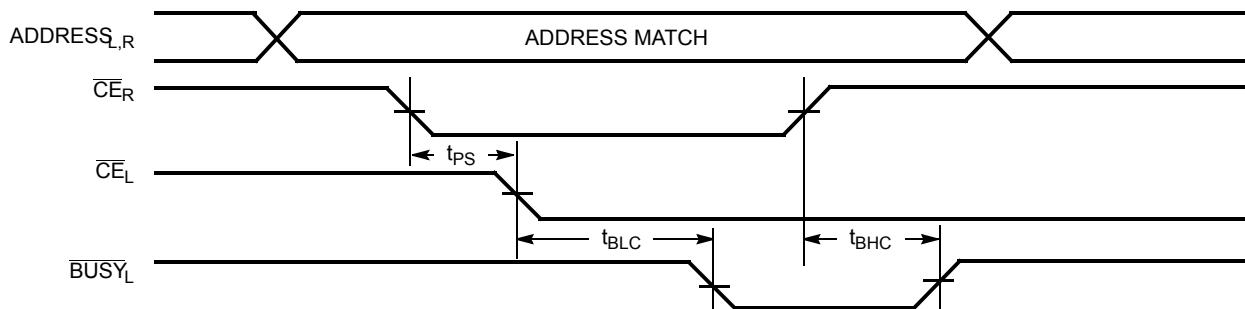
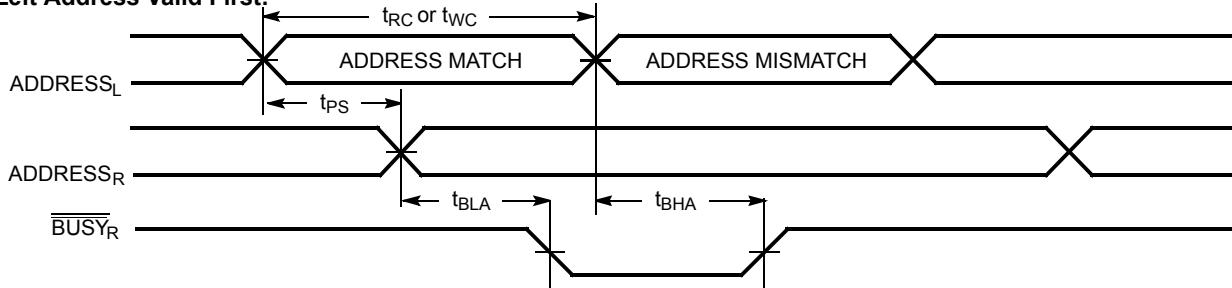
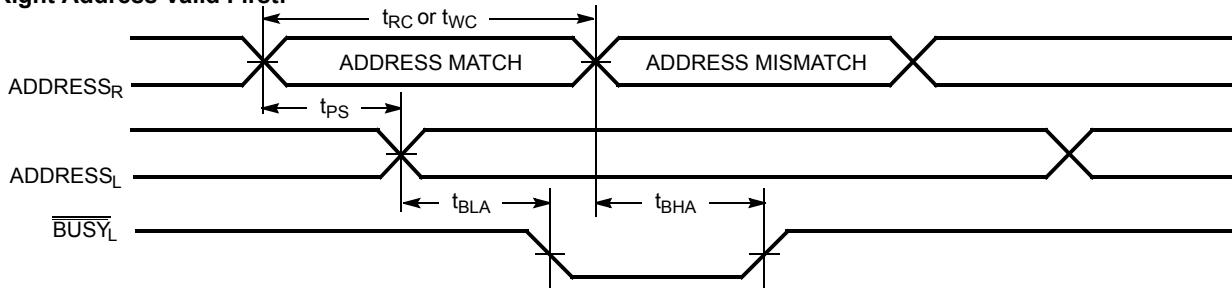
Read Cycle No. 2^[19, 21]

Read Cycle No. 3^[20]

Notes:

 19. R/W is HIGH for read cycle.

 20. Device is continuously selected, $\overline{CE} = V_{IL}$ and $\overline{OE} = V_{IL}$.





 21. Address valid prior to or coincident with CE transition LOW.

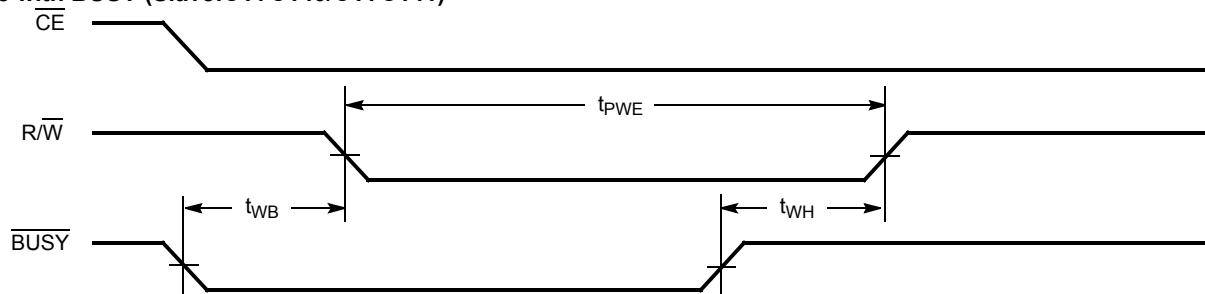
Switching Waveforms (continued)

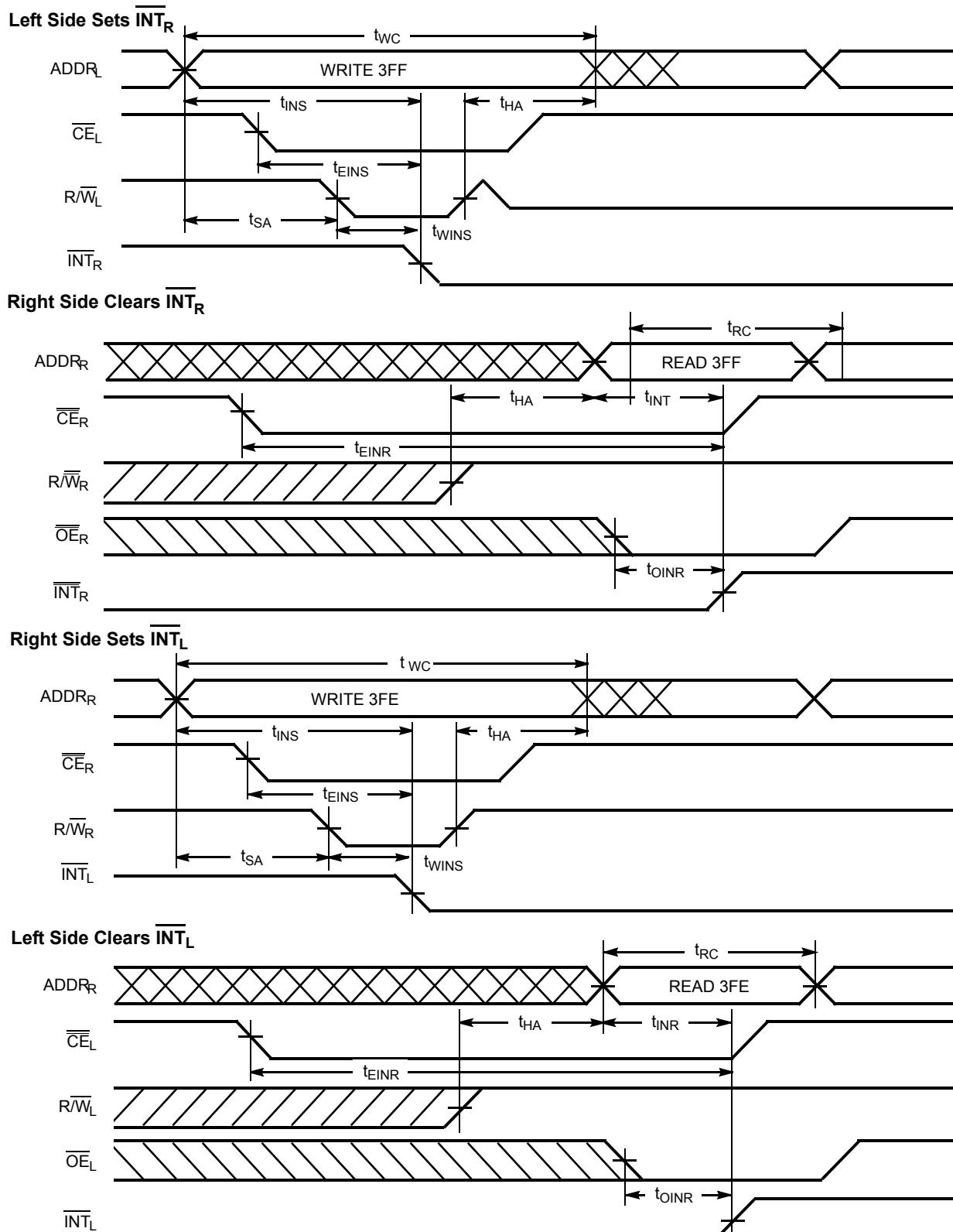
Write Cycle No. 1 (OE Three-States Data I/Os—Either Port)^[15, 22]

Write Cycle No. 2 (R/W Three-States Data I/Os—Either Port)^[16, 23]

Notes:

22. If \overline{OE} is LOW during a $\overline{R/W}$ controlled write cycle, the write pulse width must be the larger of t_{PWE} or $t_{HZWE} + t_{SD}$ to allow the data I/O pins to enter high impedance and for data to be placed on the bus for the required t_{SD} .

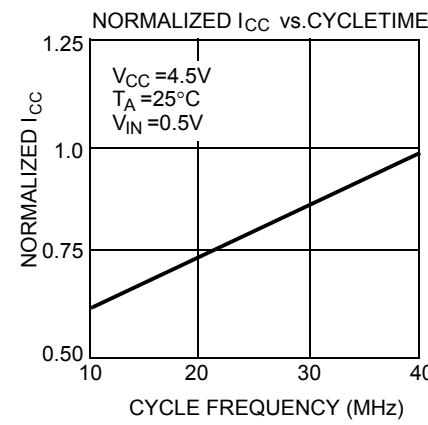
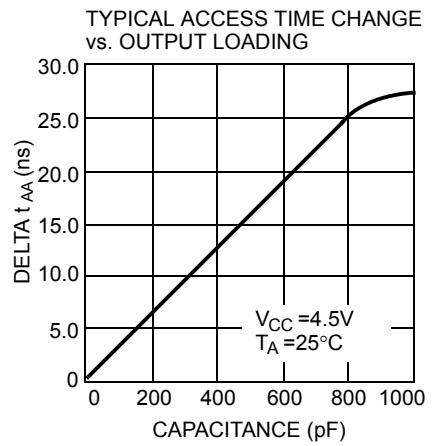
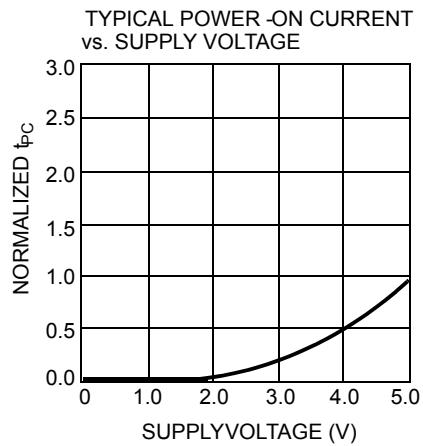
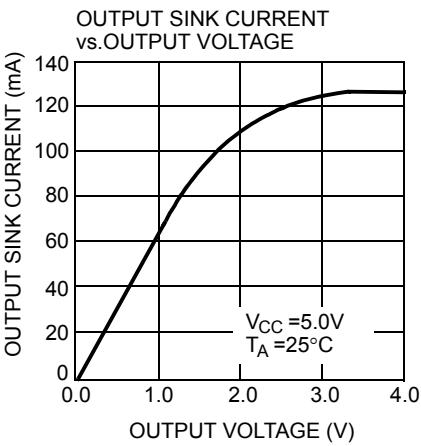
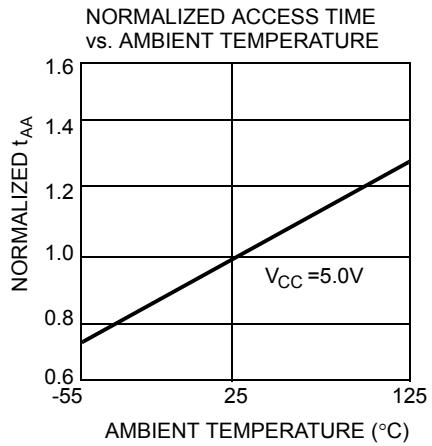
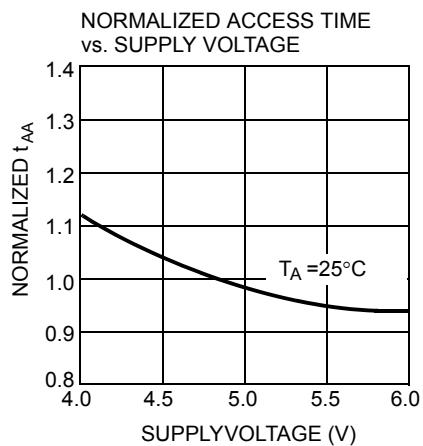
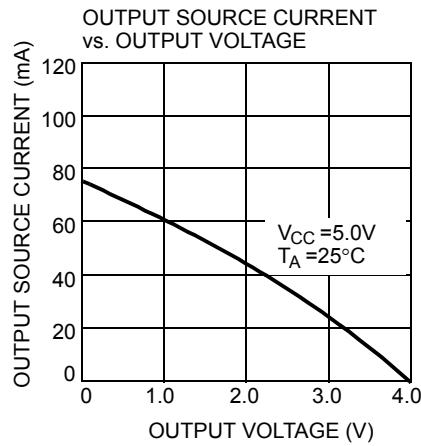
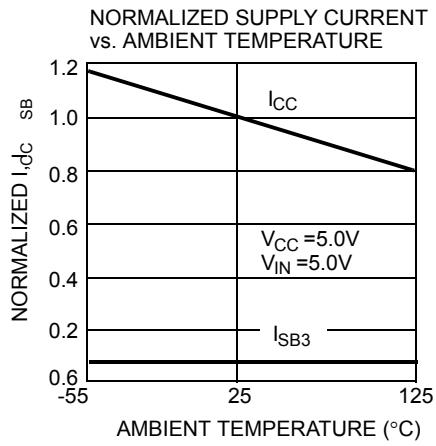
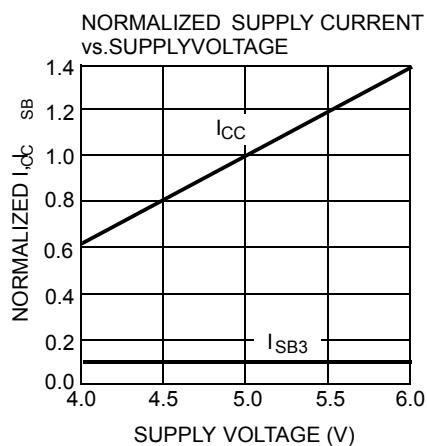

23. If the CE LOW transition occurs simultaneously with or after the $\overline{R/W}$ LOW transition, the outputs remain in the high-impedance state.


Switching Waveforms (continued)
Busy Timing Diagram No. 1 (CE Arbitration)
 \overline{CE}_L Valid First:

 \overline{CE}_R Valid First:

Busy Timing Diagram No. 2 (Address Arbitration)
Left Address Valid First:

Right Address Valid First:










Switching Waveforms (continued)

Busy Timing Diagram No. 3

Write with BUSY (Slave:CY7C140/CY7C141)

Switching Waveforms (continued)
Interrupt Timing Diagrams

Typical DC and AC Characteristics

Ordering Information

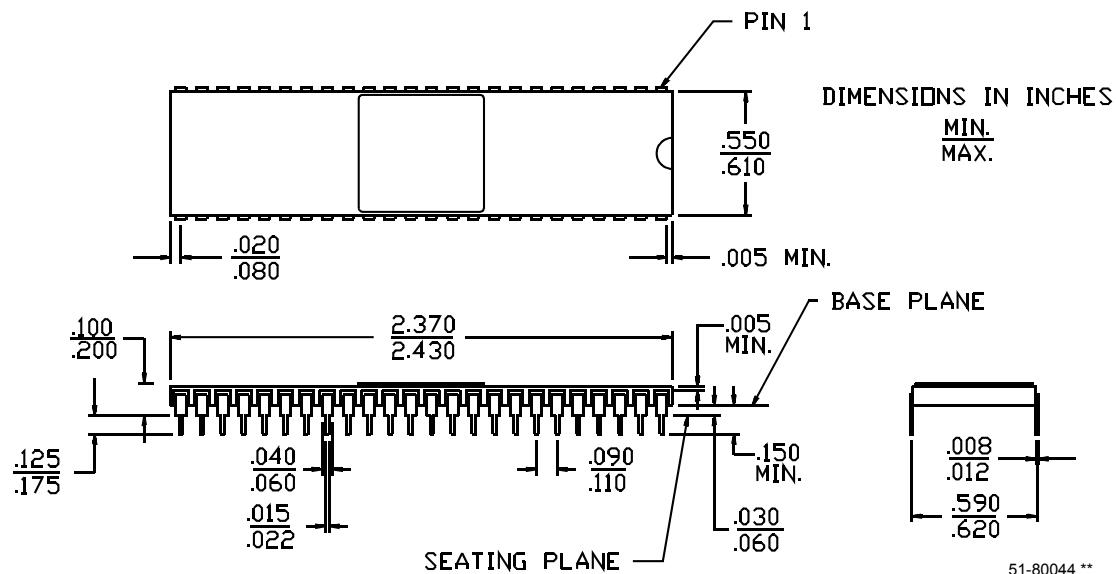
Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
30	CY7C130-30PC	P25	48-Lead (600-Mil) Molded DIP	Commercial
	CY7C130-30PI	P25	48-Lead (600-Mil) Molded DIP	Industrial
35	CY7C130-35PC	P25	48-Lead (600-Mil) Molded DIP	Commercial
	CY7C130-35PI	P25	48-Lead (600-Mil) Molded DIP	Industrial
	CY7C130-35DMB	D26	48-Lead (600-Mil) Sidebrazed DIP	Military
45	CY7C130-45PC	P25	48-Lead (600-Mil) Molded DIP	Commercial
	CY7C130-45PI	P25	48-Lead (600-Mil) Molded DIP	Industrial
	CY7C130-45DMB	D26	48-Lead (600-Mil) Sidebrazed DIP	Military
55	CY7C130-55PC	P25	48-Lead (600-Mil) Molded DIP	Commercial
	CY7C130-55PI	P25	48-Lead (600-Mil) Molded DIP	Industrial
	CY7C130-55DMB	D26	48-Lead (600-Mil) Sidebrazed DIP	Military
15	CY7C131-15JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C131-15JXC	J69	52-Lead Lead-Free Plastic Leaded Chip Carrier	
	CY7C131-15NC	N52	52-Pin Plastic Quad Flatpack	
25	CY7C131-25JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C131-25JXC	J69	52-Lead Lead-Free Plastic Leaded Chip Carrier	
	CY7C131-25NC	N52	52-Pin Plastic Quad Flatpack	
	CY7C131-25NXC	N52	52-Pin Lead-Free Plastic Quad Flatpack	Industrial
	CY7C131-25JI	J69	52-Lead Plastic Leaded Chip Carrier	
	CY7C131-25NI	N52	52-Pin Plastic Quad Flatpack	
30	CY7C131-30JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C131-30NC	N52	52-Pin Plastic Quad Flatpack	
	CY7C131-30JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial
35	CY7C131-35JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C131-35NC	N52	52-Pin Plastic Quad Flatpack	Industrial
	CY7C131-35JI	J69	52-Lead Plastic Leaded Chip Carrier	
	CY7C131-35NI	N52	52-Pin Plastic Quad Flatpack	
45	CY7C131-45JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C131-45NC	N52	52-Pin Plastic Quad Flatpack	
	CY7C131-45JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C131-45NI	N52	52-Pin Plastic Quad Flatpack	
55	CY7C131-55JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C131-55JXC	J69	52-Lead Lead-Free Plastic Leaded Chip Carrier	
	CY7C131-55NC	N52	52-Pin Plastic Quad Flatpack	
	CY7C131-55NXC	N52	52-Pin Lead-Free Plastic Quad Flatpack	
	CY7C131-55JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C131-55JXI	J69	52-Lead Lead-Free Plastic Leaded Chip Carrier	
	CY7C131-55NI	N52	52-Pin Plastic Quad Flatpack	

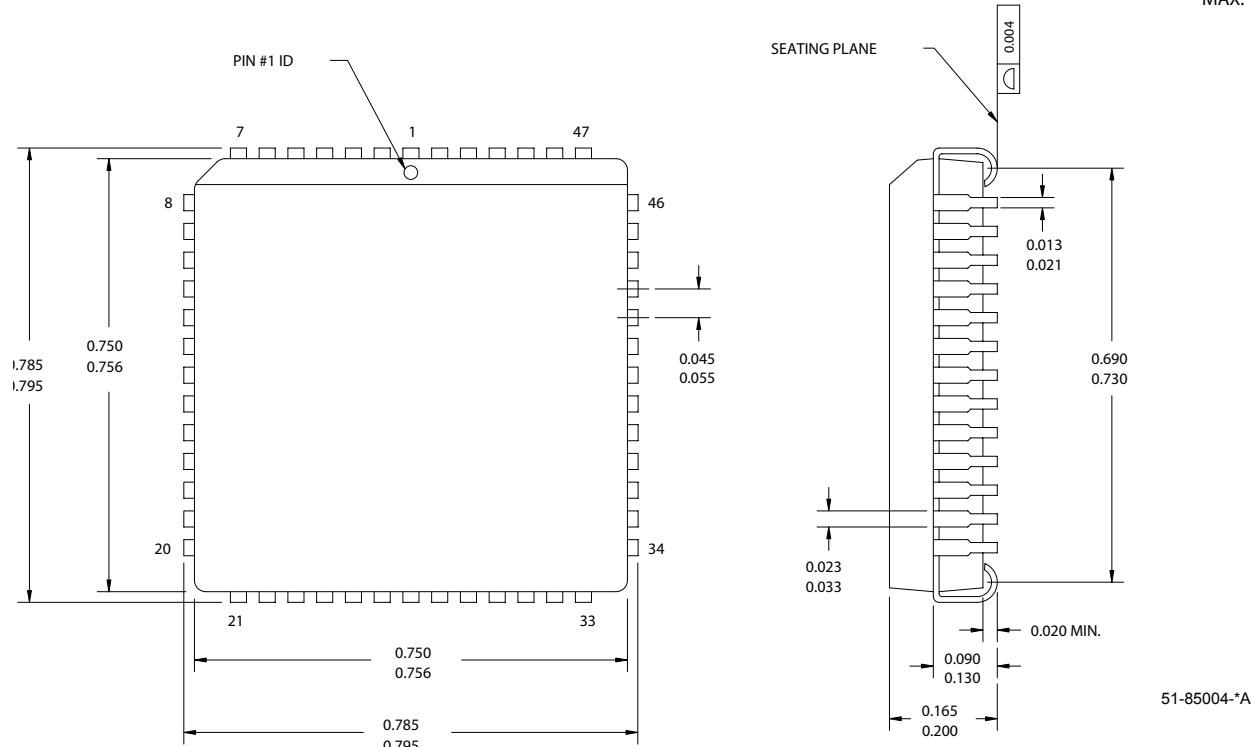
Shaded areas contain preliminary information.

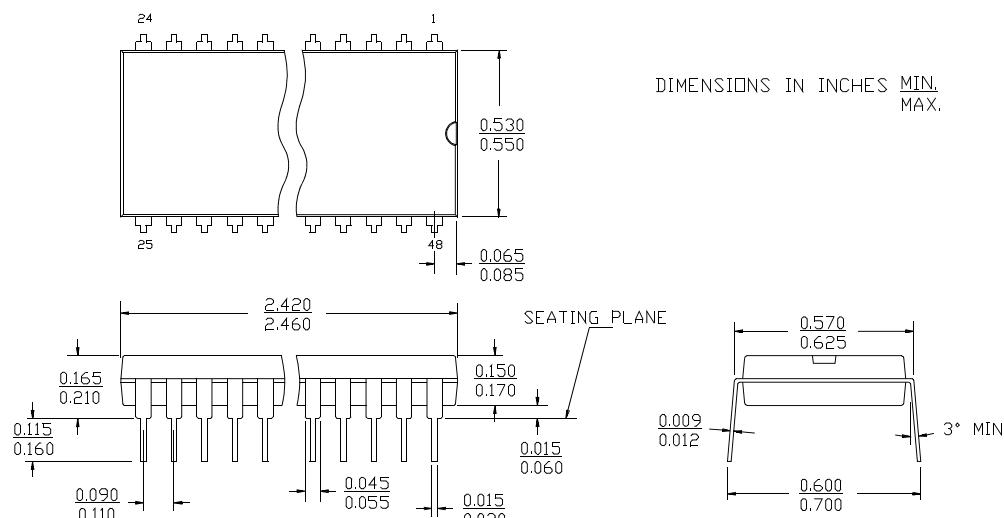
Ordering Information (continued)

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
30	CY7C140-30PC	P25	48-Lead (600-Mil) Molded DIP	Commercial
	CY7C140-30PI	P25	48-Lead (600-Mil) Molded DIP	Industrial
35	CY7C140-35PC	P25	48-Lead (600-Mil) Molded DIP	Commercial
	CY7C140-35PI	P25	48-Lead (600-Mil) Molded DIP	Industrial
	CY7C140-35DMB	D26	48-Lead (600-Mil) Sidebraze DIP	Military
45	CY7C140-45PC	P25	48-Lead (600-Mil) Molded DIP	Commercial
	CY7C140-45PI	P25	48-Lead (600-Mil) Molded DIP	Industrial
	CY7C140-45DMB	D26	48-Lead (600-Mil) Sidebraze DIP	Military
55	CY7C140-55PC	P25	48-Lead (600-Mil) Molded DIP	Commercial
	CY7C140-55PI	P25	48-Lead (600-Mil) Molded DIP	Industrial
	CY7C140-55DMB	D26	48-Lead (600-Mil) Sidebraze DIP	Military
15	CY7C141-15JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C141-15NC	N52	52-Pin Plastic Quad Flatpack	
25	CY7C141-25JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C141-25JXC	J69	52-Lead Lead-Free Plastic Leaded Chip Carrier	
	CY7C141-25NC	N52	52-Pin Plastic Quad Flatpack	
	CY7C141-25JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C141-25NI	N52	52-Pin Plastic Quad Flatpack	
30	CY7C141-30JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C141-30NC	N52	52-Pin Plastic Quad Flatpack	
	CY7C141-30JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial
35	CY7C141-35JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C141-35NC	N52	52-Pin Plastic Quad Flatpack	
	CY7C141-35JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C141-35NI	N52	52-Pin Plastic Quad Flatpack	
45	CY7C141-45JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C141-45NC	N52	52-Pin Plastic Quad Flatpack	
	CY7C141-45JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C141-45NI	N52	52-Pin Plastic Quad Flatpack	
55	CY7C141-55JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C141-55NC	N52	52-Pin Plastic Quad Flatpack	
	CY7C141-55JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C141-55NI	N52	52-Pin Plastic Quad Flatpack	

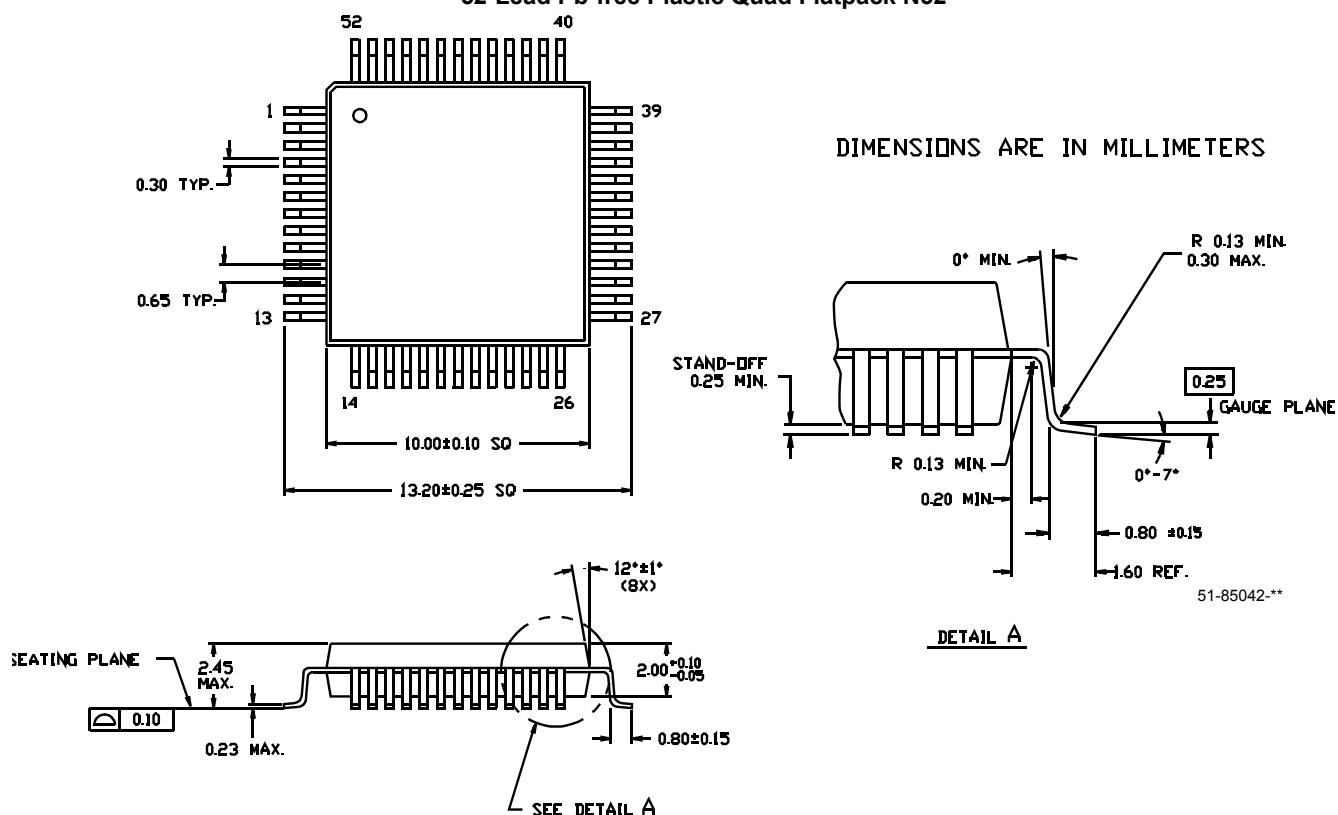
MILITARY SPECIFICATIONS
Group A Subgroup Testing
DC Characteristics


Parameter	Subgroups
V_{OH}	1, 2, 3
V_{OL}	1, 2, 3
V_{IH}	1, 2, 3
V_{IL} Max.	1, 2, 3
I_{IX}	1, 2, 3
I_{OZ}	1, 2, 3
I_{CC}	1, 2, 3
I_{SB1}	1, 2, 3
I_{SB2}	1, 2, 3
I_{SB3}	1, 2, 3
I_{SB4}	1, 2, 3


Switching Characteristics


Parameter	Subgroups
READ CYCLE	
t_{RC}	7, 8, 9, 10, 11
t_{AA}	7, 8, 9, 10, 11
t_{ACE}	7, 8, 9, 10, 11
t_{DOE}	7, 8, 9, 10, 11
WRITE CYCLE	
t_{WC}	7, 8, 9, 10, 11
t_{SCE}	7, 8, 9, 10, 11
t_{AW}	7, 8, 9, 10, 11
t_{HA}	7, 8, 9, 10, 11
t_{SA}	7, 8, 9, 10, 11
t_{PWE}	7, 8, 9, 10, 11
t_{SD}	7, 8, 9, 10, 11
t_{HD}	7, 8, 9, 10, 11
BUSY/INTERRUPT TIMING	
t_{BLA}	7, 8, 9, 10, 11
t_{BHA}	7, 8, 9, 10, 11
t_{BLC}	7, 8, 9, 10, 11
t_{BHC}	7, 8, 9, 10, 11
t_{PS}	7, 8, 9, 10, 11
t_{WINS}	7, 8, 9, 10, 11
t_{EINS}	7, 8, 9, 10, 11
t_{INS}	7, 8, 9, 10, 11
t_{OINR}	7, 8, 9, 10, 11
t_{EINR}	7, 8, 9, 10, 11
t_{INR}	7, 8, 9, 10, 11
BUSY TIMING	
$t_{WB}^{[24]}$	7, 8, 9, 10, 11
t_{WH}	7, 8, 9, 10, 11
t_{BDD}	7, 8, 9, 10, 11

Note:


24. CY7C140/CY7C141 only.

Package Diagrams
48-Lead (600-Mil) Sidebrazed DIP D26
MIL-STD-1835 D-14 Config. C

52-Lead Plastic Leaded Chip Carrier J69
52-Lead Pb-free Plastic Leaded Chip Carrier J69

 DIMENSIONS IN INCHES
 MIN. / MAX.

Package Diagrams (continued)
48-Lead (600-Mil) Molded DIP P25

51-85020-*A

52-Lead Plastic Quad Flatpack N52
52-Lead Pb-free Plastic Quad Flatpack N52

51-85042-**

All products and company names mentioned in this document may be the trademarks of their respective holders.

Document History Page

Document Title: CY7C130/CY7C131/CY7C140/CY7C141 1K x 8 Dual-Port Static RAM Document Number: 38-06002				
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	110169	09/29/01	SZV	Change from Spec number: 38-00027 to 38-06002
*A	122255	12/26/02	RBI	Power up requirements added to Maximum Ratings Information
*B	236751	See ECN	YDT	Removed cross information from features section
*C	325936	See ECN	RUY	Added pin definitions table, 52-pin PQFP package diagram and Pb-free information