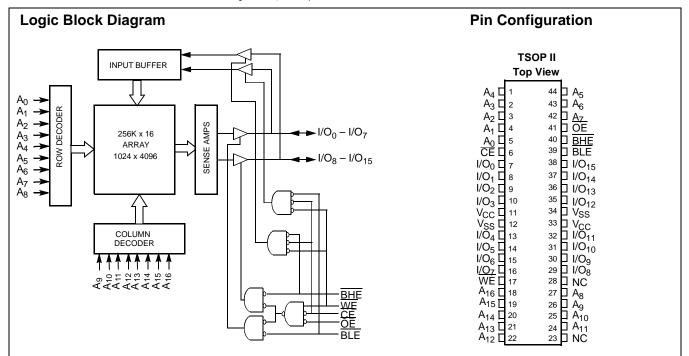


# 128K x 16 Static RAM

#### **Features**

- Pin equivalent to CY7C1011BV33
- High speed
  - $-t_{\Delta\Delta}$  = 10 ns
- · Low active power
  - -360 mW (max.)
- Data Retention at 2.0
- Automatic power-down when deselected
- · Independent control of upper and lower bits
- Easy memory expansion with CE and OE features
- Available in 44-pin TSOP II, 44-pin TQFP, and 48-ball

#### **Functional Description**


The CY7C1011CV33 is a high-performance CMOS Static RAM organized as 131,072 words by 16 bits.

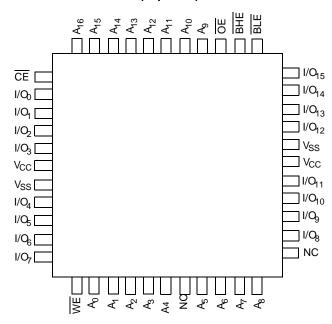
Writing to the device is accomplished by taking Chip Enable (CE) and Write Enable (WE) inputs LOW. If Byte Low Enable  $(\overline{BLE})$  is LOW, then data from I/O pins (I/O<sub>0</sub> through I/O<sub>7</sub>), is written into the location specified on the address pins (A<sub>0</sub> through A<sub>16</sub>). If Byte High Enable (BHE) is LOW, then data from I/O pins (I/O<sub>8</sub> through I/O<sub>15</sub>) is written into the location specified on the address pins ( $A_0$  through  $A_{16}$ ).

Reading from the device is accomplished by taking Chip Enable (CE) and Output Enable (OE) LOW while forcing the Write Enable (WE) HIGH. If Byte Low Enable (BLE) is LOW, then data from the memory location specified by the address pins will appear on  $I/O_0$  to  $I/O_7$ . If Byte High Enable ( $\overline{BHE}$ ) is LOW, then data from memory will appear on I/O<sub>8</sub> to I/O<sub>15</sub>. See the truth table at the back of this data sheet for a complete description of read and write modes.

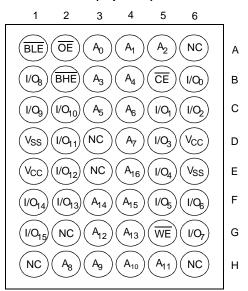
The input/output pins (I/O<sub>0</sub> through I/O<sub>15</sub>) are placed in a high-impedance state when the device is deselected (CE HIGH), the outputs are disabled (OE HIGH), the BHE and BLE are disabled (BHE, BLE HIGH), or during a write operation (CE LOW, and WE LOW).

The CY7C1011CV33 is available in a standard 44-pin TSOP II package with center power and ground pinout, a 44-pin Thin Plastic Quad Flatpack (TQFP), as well as a 48-ball fine-pitch ball grid array (VFBGA) package.






### **Selection Guide**


|                              |             | -10 | -12 | -15 | Unit |
|------------------------------|-------------|-----|-----|-----|------|
| Maximum Access Time          |             | 10  | 12  | 15  | ns   |
| Maximum Operating Current    | Comm'l      | 90  | 85  | 80  | mA   |
|                              | Ind'l       | 100 | 95  | 90  |      |
| Maximum CMOS Standby Current | Com'l/Ind'l | 10  | 10  | 10  | mA   |

# **Pin Configurations**





# 48-ball VFBGA (Top View)





### **Maximum Ratings**

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature ......— $65^{\circ}$ C to +150 $^{\circ}$ C

Ambient Temperature with

Power Applied......–55°C to +125°C

Supply Voltage on  $V_{CC}$  to Relative  $\mbox{GND}^{[2]}\,...\,-0.5\mbox{V}$  to +4.6V

DC Voltage Applied to Outputs in High-Z State  $^{[2]}$  ......-0.5V to  $^{V}$  CC + 0.5V

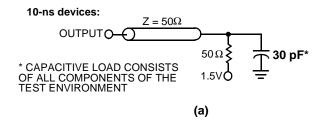
| DC Input Voltage <sup>[2]</sup> | 0.5V to V <sub>CC</sub> + 0.5V |
|---------------------------------|--------------------------------|
| Current into Outputs (LOW)      | )20 mA                         |

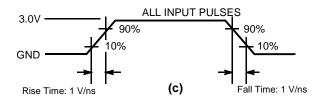
### **Operating Range**

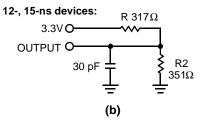
| Range      | Ambient<br>Temperature | V <sub>CC</sub> |
|------------|------------------------|-----------------|
| Commercial | 0°C to +70°C           | $3.3V \pm 0.3V$ |
| Industrial | –40°C to +85°C         |                 |

### DC Electrical Characteristics Over the Operating Range

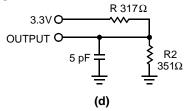
|                  |                                                    |                                                                                                                                                                                                                                                      |                 | -10        |                          |            | 12                       | -1   | 15                       |      |
|------------------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------|--------------------------|------------|--------------------------|------|--------------------------|------|
| Parameter        | Description                                        | Test Conditions                                                                                                                                                                                                                                      | Test Conditions |            | Max.                     | Min.       | Max.                     | Min. | Max.                     | Unit |
| V <sub>OH</sub>  | Output HIGH Voltage                                | $V_{CC} = Min.,$<br>$I_{OH} = -4.0 \text{ mA}$                                                                                                                                                                                                       |                 | 2.4        |                          | 2.4        |                          | 2.4  |                          | V    |
| V <sub>OL</sub>  | Output LOW Voltage                                 | V <sub>CC</sub> = Min.,<br>I <sub>OL</sub> = 8.0 mA                                                                                                                                                                                                  |                 |            | 0.4                      |            | 0.4                      |      | 0.4                      | V    |
| V <sub>IH</sub>  | Input HIGH Voltage                                 |                                                                                                                                                                                                                                                      |                 | 2.0        | V <sub>CC</sub><br>+ 0.3 | 2.0        | V <sub>CC</sub><br>+ 0.3 | 2.0  | V <sub>CC</sub><br>+ 0.3 | V    |
| $V_{IL}$         | Input LOW Voltage[1]                               |                                                                                                                                                                                                                                                      |                 | -0.3       | 0.8                      | -0.3       | 0.8                      | -0.3 | 0.8                      | V    |
| I <sub>IX</sub>  | Input Load Current                                 | $GND \le V_I \le V_{CC}$                                                                                                                                                                                                                             |                 | -1         | +1                       | -1         | +1                       | -1   | +1                       | μΑ   |
| I <sub>OZ</sub>  | Output Leakage Current                             | GND ≤ V <sub>OUT</sub> ≤ V <sub>CC</sub> ,<br>Output Disabled                                                                                                                                                                                        |                 | <b>–</b> 1 | +1                       | <b>–</b> 1 | +1                       | -1   | +1                       | μΑ   |
| I <sub>CC</sub>  | V <sub>CC</sub> Operating<br>Supply Current        | $V_{CC} = Max., f = f_{MAX} = 1/t_{RC}$                                                                                                                                                                                                              | Com'l           |            | 90                       |            | 85                       |      | 80                       | mA   |
|                  |                                                    |                                                                                                                                                                                                                                                      | Ind'I           |            | 100                      |            | 95                       |      | 90                       | mΑ   |
| I <sub>SB1</sub> | Automatic CE Power-down Current —TTL Inputs        | $\begin{aligned} &\text{Max. V}_{\text{CC}}, \overline{\text{CE}} \geq \text{V}_{\text{IH}} \\ &\text{V}_{\text{IN}} \geq \text{V}_{\text{IH}} \text{ or} \\ &\text{V}_{\text{IN}} \leq \text{V}_{\text{IL}},  f = f_{\text{MAX}} \end{aligned}$     |                 |            | 40                       |            | 40                       |      | 40                       | mA   |
| I <sub>SB2</sub> | Automatic CE<br>Power-down Current<br>—CMOS Inputs | $\begin{array}{l} \underline{\text{Max}}. \ V_{\text{CC}}, \\ \overline{\text{CE}} \geq V_{\text{CC}} - 0.3 \text{V}, \\ V_{\text{IN}} \geq V_{\text{CC}} - 0.3 \text{V}, \\ \text{or } V_{\text{IN}} \leq 0.3 \text{V}, \ \text{f} = 0 \end{array}$ | Com'l/<br>Ind'l |            | 10                       |            | 10                       |      | 10                       | mA   |


# Capacitance<sup>[2]</sup>


| Parameter        | Description       | Test Conditions                                    | Max. | Unit |
|------------------|-------------------|----------------------------------------------------|------|------|
| C <sub>IN</sub>  | Input Capacitance | $T_A = 25^{\circ}C$ , $f = 1$ MHz, $V_{CC} = 3.3V$ | 8    | pF   |
| C <sub>OUT</sub> | I/O Capacitance   |                                                    | 8    | pF   |


V<sub>IL</sub> (min.) = -2.0V for pulse durations of less than 20 ns.
 Tested initially and after any design or process changes that may affect these parameters.




#### AC Test Loads and Waveforms<sup>[3]</sup>







#### **High-Z characteristics:**



### AC Switching Characteristics Over the Operating Range [4]

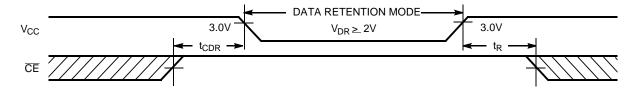
| _                                 |                                               | -    | 10   | -    | 12   | -15  |      |      |
|-----------------------------------|-----------------------------------------------|------|------|------|------|------|------|------|
| Parameter                         | Description                                   | Min. | Max. | Min. | Max. | Min. | Max. | Unit |
| Read Cycle                        |                                               | •    | •    | •    | •    |      | •    |      |
| t <sub>power</sub> <sup>[5]</sup> | V <sub>CC</sub> (typical) to the first access | 1    |      | 1    |      | 1    |      | μs   |
| t <sub>RC</sub>                   | Read Cycle Time                               | 10   |      | 12   |      | 15   |      | ns   |
| t <sub>AA</sub>                   | Address to Data Valid                         |      | 10   |      | 12   |      | 15   | ns   |
| t <sub>OHA</sub>                  | Data Hold from Address Change                 | 3    |      | 3    |      | 3    |      | ns   |
| t <sub>ACE</sub>                  | CE LOW to Data Valid                          |      | 10   |      | 12   |      | 15   | ns   |
| t <sub>DOE</sub>                  | OE LOW to Data Valid                          |      | 5    |      | 6    |      | 7    | ns   |
| t <sub>LZOE</sub>                 | OE LOW to Low-Z                               | 0    |      | 0    |      | 0    |      | ns   |
| t <sub>HZOE</sub>                 | OE HIGH to High-Z <sup>[6, 7]</sup>           |      | 5    |      | 6    |      | 7    | ns   |
| t <sub>LZCE</sub>                 | CE LOW to Low-Z <sup>[7]</sup>                | 3    |      | 3    |      | 3    |      | ns   |
| t <sub>HZCE</sub>                 | CE HIGH to High-Z <sup>[6, 7]</sup>           |      | 5    |      | 6    |      | 7    | ns   |
| t <sub>PU</sub>                   | CE LOW to Power-up                            | 0    |      | 0    |      | 0    |      | ns   |
| t <sub>PD</sub>                   | CE HIGH to Power-down                         |      | 10   |      | 12   |      | 15   | ns   |
| t <sub>DBE</sub>                  | Byte Enable to Data Valid                     |      | 5    |      | 6    |      | 7    | ns   |
| t <sub>LZBE</sub>                 | Byte Enable to Low-Z                          | 0    |      | 0    |      | 0    |      | ns   |
| t <sub>HZBE</sub>                 | Byte Disable to High-Z                        |      | 6    |      | 6    |      | 7    | ns   |
| Write Cycle <sup>[8,</sup>        | 9]                                            | •    | •    | •    | •    | •    | •    |      |
| t <sub>WC</sub>                   | Write Cycle Time                              | 10   |      | 12   |      | 15   |      | ns   |

- AC characteristics (except High-Z) for all 10-ns parts are tested using the load conditions shown in (a). All other speeds are tested using the Thevenin load shown in (b). High-Z characteristics are tested for all speeds using the test load shown in (d).

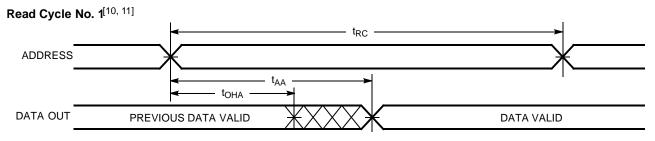
  Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V.

  tpower gives the minimum amount of time that the power supply should be at typical V<sub>CC</sub> values until the first memory access is performed.

  thzoe: thzce, and thzwe are specified with a load capacitance of 5 pF as in part (d) of AC Test Loads. Transition is measured ± 500 mV from steady-state voltage.


- 6.
- 7.
- thzoe, thzoe, and thzwe are specified with a load capacitance of 5 pr as in part (d) or AC lest Loads. Transition is measured ± 500 min from sleedy-state voltage. At any given temperature and voltage condition, thzoe is less than the set Loads. It is less than the state of the set Loads is less than the state of the set Loads. The internal write time of the memory is defined by the overlap of CE LOW, and WE LOW. CE and WE must be LOW to initiate a write, and the transition of either of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write. The minimum write cycle time for Write Cycle No. 3 (WE controlled, OE LOW) is the sum of the sum of the signal that terminates the write. 8.



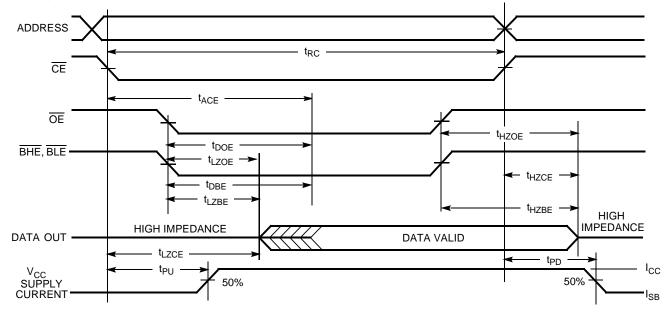

# AC Switching Characteristics Over the Operating Range (continued)<sup>[4]</sup>

|                   |                                    | -10  |      | -12  |      | -15  |      |      |
|-------------------|------------------------------------|------|------|------|------|------|------|------|
| Parameter         | Description                        | Min. | Max. | Min. | Max. | Min. | Max. | Unit |
| t <sub>SCE</sub>  | CE LOW to Write End                | 7    |      | 8    |      | 10   |      | ns   |
| t <sub>AW</sub>   | Address Set-up to Write End        | 7    |      | 8    |      | 10   |      | ns   |
| t <sub>HA</sub>   | Address Hold from Write End        | 0    |      | 0    |      | 0    |      | ns   |
| t <sub>SA</sub>   | Address Set-up to Write Start      | 0    |      | 0    |      | 0    |      | ns   |
| t <sub>PWE</sub>  | WE Pulse Width                     | 7    |      | 8    |      | 10   |      | ns   |
| t <sub>SD</sub>   | Data Set-up to Write End           | 5    |      | 6    |      | 7    |      | ns   |
| t <sub>HD</sub>   | Data Hold from Write End           | 0    |      | 0    |      | 0    |      | ns   |
| t <sub>LZWE</sub> | WE HIGH to Low-Z <sup>[7]</sup>    | 3    |      | 3    |      | 3    |      | ns   |
| t <sub>HZWE</sub> | WE LOW to High-Z <sup>[6, 7]</sup> |      | 5    |      | 6    |      | 7    | ns   |
| t <sub>BW</sub>   | Byte Enable to End of Write        | 7    |      | 8    |      | 10   |      | ns   |

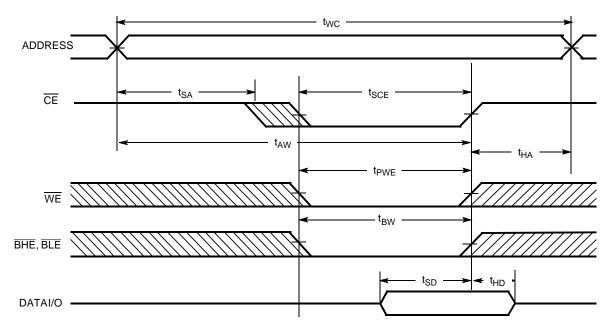
### **Data Retention Waveform**



# **Switching Waveforms**




- 10. Device is continuously selected.  $\overline{OE}$ ,  $\overline{CE}$ ,  $\overline{BHE}$  and/or  $\overline{BHE}$  =  $V_{\parallel}$ . 11.  $\overline{WE}$  is HIGH for read cycle.

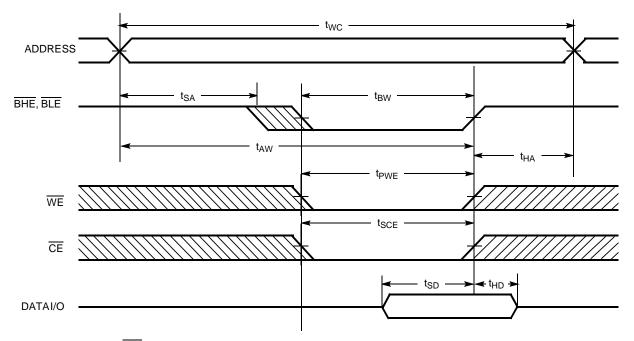



# Switching Waveforms (continued)

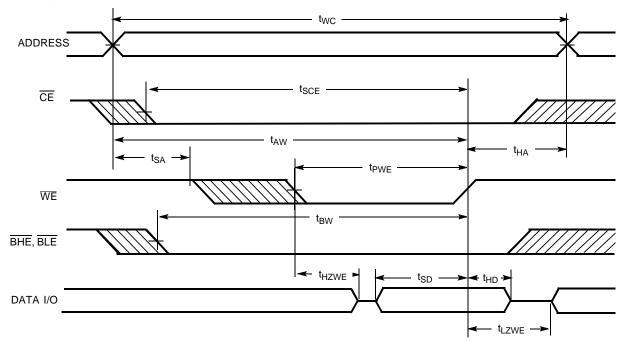
### Read Cycle No. 2 (OE Controlled) [11, 12]



# Write Cycle No. 1 (CE Controlled)[13, 14]




- Address valid prior to or coincident with CE transition LOW.
   Data I/O is high-impedance if OE or BHE and/or BLE = V<sub>IH</sub>.
   If CE goes HIGH simultaneously with WE going HIGH, the output remains in a high-impedance state.




# Switching Waveforms (continued)

# Write Cycle No. 2 (BLE or BHE Controlled)



### Write Cycle No.3 (WE Controlled,





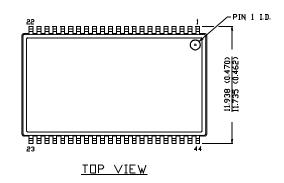
# **Truth Table**

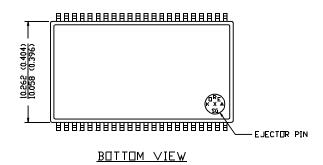
| CE | OE | WE | BLE | BHE | I/O <sub>0</sub> –I/O <sub>7</sub> | I/O <sub>8</sub> -I/O <sub>15</sub> | Mode                       | Power                      |
|----|----|----|-----|-----|------------------------------------|-------------------------------------|----------------------------|----------------------------|
| Н  | Χ  | Χ  | Χ   | Х   | High-Z                             | High-Z                              | Power-down                 | Standby (I <sub>SB</sub> ) |
| L  | L  | Н  | L   | L   | Data Out                           | Data Out                            | Read All Bits              | Active (I <sub>CC</sub> )  |
| L  | L  | Н  | L   | Н   | Data Out                           | High-Z                              | Read Lower Bits Only       | Active (I <sub>CC</sub> )  |
| L  | L  | Н  | Н   | L   | High-Z                             | Data Out                            | Read Upper Bits Only       | Active (I <sub>CC</sub> )  |
| L  | Х  | L  | L   | L   | Data In                            | Data In                             | Write All Bits             | Active (I <sub>CC</sub> )  |
| L  | Х  | L  | L   | Н   | Data In                            | High-Z                              | Write Lower Bits Only      | Active (I <sub>CC</sub> )  |
| L  | Х  | L  | Н   | L   | High-Z                             | Data In                             | Write Upper Bits Only      | Active (I <sub>CC</sub> )  |
| L  | Н  | Н  | Χ   | Х   | High-Z                             | High-Z                              | Selected, Outputs Disabled | Active (I <sub>CC</sub> )  |

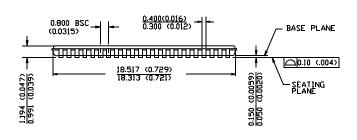
# **Ordering Information**

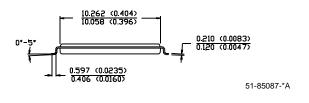
| Speed<br>(ns) | Ordering Code      | Package<br>Name | Package Type   | Operating<br>Range |
|---------------|--------------------|-----------------|----------------|--------------------|
| 10            | CY7C1011CV33-10ZC  | Z44             | 44-pin TSOP II | Commercial         |
|               | CY7C1011CV33-10BVC | BV48A           | 48-ball VFBGA  |                    |
|               | CY7C1011CV33-10ZI  | Z44             | 44-pin TSOP II | Industrial         |
|               | CY7C1011CV33-10BVI | BV48A           | 48-ball VFBGA  |                    |
| 12            | CY7C1011CV33-12ZC  | Z44             | 44-pin TSOP II | Commercial         |
|               | CY7C1011CV33-12AC  | A44             | 44-pin TQFP    |                    |
|               | CY7C1011CV33-12BVC | BV48A           | 48-ball VFBGA  |                    |
|               | CY7C1011CV33-12ZI  | Z44             | 44-pin TSOP II | Industrial         |
|               | CY7C1011CV33-12AI  | A44             | 44-pin TQFP    |                    |
|               | CY7C1011CV33-12BVI | BV48A           | 48-ball VFBGA  |                    |
| 15            | CY7C1011CV33-15ZC  | Z44             | 44-pin TSOP II | Commercial         |
|               | CY7C1011CV33-15AC  | A44             | 44-pin TQFP    |                    |
|               | CY7C1011CV33-15BVC | BV48A           | 48-ball VFBGA  |                    |
|               | CY7C1011CV33-15ZI  | Z44             | 44-pin TSOP II | Industrial         |
|               | CY7C1011CV33-15AI  | A44             | 44-pin TQFP    |                    |
|               | CY7C1011CV33-15BVI | BV48A           | 48-ball VFBGA  |                    |



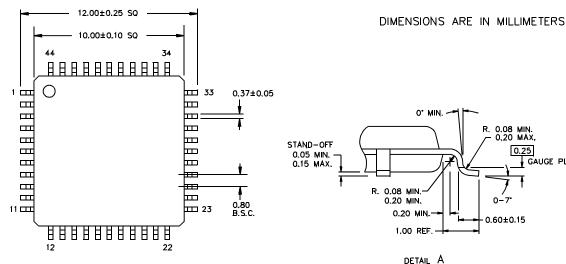

### **Package Diagrams**

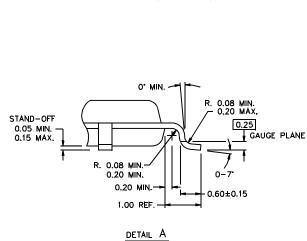

#### 44-Pin TSOP II Z44

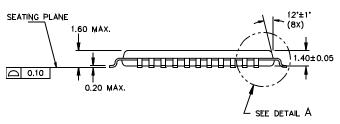

DIMENSION IN MM (INCH)


MAX

MIN.



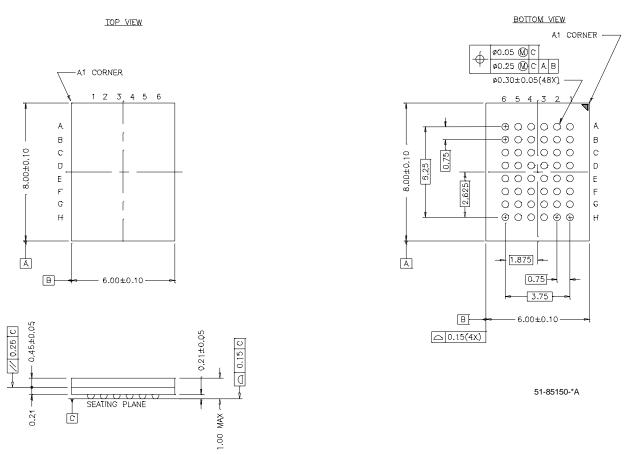






### 44-Lead Thin Plastic Quad Flat Pack A44








51-85064-\*B



### Package Diagrams (continued)

#### 48-Lead VFBGA (6 x 8 x 1 mm) BV48A



All product and company names mentioned in this document are the trademarks of their respective holders.



# **Document History Page**

Document Title: CY7C1011CV33 128K x 16 Static RAM Document Number: 38-05232 Orig. of Change Issue REV. ECN NO. **Description of Change Date** 117132 07/31/02 HGK New Data Sheet Pin configuration for 48-ball FBGA correction 08/19/02 \*A 118057 HGK Updated FBGA to VFBGA; updated package code on page 8 to BV48A. Updated address pinouts on page 1 to A0 to A16. Updated CMOS standby current on page 1 from 8 to 10 mA. \*B 119702 10/11/02 DFP