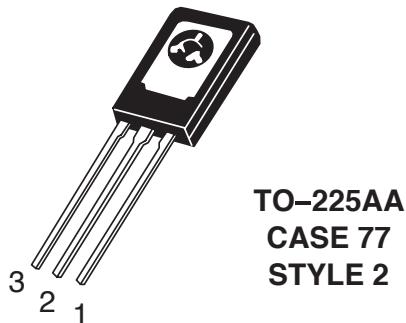
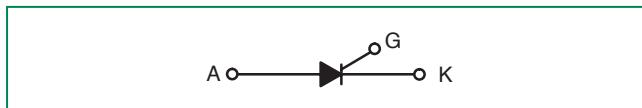


C106 Series


Description

Glassivated PNPN devices designed for high volume consumer applications such as temperature, light, and speed control; process and remote control, and warning systems where reliability of operation is important.


Features

- Glassivated Surface for Reliability and Uniformity
- Power Rated at Economical Prices
- Practical Level Triggering and Holding Characteristics
- Flat, Rugged, Thermopad Construction for Low Thermal Resistance, High Heat Dissipation and Durability
- Sensitive Gate Triggering
- These are Pb-Free Devices

Pin Out

Functional Diagram

Additional Information

[Datasheet](#)

[Resources](#)

[Samples](#)

Maximum Ratings ($T_J = 25^\circ\text{C}$ unless otherwise noted)

Rating		Symbol	Value	Unit
Peak Repetitive Off-State Voltage (Note 1) ($T_J = 25$ to 110°C , Gate Open)	C106B	V_{DRM} V_{RRM}	200	V
	C106D, C106D1*		400	
	C106M,		600	
On-State RMS Current ($T_C = 70^\circ\text{C}$)(Full Cycle Sine Wave 50 to 60 Hz)		$I_{\text{T(RMS)}}$	4.0	A
Average On-State Current (180° Conduction Angles, $T_C = 80^\circ\text{C}$)		$I_{\text{T(AV)}}$	2.55	A
Peak Non-Repetitive Surge Current (1/2 Cycle, Sine Wave, 60 Hz, $T_J = +25^\circ\text{C}$)		I_{TSM}	20	A
Circuit Fusing Considerations ($t = 8.3$ ms)		I^2t	1.65	A2s
Forward Peak Gate Power (Pulse Width ≤ 1.0 μsec , $T_C = 80^\circ\text{C}$)		P_{GM}	0.5	W
Forward Average Gate Power (Pulse Width ≤ 1.0 μsec , $T_C = 80^\circ\text{C}$)		$P_{\text{G(AV)}}$	0.1	W
Operating Junction Temperature Range		T_J	-40 to +110	$^\circ\text{C}$
Storage Temperature Range		T_{stg}	-40 to +150	$^\circ\text{C}$
Mounting Torque (Note 2)		-	6.0	in. lb.

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.
2. Torque rating applies with use of torque washer (Shakeproof WD19523 or equivalent). Mounting Torque in excess of 6 in. lb. does not appreciably lower case-to-sink thermal resistance. Main terminal 2 and heat-sink contact pad are common.

Thermal Characteristics

Rating	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case	R_{8JC}	3.0	$^\circ\text{C/W}$
Thermal Resistance, Junction-to-Ambient	R_{8JA}	75	$^\circ\text{C/W}$
Maximum Device Temperature for Soldering Purposes 1/8 in. from case for 10 Secs Maximum	T_L	260	$^\circ\text{C}$

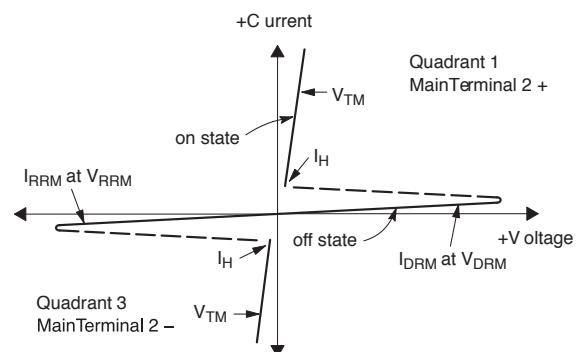
Electrical Characteristics - OFF ($T_J = 25^\circ\text{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Peak Repetitive Forward or Reverse Blocking Current (V_{AK} = Rated V_{DRM} or V_{RRM} , $R_{GK} = 1 \Omega\text{k}$)	$T_J = 25^\circ\text{C}$ I_{DRM}	–	–	10	μA
	$T_J = 110^\circ\text{C}$ I_{RRM}	–	–	100	μA

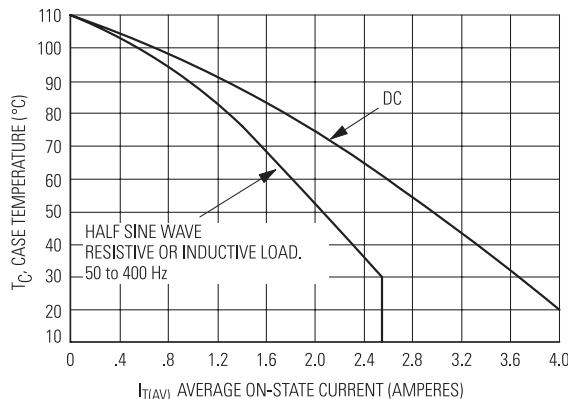
Electrical Characteristics - ON ($T_J = 25^\circ\text{C}$ unless otherwise noted; Electricals apply in both directions)

Characteristic	Symbol	Min	Typ	Max	Unit
Peak Forward On-State Voltage (Note 3) ($I_{TM} = 4 \text{ A}$)	V_{TM}	–	–	2.2	V
Gate Trigger Current (Continuous dc) ($V_D = 12 \text{ V}$, $R_L = 100 \Omega$, All Quadrants)	$T_J = 25^\circ\text{C}$ I_{GT}	–	15	200	μA
	$T_J = -40^\circ\text{C}$	–	35	500	
Peak Reverse Gate Voltage ($I_{GR} = 10 \mu\text{A}$)	V_{GRM}	–	–	6.0	V
Gate Trigger Voltage (Continuous dc) ($V_D = 12 \text{ Vdc}$, $R_L = 100 \Omega$, $T_c = 25^\circ\text{C}$)	$T_J = 25^\circ\text{C}$ V_{GT}	0.4	0.60	0.8	V
	$T_J = -40^\circ\text{C}$	0.5	0.75	1.0	
Gate Non-Trigger Voltage (Continuous dc) (Note 4)	V_{GD}	0.2	–	–	V
Latching Current ($V_{AK} = 12 \text{ V}$, $I_G = 20 \text{ mA}$, $R_{GK} = 1 \text{ k}\Omega$)	$T_J = 25^\circ\text{C}$ I_L	–	0.20	5.0	mA
	$T_J = -40^\circ\text{C}$	–	0.35	7.0	
Holding Current ($V_D = 12 \text{ Vdc}$) (Initiating Current = 20 mA, $R_{GK} = 1 \text{ k}\Omega$)	$T_J = 25^\circ\text{C}$ I_H	–	0.19	5.0	mA
	$T_J = -40^\circ\text{C}$	–	0.33	7.0	
	$T_J = +110^\circ\text{C}$	–	0.07	2.0	

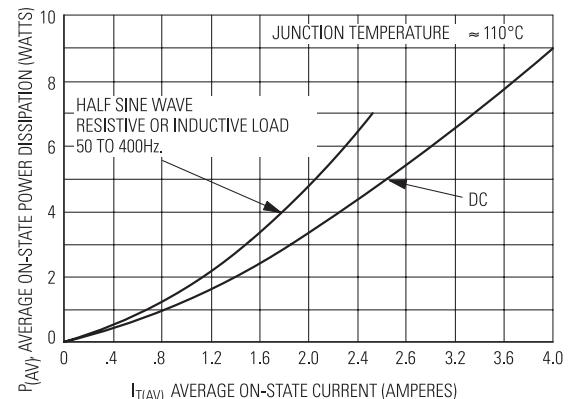
Dynamic Characteristics

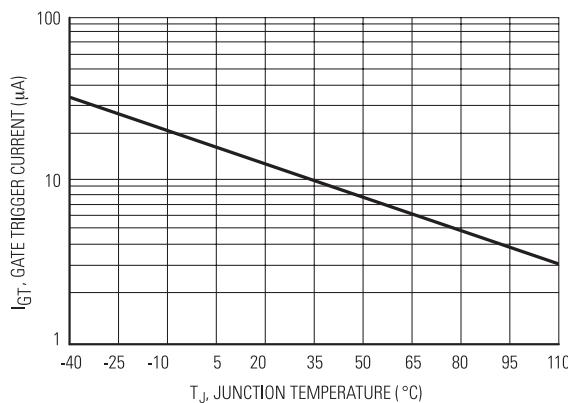

Characteristic	Symbol	Min	Typ	Max	Unit
Critical Rate-of-Rise of Off State Voltage (V_{AK} = Rated V_{DRM} , Exponential Waveform, $R_{GK} = 1\text{k}\Omega$, $T_J = 110^\circ\text{C}$)	dv/dt	–	8.0	–	V/ μs

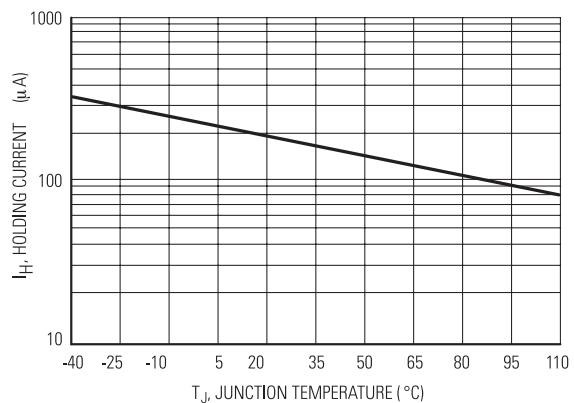
3. Pulse Test: Pulse Width $\leq 2.0 \text{ ms}$, Duty Cycle $\leq 2\%$.

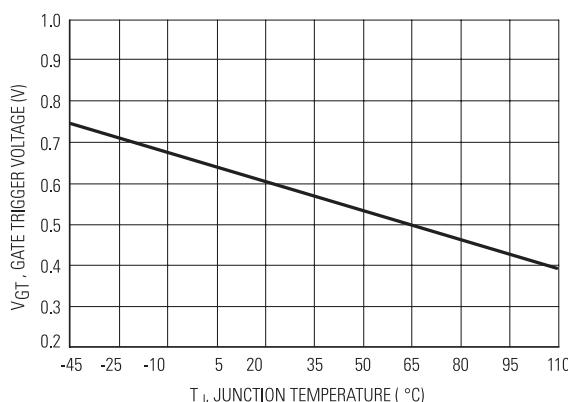

4. R_{GK} is not included in measurement.

Voltage Current Characteristic of SCR


Symbol	Parameter
V_{DRM}	Peak Repetitive Forward Off State Voltage
I_{DRM}	Peak Forward Blocking Current
V_{RRM}	Peak Repetitive Reverse Off State Voltage
I_{RRM}	Peak Reverse Blocking Current
V_{TM}	Maximum On State Voltage
I_H	Holding Current


Figure 1. Average Current Derating


Figure 2. Maximum On-State Power Dissipation


Figure 3. Typical Gate Trigger Current vs. Junction Temp

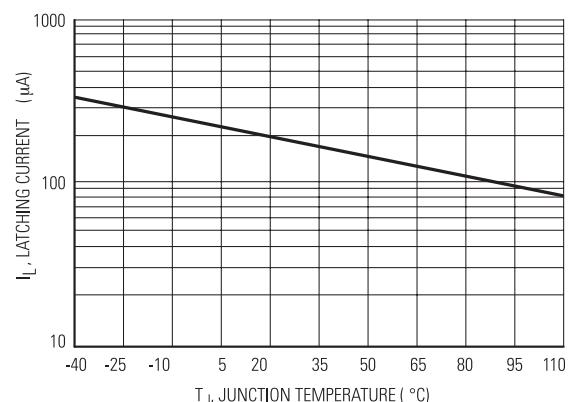
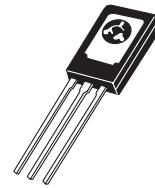
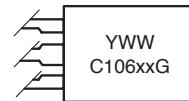

Figure 4. Typical Holding Current vs. Junction Temp

Figure 5. Typical Gate Trigger Voltage vs. Junction Temp


Figure 6. Typical Latching Current vs. Junction Temp

Dimensions



Part Marking System

TO-225AA
CASE 077
STYLE 2

1. Cathode
2. Anode
3. Gate

Y= Year
WW = Work Week
C106xx = Device Code
xx = B, D, D1, M, M1
G= Pb-Free Package

Dim	Inches		Millimeters	
	Min	Max	Min	Max
A	0.425	0.435	10.80	11.04
B	0.295	0.305	7.50	7.74
C	0.095	0.105	2.42	2.66
D	0.020	0.026	0.51	0.66
F	0.115	0.130	2.93	3.30
G	0.094 BSC		2.39 BSC	
H	0.050	0.095	1.27	2.41
J	0.015°	0.025	0.39°	0.63
K	0.575	0.655	14.61	16.63
M	5 TYP		5 TYP	
Q	0.148	0.158	3.76	4.01
R	0.045	0.065	1.15	1.65
S	0.025	0.035	0.64	0.88
U	0.145	0.155	3.69	3.93
V	0.040	---	1.02	---

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

2. CONTROLLING DIMENSION: INCH.

Pin Assignment

1	Cathode
2	Anode
3	Gate

Ordering Information

Device	Package	Shipping
C106BG	TO225AA (Pb-Free)	500 Units/Box
C106DG		
C106D1G*		
C106MG		
C106M1G*		

*D1 signifies European equivalent for D suffix and M1 signifies European equivalent for M suffix.

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at: www.littelfuse.com/disclaimer-electronics