

HIGH VOLTAGE MONOLITHIC IC

ECN3290TF/PL/FN

8-Channel High Voltage Analog Switch IC

The ECN3290 is an 8-Channel High Voltage Analog Switching IC manufactured in a DI (Dielectric Isolation) process. DI technology delivers Latch-Up free operation. High voltage and low ON-resistance MOS switches are used as output devices controlled by a 5V signal. The ECN3290 is most suited to Ultrasound Imaging applications.

Functions

- 8-Integrated High Voltage, Low ON-resistance Analog Switches
- Latch-Up Free CMOS built in a Dielectric Isolated Process
- DC to greater than 10MHz Analog Signal Bandwidth
- Superior Data Capture Timing
- Superior Data Clock Frequency (f_{CLK} : 10MHz max.)
- Superior Data Out Availability (t_{DO} : 85ns max.)

Features

- Small Signal ON-resistance (R_{ONS}): 20Ω typical ($V_{PP}=100V$, $V_{NN}=-100V$)
- Large Signal ON-resistance (R_{ONL}): 20Ω typical ($V_{PP}=100V$, $V_{NN}=-100V$)
- Extremely Low DC Offset Switch Voltage (DC_{OFF}/DC_{ON} : 10mV typ.)
- Integrated 8-bit Shift Register controls 8-Output Analog Switches
- 28-lead PLCC, 48-lead TQFP and 28-QFN packages

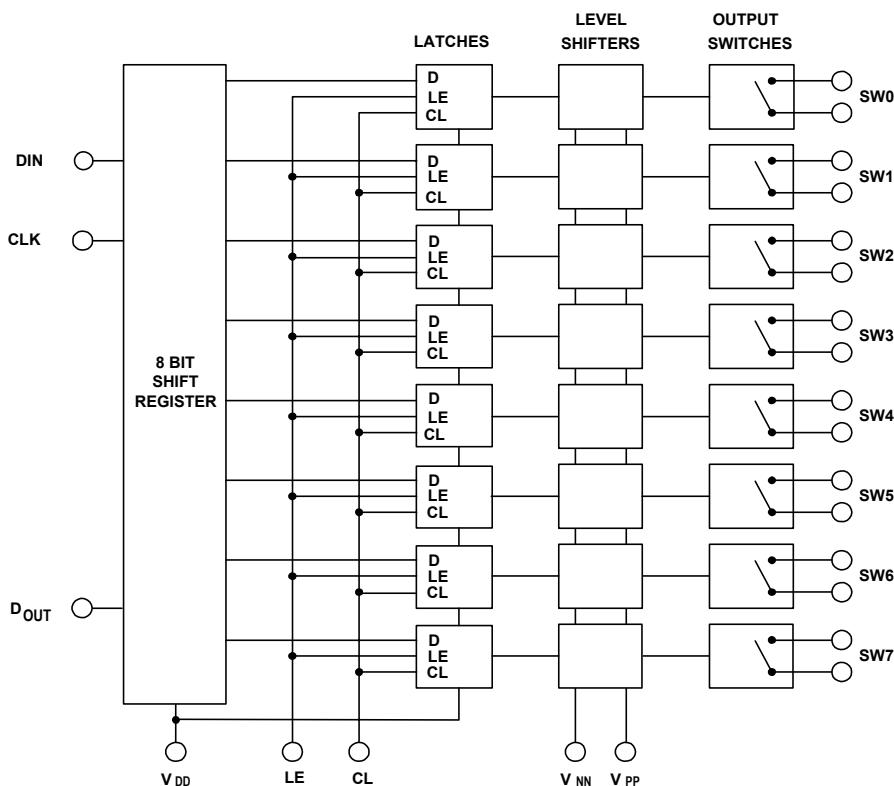


Fig.1 Logic / Block Diagram

HIGH VOLTAGE MONOLITHIC IC

ECN3290TF/PL/FN

1. Absolute Maximum Ratings

No.	Item	Symbol	Terminal	Values	Unit	Note
1	Logic power supply voltage	V_{DD}	V_{DD}	-0.5 to +7	V	$T_a=25^\circ C$
2	$V_{PP}-V_{NN}$ supply voltage	—	V_{PP}, V_{NN}	220	V	$T_a=25^\circ C$
3	V_{PP} Positive high voltage supply	V_{PP}	V_{PP}	-0.5 to $V_{NN}+200$	V	$T_a=25^\circ C$
4	V_{NN} Negative high voltage supply	V_{NN}	V_{NN}	+0.5 to -200	V	$T_a=25^\circ C$
5	Logic input voltages	V_{DD}	DIN, CLK, CL, LE	-0.5 to $V_{DD}+0.3$	V	$T_a=25^\circ C$
6	Analog signal range	—	SW0 to SW7	V_{NN} to V_{PP}	V	$T_a=25^\circ C$
7	Operating junction temperature	T_{jop}	-	-20 to +125	$^\circ C$	
8	Storage temperature	T_{stg}	-	-65 to +150	$^\circ C$	
9	Power dissipation	P_w	-	1.0	W	TQFP48
					1.2	W

2. Recommended Operating Conditions

Note: Please operate within the limit of the following operating conditions.

No.	Items	Symbol	Recommended Value			Unit	Comment
			Min	Typ	Max		
1	Logic power supply voltage	V_{DD}	4.5	-	5.5	V	
2	Positive high voltage supply	V_{PP}	40	-	$V_{NN} +200$	V	
3	Negative high voltage supply	V_{NN}	-40	-	-160	V	
4	High-level input voltage	V_{IH}	$V_{DD} -1.5$	-	V_{DD}	V	
5	Low-level input voltage	V_{IL}	0	-	1.5	V	
6	Analog signal voltage peak to peak	V_{SIG}	$V_{NN} +10$	-	$V_{PP} -10$	V	
7	Operating Free-air Temperature	T_A	0	-	70	$^\circ C$	
8	Switching frequency	fsw	-	-	50	KHz	Duty Cycle=50%
9	Set up time for LE	tSD	75	-	-	ns	
10	Pulse width of LE	tWLE	75	-	-	ns	
11	Time width of CL	tWCL	60	-	-	ns	
12	Set up time DATA to Clock	tSU	10	-	-	ns	
13	Hold time DATA from Clock	th	20	-	-	ns	
14	Maximum VSIG Slew Rate	dV/dt	-	-	30	V/ns	

Important:

1. Power supply ON sequence (Turn ON) should be V_{DD} ON, V_{PP} ON then V_{NN} ON.
2. Power OFF sequence (Turn OFF) should be V_{NN} OFF, V_{PP} OFF then V_{DD} OFF.

ECN3290TF/PL/FN

3. Electrical Characteristics

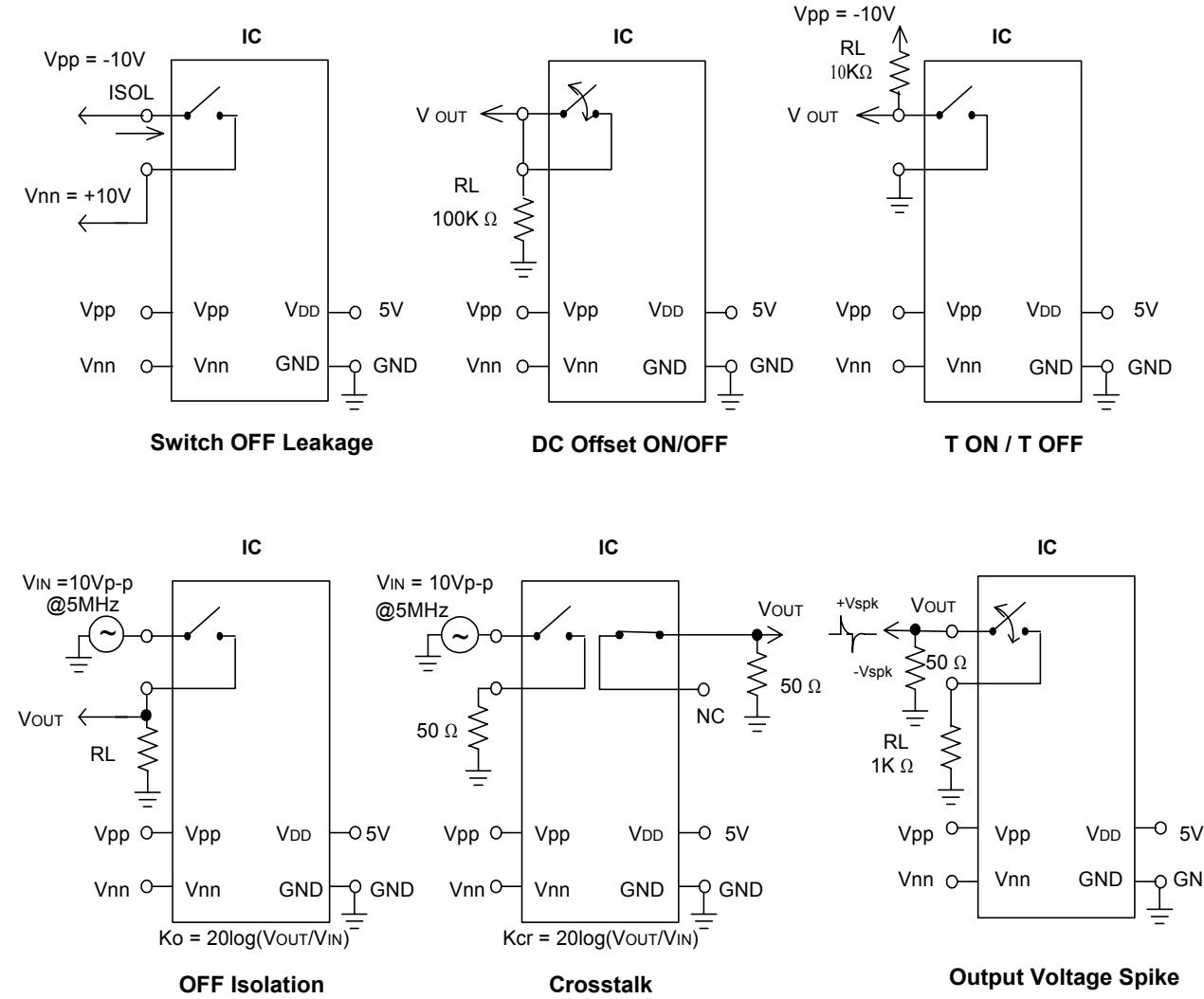
3.1 DC Characteristics (Ta = 25°C VDD = 5V)

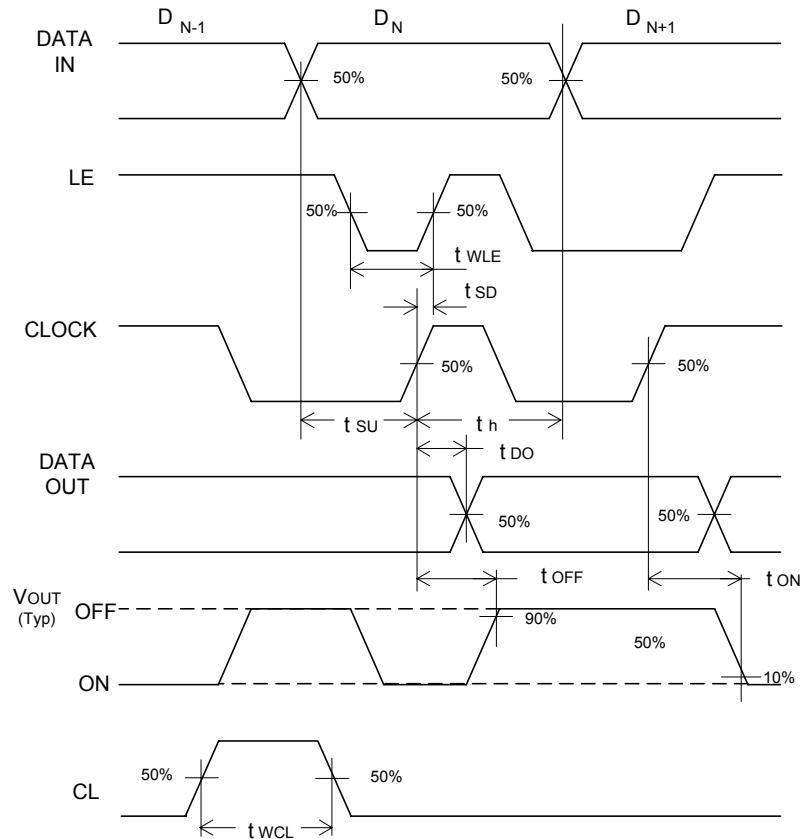
No.	Item	Symbol	Specification			Unit	Test Conditions		
			Min	Typ	Max				
1	Small Signal Switch (ON) Resistance	R _{ONS}	-	26	38	Ω	I _{SIG} = 5mA	V _{PP} = 40V, V _{NN} = -160V	
			-	22	27		I _{SIG} = 200mA		
			-	22	27		I _{SIG} = 5mA	V _{PP} = 100V, V _{NN} = -100V	
			-	18	24		I _{SIG} = 200mA		
			-	20	25		I _{SIG} = 5mA	V _{PP} = 160V, V _{NN} = -40V	
			-	16	25		I _{SIG} = 200mA		
2	Small Signal Switch (ON) Resistance Matching	ΔR _{ONS}	-	5	20	%	I _{SW} = 5mA, V _{PP} = 100V, V _{NN} = -100V		
3	Large Signal Switch (ON) Resistance	R _{ONL}	-	20	-	Ω	V _{PP} = 100V V _{NN} = -100V	I _{SIG} = 1A	
4	Switch Off Leakage Per Switch	I _{SOL}	-	1.0	10	μA	V _{SIG} =V _{PP} -10V, or V _{NN} +10V		
5	DC offset Switch (OFF)	D _{COFF}	-	10	100	mV	R _L =100kΩ		
6	DC offset Switch (ON)	D _{CON}	-	10	100	mV	R _L =100kΩ		
7	Positive HV Supply Current	I _{PPQ1}	-	10	50	μA	All SWs OFF		
8	Negative HV Supply Current	I _{NNQ1}	-	-10	-50	μA	All SWs OFF		
9	Positive HV Supply Current	I _{PPQ2}	-	10	50	μA	All SWs ON, ISW=5mA		
10	Negative HV Supply Current	I _{NNQ2}	-	-10	-50	μA	All SWs ON, ISW=5mA		
11	I _{PP} Supply Current	I _{PP}	-	-	7.0	mA	V _{PP} = 40V, V _{NN} = -160V	50kHz Output Switching Frequency without load	
			-	-	5.0		V _{PP} = 100V, V _{NN} = -100V		
			-	-	5.0		V _{PP} = 160V, V _{NN} = -40V		
12	I _{NN} Supply Current	I _{NN}	-		7.0	mA	V _{PP} = 40V, V _{NN} = -160V	50kHz Output Switching Frequency without load	
			-		5.0		V _{PP} = 100V, V _{NN} = -100V		
			-		5.0		V _{PP} = 160V, V _{NN} = -40V		
13	Logic Supply Avg. Current	I _{DD}	-		4.0	mA	f _{CLK} = 5MHz, V _{DD} = 5.0V		
14	Logic Supply Quiescent Current	I _{DDQ}	-		10	μA			
15	Data Out Source Current	I _{SOR}	0.45	0.70		mA	V _{OUT} = V _{DD} - 0.7V		
16	Data Out Sink Current	I _{SINK}	0.45	0.70		mA	V _{OUT} = 0.7V		

HIGH VOLTAGE MONOLITHIC IC

ECN3290TF/PL/FN

3.2 AC Characteristics (Ta=25°C VDD=5V)


No.	Item	Symbol	Specification			Unit	Test Conditions
			Min	Typ	Max		
1	SW Turn On time	t_{ON}			5.0	μs	$V_{SIG} = V_{PP}-10V$, $R_L = 10k\Omega$
2	SW Turn Off time	t_{OFF}			5.0	μs	$V_{SIG} = V_{PP}-10V$, $R_L = 10k\Omega$
3	Clock Frequency	f_{CLK}	-	-	10	MHz	50% duty cycle, $f_{Data}=f_{CLK}/2$
4	Clock Delay Time to Data Out	t_{DO}	30	-	85	ns	D_{OUT} terminal
5	SW Off Isolation	KO	-30	-33	-	dB	$f=5MHz, 1k\Omega/15pF$ load
			-54	-60	-	dB	$f=5MHz, 50\Omega$ load
6	SW Crosstalk	K_{CR}	-54	-60	-	dB	$f=5MHz, 50\Omega$ load
7	Output Voltage Spike	$+V_{SPK}$	-	-	150	mV	$V_{PP} = 40V, V_{NN} = -160V$, $R_L = 50\Omega$
		$-V_{SPK}$	-	-	-200		
		$+V_{SPK}$	-	-	150	mV	$V_{PP} = 100V, V_{NN} = -100V$, $R_L = 50\Omega$
		$-V_{SPK}$	-	-	-200		
		$+V_{SPK}$	-	-	150	mV	$V_{PP} = 160V, V_{NN} = -40V$, $R_L = 50\Omega$
		$-V_{SPK}$	-	-	-200		


3.3 AC Characteristics (Ta=25°C VDD=5V)

Note: The Following Items are not tested when shipped.

No.	Item	Symbol	Specification			Unit	Condition
			Min	Typ	Max		
1	Off Capacitance SW to GND	$C_{SG(OFF)}$	-	9	-	pF	0V, 1MHz
2	On Capacitance SW to GND	$C_{SG(ON)}$	-	14	-	pF	0V, 1MHz

HIGH VOLTAGE MONOLITHIC IC

ECN3290TF/PL/FN**4. Test Circuits****Fig. 2 Test Circuits**

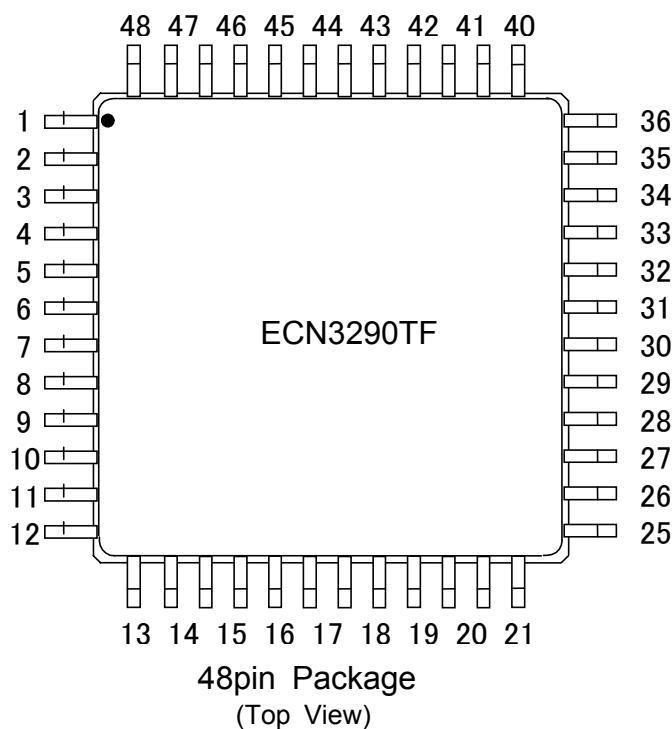
ECN3290TF/PL/FN**5. Timing Waveforms****Fig. 3 Timing Waveforms**

HIGH VOLTAGE MONOLITHIC IC

ECN3290TF/PL/FN**6. Truth Table**

D0	D1	D2	D3	D4	D5	D6	D7	LE	CL	SW 0	SW 1	SW 2	SW 3	SW 4	SW 5	SW 6	SW 7
L								L	L	OFF							
H								L	L	ON							
	L							L	L		OFF						
	H							L	L		ON						
		L						L	L			OFF					
		H						L	L			ON					
			L					L	L				OFF				
			H					L	L				ON				
				L				L	L					OFF			
				H				L	L					ON			
					L			L	L						OFF		
					H			L	L						ON		
						L		L	L							OFF	
						H		L	L							ON	
							L	L	L								OFF
							H	L	L								ON
X	X	X	X	X	X	X	X	H	L								HOLD PREVIOUS STATE
X	X	X	X	X	X	X	X	X	H	OFF							

HIGH VOLTAGE MONOLITHIC IC

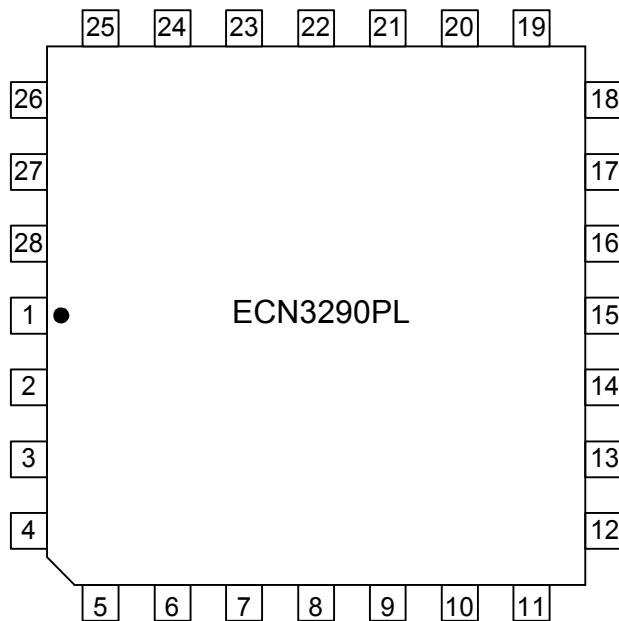

ECN3290TF/PL/FN

7. Pin Configuration

7.1) ECN3290TF TQFP48 (48Pin TQFP)

Pin Assignment

Pin#	Function	Pin#	Function	Pin#	Function
1	SW5	17	N/C	33	DIN
2	N/C	18	SW1	34	CLK
3	SW4	19	N/C	35	<u>LE</u>
4	N/C	20	SW0	36	CL
5	SW4	21	N/C	37	DOUT
6	N/C	22	SW0	38	N/C
7	N/C	23	N/C	39	SW7
8	SW3	24	VPP	40	N/C
9	N/C	25	VNN	41	SW7
10	SW3	26	N/C	42	N/C
11	N/C	27	N/C	43	SW6
12	SW2	28	GND	44	N/C
13	N/C	29	VDD	45	SW6
14	SW2	30	N/C	46	N/C
15	N/C	31	N/C	47	SW5
16	SW1	32	N/C	48	N/C


HIGH VOLTAGE MONOLITHIC IC

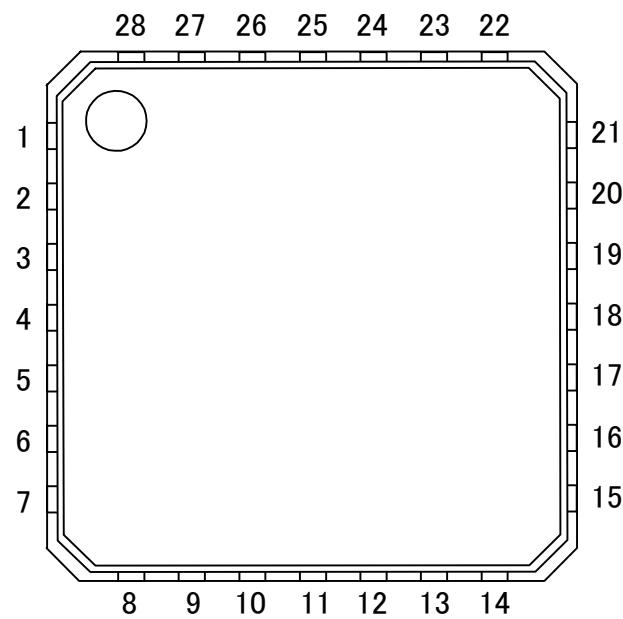
ECN3290TF/PL/FN

7.2) ECN3290PL QFJ28 (28Pin J-Lead)

Pin Assignment

Pin#	Function	Pin#	Function
1	SW3	15	N/C
2	SW3	16	DIN
3	SW2	17	CLK
4	SW2	18	<u>LE</u>
5	SW1	19	CL
6	SW1	20	DOUT
7	SW0	21	SW7
8	SW0	22	SW7
9	N/C	23	SW6
10	VPP	24	SW6
11	N/C	25	SW5
12	VNN	26	SW5
13	GND	27	SW4
14	VDD	28	SW4

(Top View)


HIGH VOLTAGE MONOLITHIC IC

ECN3290TF/PL/FN

7.3) ECN3290FN QFN28 (28Pin Quad Flat No-lead package)

Pin Assignment

Pin#	Function	Pin#	Function
1	SW5	15	N/C
2	SW4	16	VNN
3	SW4	17	GND
4	SW3	18	VDD
5	SW3	19	DIN
6	SW2	20	CLK
7	N/C	21	LE
8	SW2	22	CL
9	SW1	23	DOUT
10	SW1	24	SW7
11	SW0	25	SW7
12	SW0	26	SW6
13	N/C	27	SW6
14	VPP	28	SW5

(Top View)

ECN3290TF/PL/FN

8. Package Outline

8.1) ECN3290TF TQFP48 (48Pin TQFP)

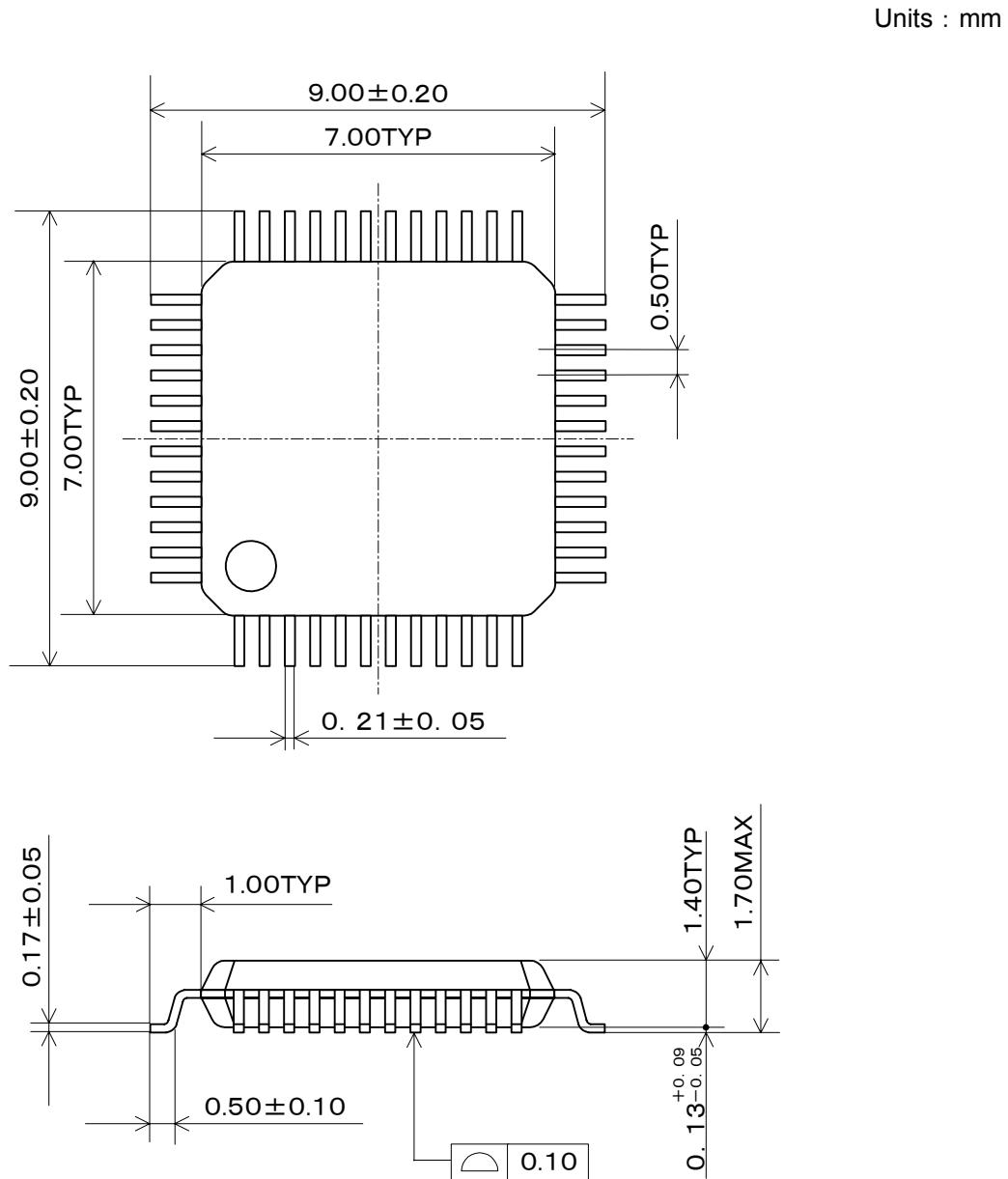


Fig.4 Package Outline (48pin TQFP Package)

HIGH VOLTAGE MONOLITHIC IC

ECN3290TF/PL/FN

8.2) ECN3290PL QFJ28 (28Pin J-Lead)

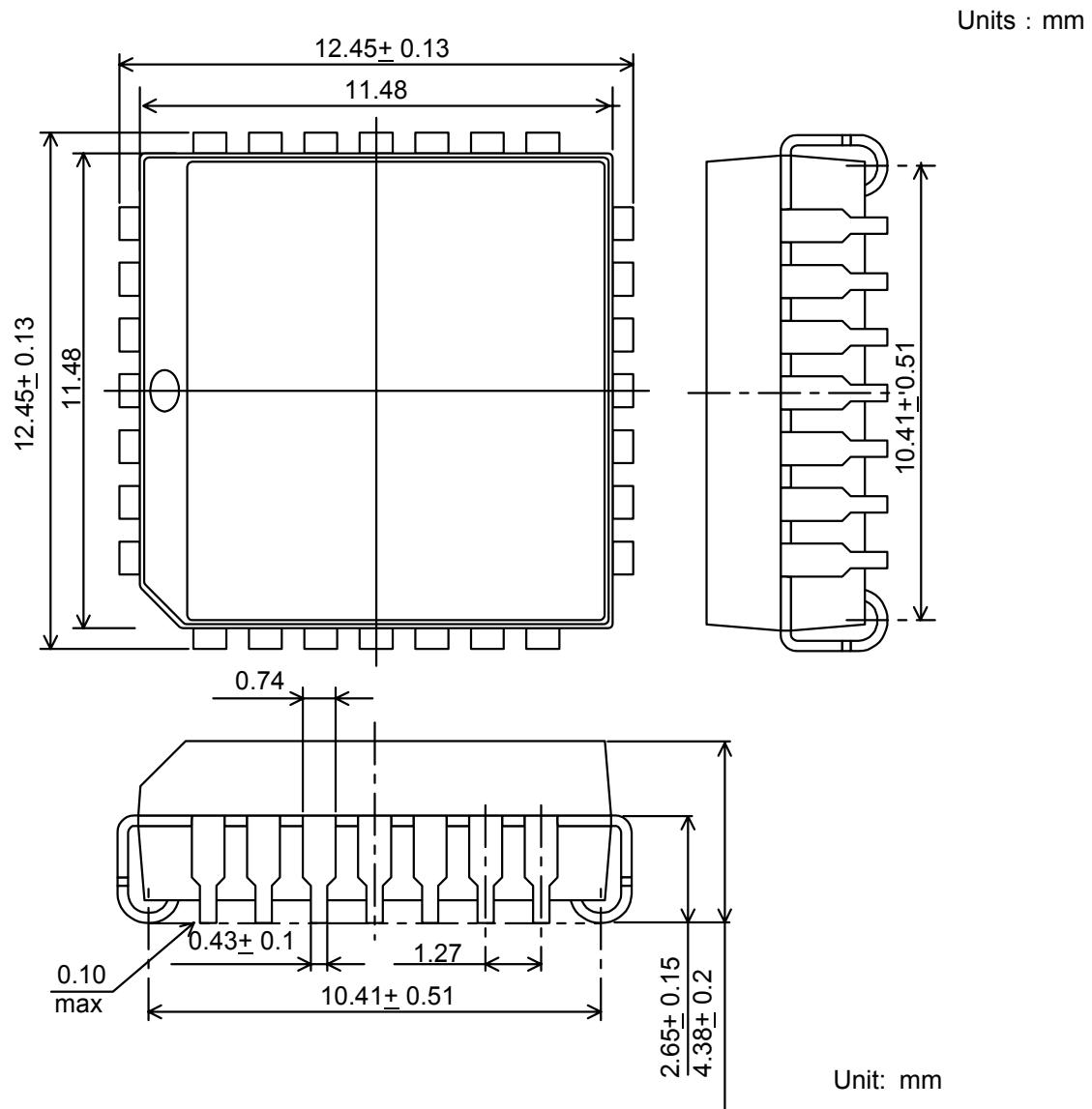


Fig.5 Package Outline (28pin J-Lead Package)

HIGH VOLTAGE MONOLITHIC IC

ECN3290TF/PL/FN

8.3) ECN3290FN QFN28 (28Pin Quad Flat No-lead package)

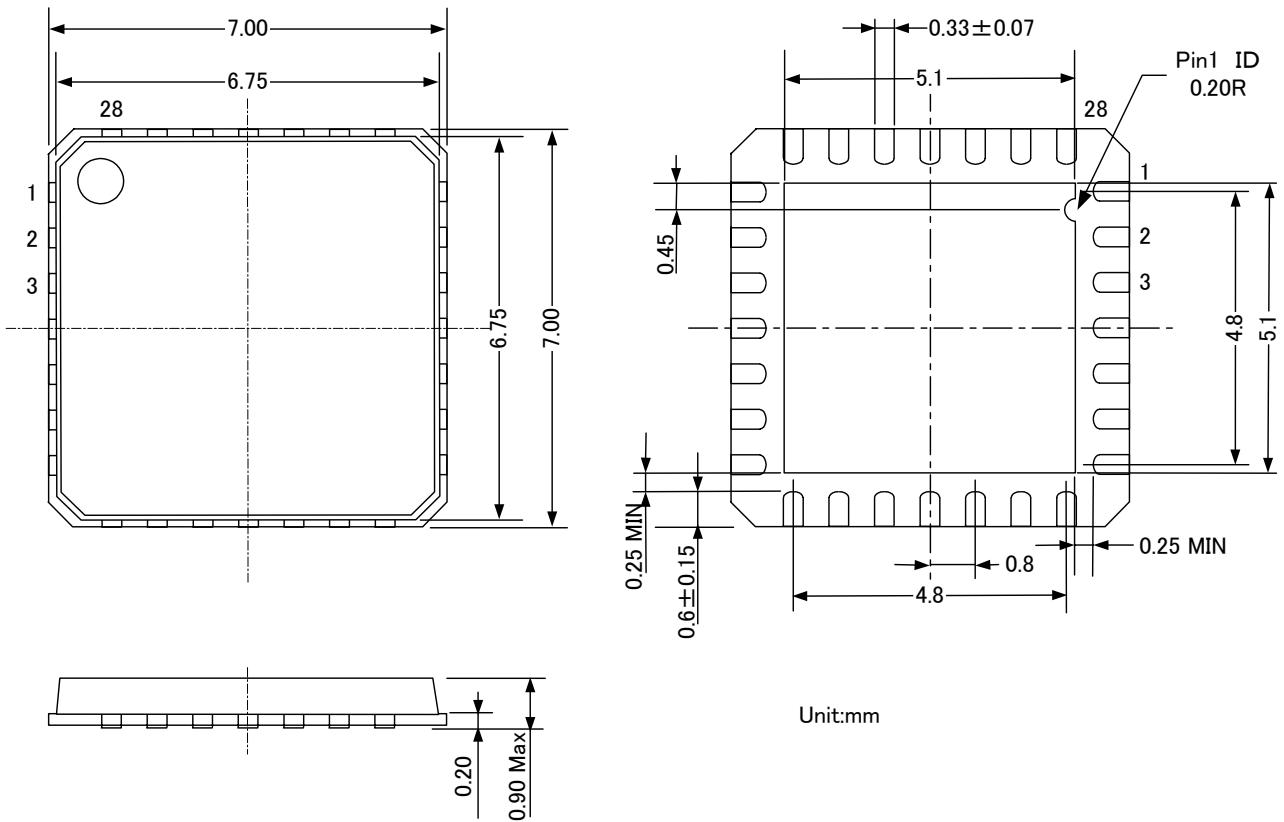


Fig.6 Package Outline (28pin QFN Package)

<Important Notice for QFN28(Quad Flat No-Lead 28 Pin) Package>

a) Connection of tab

A tab of the back of a QFN package and each terminal of IC are not connected. Please use the tab as open, or use it for GND, connecting.

Do not impress the voltage beyond 220V of a rated value between a tab and each terminal of IC.

b) Pb free

Solder plating of the terminal of a QFN package and a back tab has adopted SnBi plating.

ECN3290TF/PL/FN

9. Inspection

Hundred percent inspection shall be conducted on electric characteristics.

10. Important Notice

- 10.1 Hitachi warrants performance of its power semiconductor products (hereinafter called "products") to the specifications applicable at the time of sale in accordance with the Product Specification. Testing and other quality control techniques are utilized to the extent Hitachi needs to meet specifications described in the Product Specification. Specific testing of all parameters of each device is not necessarily performed, except those mandated by related laws and/or regulations.
- 10.2 Should any claim be made within one month of product delivery about products' failure to meet performance described in the Product Specification, all the products in relevant lot(s) shall be re-tested and re-delivered. Products delivered more than one month before of such claim shall not be counted for such response.
- 10.3 Hitachi assumes no obligation or any way of compensation should any fault about customer's goods using products be found in marketplace. Only in such a case fault of Hitachi is evident and products concerned do not meet the Product Specification, compensation shall be conducted if claimed within one year of product delivery up to in the way of product replacement or payment of equivalent amount.
- 10.4 Hitachi reserves the right to make changes in the Product Specification and to discontinue mass production of the relevant products without notice. Customers are advised before purchasing to confirm specification of the product of inquiry is the latest version and that the relevant product is on massproduction status in such a case purchasing is suspended for one year or more.
- 10.5 In no event shall Hitachi be liable for any damage that may result from an accident or any other cause during operation of the user's units according to this Product Specification. Hitachi assumes no responsibility for any intellectual property claims or any other problems that may result from applications of information, products or circuits described in this Product Specification.
- 10.6 No license is granted by this Product Specification under any patents or other rights of any third party or Hitachi, Ltd.
- 10.7 This Product Specification may not be reproduced or duplicated, in any form, in whole or in part, without the expressed written permission of Hitachi, Ltd.
- 10.8 The products (technologies) described in this Product Specification are not to be provided to any party whose purpose in their application will hinder maintenance of international peace and safety nor are they to be applied to that purpose by their direct purchasers or any third party. When exporting these products (technologies), the necessary procedures are to be taken in accordance with related laws and regulations.

ECN3290TF/PL/FN

11. Cautions

11.1 Customers are advised to follow the below cautions to protect semiconductor from electrical static discharge (ESD).

- a) IC needs to be dealt with caution to protect from damage by ESD. Material of container or any device to carry semiconductor devices should be free from ESD which may be caused by vibration while transportation. To use electric-conductive container or aluminum sheet is recommended as an effective countermeasure.
- b) Those what touch semiconductor devices such as work platform, machine and measuring and test equipment should be grounded.
- c) Workers should be grounded connecting with high impedance around $100k\Omega$ to $1M\Omega$ while dealing with semiconductor to avoid damaging IC by electric static discharge.
- d) Friction with other materials such as a high polymer should not be caused.
- e) Attention is needed so that electric potential will be kept on the same level by short circuit terminals when PC board with mounted IC is carried and that vibration or friction might not occur.
- f) Air conditioning is needed so that humidity should not drop.

11.2 Refer to "Precautions for Use of High-Voltage Monolithic ICs" (No.IC-0104E) for the other precautions and instructions on how to deal with products.

11.3 Regardless of changes in external conditions during use, "absolute maximum ratings" should never be exceeded in designing electronic circuits that employ products. In a case absolute maximum ratings are exceeded, products may be damaged or destroyed. In no event shall Hitachi be liable for any failure in products or any secondary damage resulting from use at a value exceeding the absolute maximum ratings.

11.4 Products may experience failures due to accident or unexpected surge voltages. Accordingly, adopt safe design features, such as redundancy or prevention of erroneous action, to avoid extensive damage in the event of a failure.

11.5 Products are not designed, manufactured, or warranted to be suitable for use where extremely high reliability is required (such as use in nuclear power control, aerospace and aviation, traffic equipment, life-support-related medical equipment, fuel control equipment and various kinds of safety equipment). Inclusion of products in such application shall be fully at the risk of customers. Hitachi, Ltd. assumes no liability for applications assistance, customer product design, or performance. In such cases it is advised customers ensure circuit and/or product safety by using semiconductor devices that assures high reliability or by means of user's fail-safe precautions or other arrangement. (If a semiconductor device fails, there may be cases in which the semiconductor device, wiring or wiring pattern will emit smoke or cause a fire or in which the semiconductor device will burst.)

HITACHI POWER SEMICONDUCTORS

Notices

1. The information given herein, including the specifications and dimensions, is subject to change without prior notice to improve product characteristics. Before ordering, purchasers are advised to contact Hitachi sales department for the latest version of this data sheets.
2. Please be sure to read "Precautions for Safe Use and Notices" in the individual brochure before use.
3. In cases where extremely high reliability is required (such as use in nuclear power control, aerospace and aviation, traffic equipment, life-support-related medical equipment, fuel control equipment and various kinds of safety equipment), safety should be ensured by using semiconductor devices that feature assured safety or by means of users' fail-safe precautions or other arrangement. Or consult Hitachi's sales department staff.
4. In no event shall Hitachi be liable for any damages that may result from an accident or any other cause during operation of the user's units according to this data sheets. Hitachi assumes no responsibility for any intellectual property claims or any other problems that may result from applications of information, products or circuits described in this data sheets.
5. In no event shall Hitachi be liable for any failure in a semiconductor device or any secondary damage resulting from use at a value exceeding the absolute maximum rating.
6. No license is granted by this data sheets under any patents or other rights of any third party or Hitachi, Ltd.
7. This data sheets may not be reproduced or duplicated, in any form, in whole or in part , without the expressed written permission of Hitachi, Ltd.
8. The products (technologies) described in this data sheets are not to be provided to any party whose purpose in their application will hinder maintenance of international peace and safety nor are they to be applied to that purpose by their direct purchasers or any third party. When exporting these products (technologies), the necessary procedures are to be taken in accordance with related laws and regulations.

- For inquiries relating to the products, please contact nearest overseas representatives which is located "Inquiry" portion on the top page of a home page.

Hitachi power semiconductor home page address <http://www.hitachi.co.jp/pse>

HITACHI