
features

- 14-Bit Resolution
- 1 MSPS and 3 MSPS Speed Grades Available
- On-Chip FIFO For Optimized Data Transfer
- Differential Nonlinearity (DNL) ±0.6 LSB Typ
- Integral Nonlinearity (INL) ±1.5 LSB Typ
- Internal Reference
- Differential Inputs
- Programmable Gain Amplifier
- μP Compatible Parallel Interface
- Timing Compatible With TI 6000 DSP Family
- 3.3-V Single Supply
- Power-Down Mode
- Monolithic CMOS Design

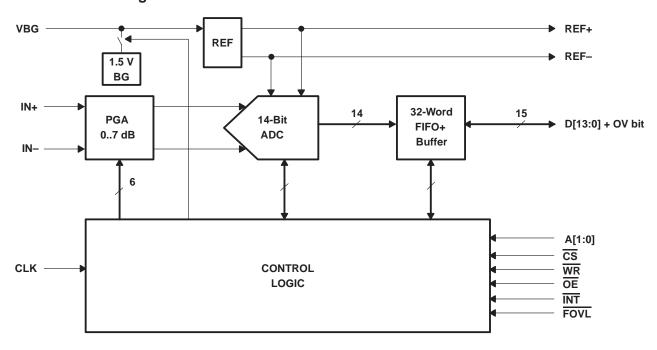
applications

- xDSL Front Ends
- Communication
- Industrial Control
- Instrumentation
- Automotive

PFB PACKAGE (TOP VIEW)

NC – No internal connection

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


description

The THS14F01 and THS14F03 are 14-bit, 1 MSPS/ 3 MSPS, single supply analog-to-digital converters with a FIFO, internal reference, differential inputs, programmable input gain, and an on-chip sample and hold amplifier.

Implemented with a CMOS process, the device has outstanding price/performance and power/speed ratios. The THS14F01 and THS14F03 are designed for use with 3.3-V systems, and with a high-speed μP compatible parallel interface, making them the first choice for solutions based on high-performance DSPs like the TI TMS320C6000 series.

The THS14F01 and THS14F03 are available in a TQFP-48 package in standard commercial and industrial temperature ranges.

functional block diagram

AVAILABLE OPTIONS

	PACKAGED DEVICE
TA	TQFP (PFB)
0°C to 70°C	THS14F01CPFB, THS14F03CPFB
–40°C to 85°C	THS14F01IPFB, THS14F03IPFB

Terminal Functions

TER	RMINAL	1/0	DESCRIPTION
NAME	NO.	1/0	DESCRIPTION
A[1:0]	40, 41	I	Address input
AGND	7,8, 44, 45, 46	Р	Analog ground
AV_{DD}	2, 43, 47	Р	Analog power supply
CLK	32	_	Clock input
CML	4		Reference midpoint. This pin requires a 0.1-μF capacitor to AGND.
CS	37	Ι	Chip select input. Active low
DGND	9, 15, 25, 33, 34	Р	Digital ground
DV _{DD}	14, 20, 26, 30, 31, 42	Р	Digital power supply
D[13:0]	11, 12, 13, 16, 17, 18, 19, 21, 22, 23, 24, 27, 28, 29	I/O	Data inputs/outputs
FOVL	39	0	FIFO Overflow. Asserted when FIFO is full. Programmable polarity
IN+	48	I	Positive differential analog input
IN-	1	_	Negative differential analog input
INT	38	0	Interrupt output. Asserted when FIFO trigger level is reached. Programmable polarity
OE	35	Ι	Output enable. Active low
OV	10	0	Out of range output
REF+	5	0	Positive reference output. This pin requires a 0.1-μF capacitor to AGND.
REF-	6	0	Negative reference output. This pin requires a 0.1-μF capacitor to AGND.
VBG	3	I	Reference input. This pin requires a 1-μF capacitor to AGND.
WR	36	_	Write signal. Active low

absolute maximum ratings over operating free-air temperature (unless otherwise noted)†

Supply voltage, (AV _{DD} to AGND)	4V
Supply voltage, (DV _{DD} to DGND)	4V
Reference input voltage range, VBG	$\dots - 0.3 \text{ V to AV}_{DD} + 0.3 \text{ V}$
Analog input voltage range	$\dots - 0.3 \text{ V to AV}_{DD} + 0.3 \text{ V}$
Digital input voltage range	$\dots -0.3 \text{ V to DV}_{DD} + 0.3 \text{ V}$
Operating free-air temperature range, T _A : C suffix	0°C to 70°C
I suffix	–40°C to 85°C
Storage temperature range, T _{Stq}	
Lead temperature 1.6 mm (1/16 inch) from case for 10 s	econds 260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

SLAS285 – JUNE 2000

recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage, AV _{DD} , DV _{DD}		3	3.3	3.6	V
High level digital input, VIH		2	3.3		V
Low level digital input, V _{IL}			0	0.8	V
Load capacitance, C _L		5	15	pF	
Clock fraguency for the	THS14F01	0.1	1	1	MHz
Clock frequency, fCLK	THS14F03	0.1	3	3	MHz
Clock duty cycle		40%	50%	60%	
Operating free air temperature	C suffix	0	25	70	°C
Operating free-air temperature	l suffix		25	85	

electrical characteristics over recommended operating conditions

	PARAMETE	R	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Power S	Supply		•	•			
I _{DDA}	Analog supply current				81	90	mA
I _{DDD}	Digital supply current				5	10	mA
	Power				270	360	mW
	Power down current				20		μΑ
DC Cha	racteristics†		•				
	Resolution				14		Bits
DNL	Differential nonlinearity				±0.6	±1	LSB
INII	Later week a self-results.	THS14F01	Dest fil		±1.5	±2.5	LSB
INL	Integral nonlinearity	THS14F03	Best fit		±1.5	±2.5	
	Offset error	•	IN+ = IN-, PGA = 0 dB			0.3	%FSR
	Gain error		PGA = 0 dB			1	%FSR
AC Cha	racteristics†		•	•			
ENOB	Effective number of bits			11.2	11.5		Bits
TUD	Total hammania distantia a	THS14F01/3	f _i = 100 kHz		-81		40
THD	Total harmonic distortion	THS14F03	f _i = 1 MHz		-78		dB
SNR	Signal-to-noise ratio	THS14F01/3	f _i = 100 kHz		72		dB
SINK	Signal-to-noise ratio	THS14F03	f _i = 1 MHz	70	72		иь
SINAD	Signal to poince rotic a distortion	THS14F01/3	f _i = 100 kHz		70		dB
JINAD	Signal-to-noise ratio + distortion	THS14F03	f _i = 1 MHz	69	70		ub
SFDR	Spurious froe dynamic reases	THS14F01/3	f _i = 100 kHz		80		dB
SFUR	Spurious free dynamic range	THS14F03	f _i = 1 MHz	73	80	1	ub_
_	Analog input bandwidth	<u> </u>			140		MHz

[†] FIFO trigger level = 10 samples. Performance is ensured with the output enable signal (OE) being low during no more than one rising clock edge on CLK.

SLAS285 - JUNE 2000

electrical characteristics (continued)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Refere	nce Voltage	•				
\/D0	Bandgap voltage, internal mode		1.425	1.5	1.575	V
VBG	Input impedance			40		kΩ
	Positive reference voltage, REF+			2.5		V
	Negative reference voltage, REF-			0.5		V
	Reference difference, ∆REF, REF+ – REF–			2		V
	Accuracy, internal reference			5%		
	Temperature coefficient			40		ppm/°C
	Voltage coefficient			200		ppm/V
Analog	Inputs	•				
	Positive analog input, IN+		0		AV _{DD}	V
	Negative analog input, IN-		0		AV _{DD}	V
	Analog input voltage difference	Δ Ain = IN+ – IN–, V _{ref} = REF+ – REF–	-V _{ref}		V _{ref}	V
	Input impedance			25		kΩ
	PGA range		0		7	dB
	PGA step size			1		dB
	PGA gain error				±0.25	dB
Digital	Inputs	•				
۷ _{IH}	High-level digital input		2			V
V_{IL}	Low-level digital input				0.8	V
	Input capacitance			5		pF
	Input current				±1	μΑ
Digital	Outputs					
Vон	High-level digital output	ΙΟΗ = 50 μΑ	2.6			V
VOL	Low-level digital output	I _{OL} = 50 μA			0.4	V
loz	Output current, high impedance				±10	μА
Clock 7	Timing (CS low)					
4	Clock fraguency	THS14F01	0.1	1	1	MHz
fCLK	Clock frequency	THS14F03	0.1	3	3	MHz
t _d	Output delay time				25	ns
	Latency			9.5		Cycles

PARAMETER MEASUREMENT INFORMATION

sample timing

The THS14F01/3 core is based on a pipeline architecture with a latency of 9.5 samples. The conversion results are stored in the FIFO 9.5 clock cycles after the input signal was sampled.

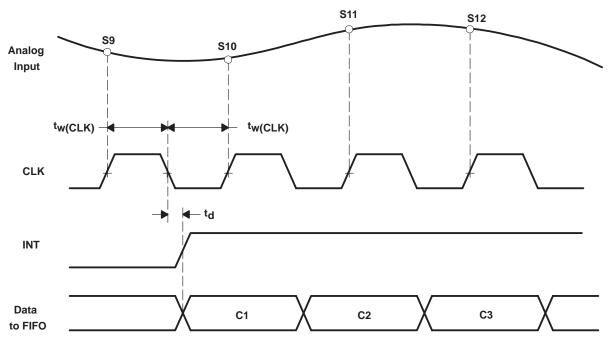


Figure 1. Sample Timing

INT goes active if the programmed FIFO level is reached. INT is either low or high active depending on the polarity bit (IP) within the control word. This signal is set synchronously to the CLK signal. It is reset by a read access to the FIFO once the number of samples in the FIFO is below the programmed threshold level.

PARAMETER MEASUREMENT INFORMATION

The parallel interface of the THS14F01/3 ADC features 3-state buffers making it possible to directly connect it to a data bus. The output buffers are enabled by driving the OE input low.

Besides the sample results, it is also possible to read back the values of the control register, the PGA register, and the control register. Which register is read is determined by the address inputs A[1,0]. The ADC results are available at address 0.

The timing of the control signals is described in the following sections.

The FIFO can be disabled by setting FC to 0 (FIFO reset, default at power on). This makes it possible to access the device synchronously.

In this case the data is updated on every clock cycle.

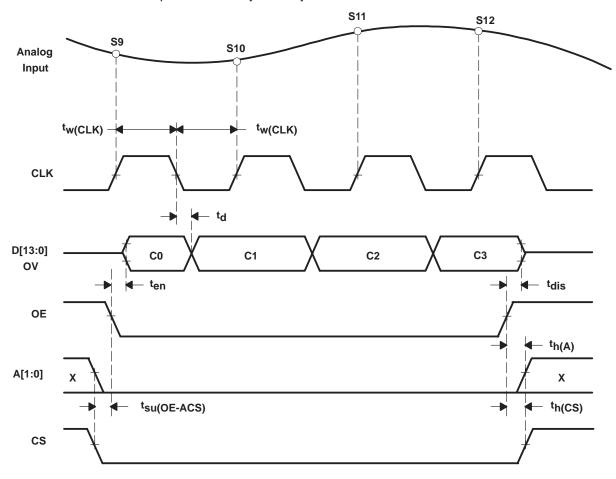


Figure 2. Sample Timing

PARAMETER MEASUREMENT INFORMATION

read timing (15-pF load)

	PARAMETER	MIN	TYP	MAX	UNIT
t _{su(OE-ACS)}	Address and chip select setup time	4			ns
t _{en}	Output enable			15	ns
t _{dis}	Output disable			10	ns
t _{h(A)}	Address hold time	1		15	ns
th(CS)	Chip select hold time	0			ns

NOTE: All timing parameters refer to a 50% level.

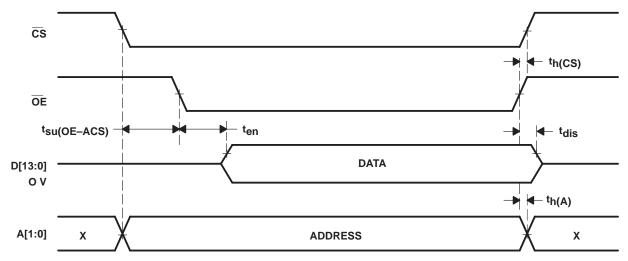


Figure 3. Read Timing

PARAMETER MEASUREMENT INFORMATION

write timing (15-pF load)

	PARAMETER	MIN	TYP	MAX	UNIT
t _{su(WE-CS)}	Chip select setup time	4			ns
t _{su(DA)}	Data and address setup time	29			ns
th(DA)	Data and address hold time	0			ns
th(CS)	Chip select hold time	0			ns
t _W H(WE)	Write pulse duration high	15			ns

NOTE: All timing parameters refer to a 50% level.

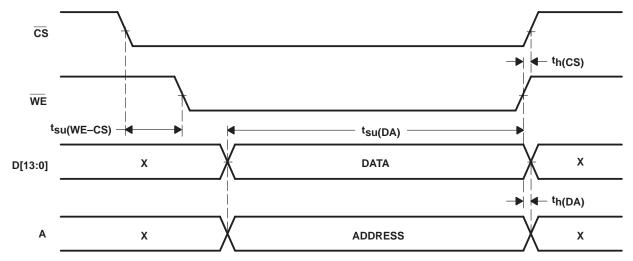
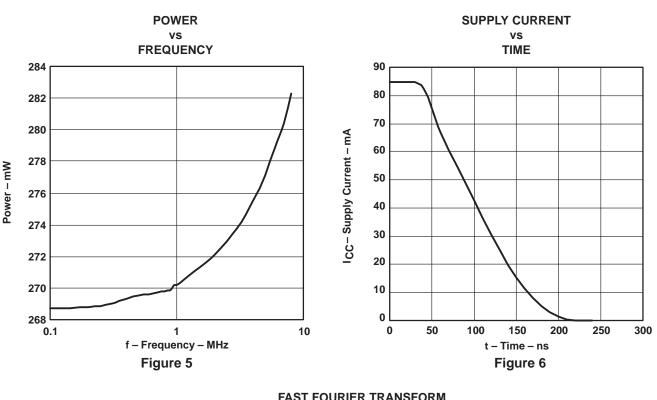



Figure 4. Write Timing

TYPICAL CHARACTERISTICS

FAST FOURIER TRANSFORM

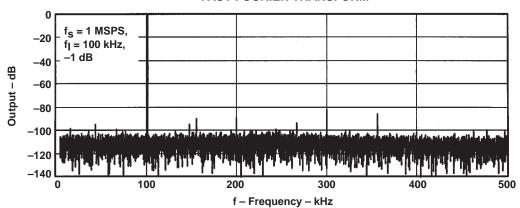


Figure 7

TYPICAL CHARACTERISTICS

FAST FOURIER TRANSFORM

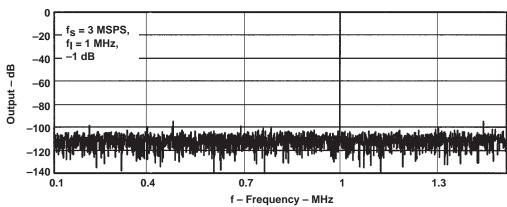


Figure 8

INTEGRAL NONLINEARITY

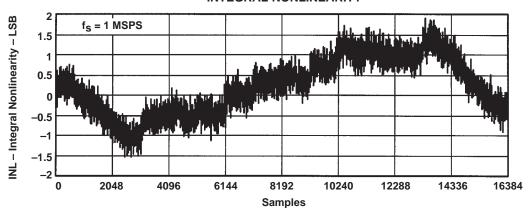


Figure 9

INTEGRAL NONLINEARITY

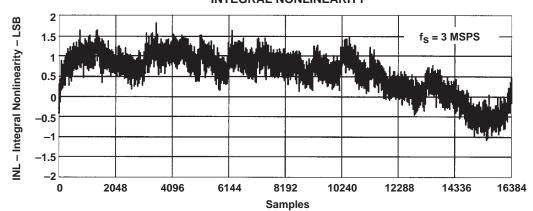


Figure 10

TYPICAL CHARACTERISTICS

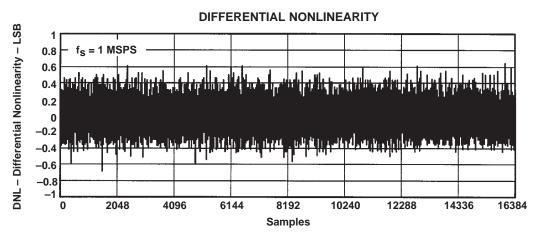


Figure 11

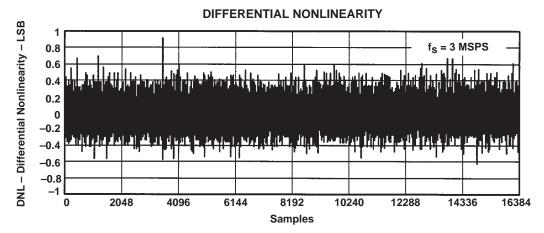
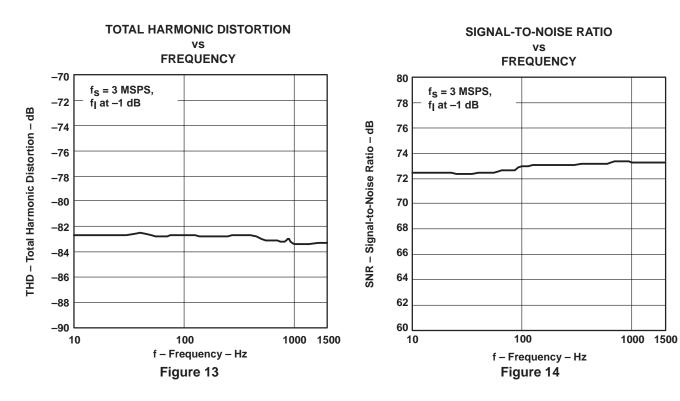



Figure 12

TYPICAL CHARACTERISTICS

PRINCIPLES OF OPERATION

registers

The device contains several registers. The A register is selected by the values of bits A1 and A0:

A1	A0	Register
0	0	Conversion result
0	1	PGA
1	0	Offset
1	1	Control

Tables 1 and 2 describe how to read the conversion results and how to configure the data converter. The default values (were applicable) show the state after a power-on reset.

Table 1. Conversion Result Register, Address 0, Read

BIT	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
Function	MSB													LSB

The output can be configured for two's complement or straight binary format (see D11/control register).

The output code is given by:

2s complement: Straight binary:

-8192 at $\Delta IN = -\Delta REF$ 0 at $\Delta IN = -\Delta REF$

0 at $\Delta IN = 0$ 8192 at $\Delta IN = 0$

8191 $\Delta IN = -\Delta REF - 1 LSB$ 16383 at $\Delta IN = -\Delta REF - 1 LSB$

 $1 LSB = \frac{2\Delta REF}{16384}$

Table 2. PGA Gain Register, Address 1, Read/Write

BIT	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
Function	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	G2	G1	G0
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0

The PGA gain is determined by writing to G2-0.

Gain (dB) = $1dB \times G2-0$. max = 7dB. The range of G2-0 is 0 to 7.

Table 3. Offset Register, Address 2, Read/Write

BIT	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
Function	Х	Х	Х	Х	Х	Х	MSB							LSB
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0

The offset correction range is from –128 to 127 LSB. This value is added to the conversion results from the ADC.

PRINCIPLES OF OPERATION

Table 4. Control Register, Address 3, Read

BIT	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
Function	PWD	REF	FOR	TM2	TM1	TM0	OFF	IP	FP	FC	F3	F2	F1	F0

Table 5. Control Register, Address 3, Write

BIT	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
Function	PWD	REF	FOR	TM2	TM1	TM0	OFF	IP	FP	FC	F3	F2	F1	F0
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0

PWD: Power down 0 = normal operation 1 = power down

REF: Reference select 0 = internal reference 1 = external reference

FOR: Output format 0 = straight binary 1 = 2s complement

TM2-0: Test mode 000 = normal operation

001 = both inputs = REF-

010 = IN+ at $V_{ref}/2$, IN- at REF-011 = IN+ at REF+, IN- at REF-

100 = normal operation101 = both inputs = REF+

110 = IN+ at REF-, IN- at $V_{ref}/2$ 111 = IN+ at REF-, IN- at REF+

OFF: Offset correction 0 = enable1 = disableIP: **INT** polarity 0 = low active1 = high active FP: FIFO FOVL polarity 0 = low active 1 = high active FC: FIFO control 0 = disable FIFO 1 = enable FIFO

F3–0: FIFO threshold Sets the FIFO threshold for the INT signal in steps of 2 ranging from 0 to 30

APPLICATION INFORMATION

FIFO description

The FIFO is based on a circular buffer (see Figure 15, in this example the FIFO is 16 words long). The buffer is accessed using two pointers, one for the ADC writing to the FIFO, one for the processor (DSP) reading from the buffer. Both pointers move in a clockwise direction. If the distance between the ADC write pointer and the DSP read pointer is greater or equal a programmable threshold, the INT signal is asserted. If this INT signal is connected to an external interrupt pin of the processor, it is possible to read out the stored values in the FIFO at once during the interrupt service routine. If the ADC write pointer reaches the position of the DSP read pointer, an overflow occurs. In this case, the overflow bit in the ADC register is set and the FOVL is asserted.

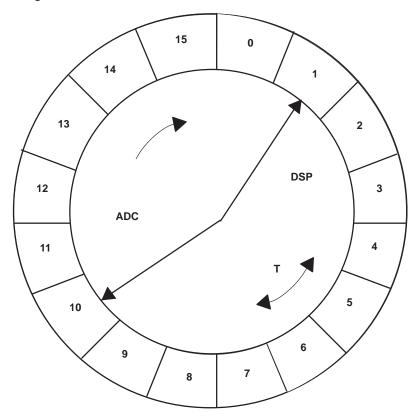
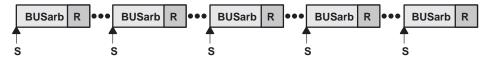


Figure 15. Circular Buffer

SLAS285 - JUNE 2000

APPLICATION INFORMATION

DMA transfer and FIFO


The FIFO makes it possible to use the available interface bandwidth of the host processor more efficiently. The following is a description based on the TMS320C6201 DSP from TI.

The TMS320C6201 memory interface has a limited bandwidth, for example 200MWPS at a clock rate of 200 MHz. The THS14F04x interface is asynchronous with a maximum speed of 300MWPS, which is approximately 7 clock cycles.

If the DSP uses the DMA controller to read data from the DSP, the following conditions exist:

DMA bus arbitration: 16 clock cycles
 THS14F0x read access: 7 clock cycles

If, for example, 10 samples need to be read from the ADC without the FIFO, the memory interface will be allocated for $(10 + 7) \times 16 = 272$ clock cycles in total.

With a FIFO programmed to a 10 sample threshold, the memory interface will be allocated for $16 + 7 \times 10 = 86$ clock cycles in total.

driving the analog input

The THS14F01/3 ADCs have a fully differential input. A differential input is advantageous with respect to SNR, SFDR, and THD performance because the signal peak-to-peak level is 50% of a comparable single-ended input.

There are three basic input configurations:

- Fully differential
- Transformer coupled single-ended to differential
- Single-ended

APPLICATION INFORMATION

fully differential configuration

In this configuration, the ADC converts the difference (Δ IN) of the two input signals on IN+ and IN-.

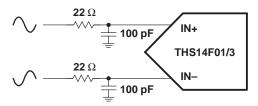


Figure 16. Differential Input

The resistors and capacitors on the inputs decouple the driving source output from the ADC input and also serve as first order low pass filters to attenuate out of band noise.

The input range on both inputs is 0 V to AV_{DD}. The full-scale value is determined by the voltage reference. The positive full-scale output is reached, if Δ IN equals Δ REF, the negative full-scale output is reached, if Δ IN equals $-\Delta$ REF.

∆IN [V]	OUTPUT				
–∆REF	– full scale				
0	0				
ΔREF	+ full scale				

transformer coupled single-ended to differential configuration

If the application requires the best SNR, SFDR, and THD performance, the input should be transformer coupled.

The signal amplitude on both inputs of the ADC is one half as high as in a single-ended configuration thus increasing the ADC ac performance.

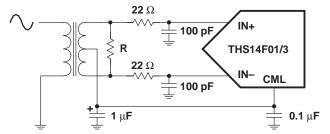


Figure 17. Transformer Coupled

IN [VPEAK]	OUTPUT [PEAK]					
–∆REF	– full scale†					
0	0					
ΔREF	+ full scale [†]					

 \dagger n = 1 (winding ratio)

The resistor R of the transformer coupled input configuration must be set to match the signal source impedance $R = n^2 Rs$, where Rs is the source impedance and n is the transformer winding ratio.

APPLICATION INFORMATION

single-ended configuration

In this configuration, the input signal is level shifted by $\Delta REF/2$.

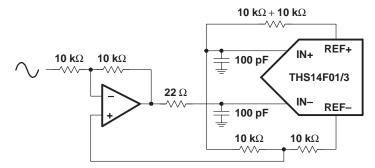


Figure 18. Single-Ended With Level Shift

The following table shows the input voltages for negative full-scale output, zero output, and positive full-scale output:

∆IN+ [V]	OUTPUT					
–∆REF	– full scale					
0	0					
ΔREF	+ full scale					

Note that the resistors of the op-amp and the op-amp all introduce gain and offset errors. Those errors can be trimmed by varying the values of the resistors.

Because of the added offset, the op-amp does not necessarily operate in the best region of its transfer curve (best linearity around zero) and therefore may introduce unacceptable distortion. For ac signals, an alternative is described in the following section.

APPLICATION INFORMATION

ac-coupled single-ended configuration

If the application does not require the signal bandwidth to include dc, the level shift shown in Figure 4 is not necessary.

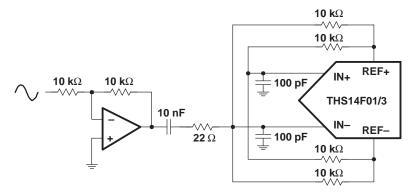


Figure 19. Single-Ended With Level Shift

Because the signal swing on the op-amp is centered around ground, it is more likely that the signal stays within the linear region of the op-amp transfer function, thus increasing the overall ac performance.

IN [V _{PEAK}]	OUTPUT [PEAK]					
–∆REF	- full scale					
0	0					
ΔREF	+ full scale					

Compared to the transformer-coupled configuration, the swing on IN– is twice as big, which can decrease the ac performance (SNR, SFD, and THD).

APPLICATION INFORMATION

internal/external reference operation

The THS14F01/3 ADC can either be operated using the built-in band gap reference or using an external precision reference in case very high dc accuracy is needed.

The REF+ and REF+ outputs are given by:

REF + = VBG
$$\left(1 + \frac{2}{3}\right)$$
 and REF- = VBG $\left(1 - \frac{2}{3}\right)$

If the built-in reference is used, VBG equals 1.5 V which results in REF+ = 2.5 V, REF- = 0.5 V and Δ REF = 2 V.

The internal reference can be disabled by writing 1 to D12 (REF) in the control register (address 3). The band gap reference is then disconnected and can be substituted by a voltage on the VBG pin.

programmable gain amplifier

The on-chip programmable gain amplifier (PGA) has eight gain settings. The gain can be changed by writing to the PGA gain register (address 1). The range is 0 to 7dB in steps of one dB.

out of range indication

The OV output of the ADC indicates an out of range condition. Every time the difference on the analog inputs exceeds the differential reference, this signal is asserted. This signal is updated the same way as the digital data outputs and therefore subject to the same pipeline delay.

offset compensation

With the offset register it is possible to automatically compensate system offset errors, including errors caused by additional signal conditioning circuitry. If the offset compensation is enabled (D7 (OFF) in the control register), the value in the offset register (address 2) is automatically subtracted from the output of the ADC.

In order to set the correct value of the offset compensation register, the ADC result when the input signal is 0 must be read by the host processor and written to the offset register (address 2).

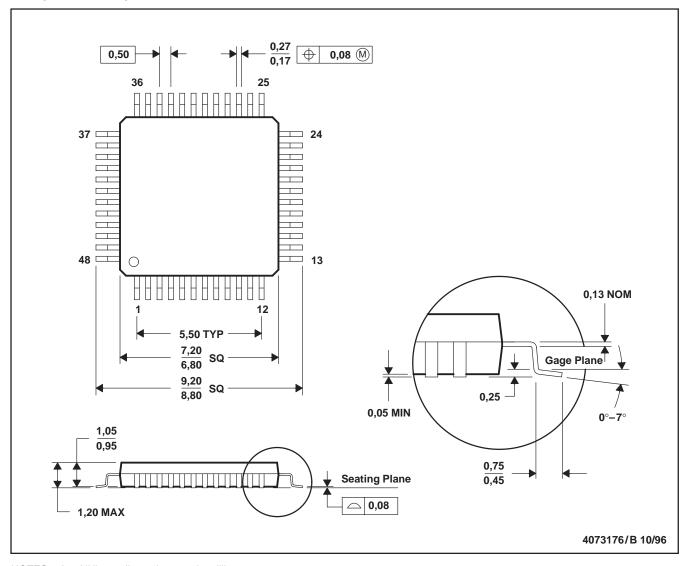
test modes

The ADC core operation can be tested by selecting one of the available test modes (see control register description). The test modes apply various voltages to the differential input depending on the setting in the control register.

digital I/O

The digital inputs and outputs of the THS14F01/3 ADC are 3-V CMOS compatible. In order to avoid current feed back errors, the capacitive load on the digital outputs should be as low as possible (50 pF max). Series resistors (100 Ω) on the digital outputs can improve the performance by limiting the current during output transitions.

The parallel interface of the THS14F01/3 ADC features 3-state buffers, making it possible to directly connect it to a data bus. The output buffers are enabled by driving the $\overline{\text{OE}}$ input low.


Refer to the read and write timing diagrams in the parameter measurement information section for information on read and write access.

MECHANICAL DATA

PFB (S-PQFP-G48)

PLASTIC QUAD FLATPACK

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Falls within JEDEC MS-026

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 2000, Texas Instruments Incorporated