

FEATURES

- Members of Texas Instruments Widebus™ Family
- UBT™ Transceivers Combine D-Type Latches and D-Type Flip-Flops for Operation in Transparent, Latched, Clocked, or Clock-Enabled Modes
- OEC™ Circuitry Improves Signal Integrity and Reduces Electromagnetic Interference
- Translate Between GTL/GTL+ Signal Levels and LVTTL Logic Levels
- Support Mixed-Mode (3.3 V and 5 V) Signal Operation on A-Port and Control Inputs
- Identical to '16601 Function
- I_{off} Supports Partial-Power-Down Mode Operation
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors on A Port
- Distributed V_{CC} and GND Pins Minimize High-Speed Switching Noise
- Latch-Up Performance Exceeds 500 mA Per JESD 17

SN54GTL16612... WD PACKAGE
 SN74GTL16612... DGG OR DL PACKAGE
 (TOP VIEW)

DESCRIPTION/ORDERING INFORMATION

The 'GTL16612 devices are 18-bit UBT™ transceivers that provide LVTTL-to-GTL/GTL+ and GTL/GTL+-to-LVTTL signal-level translation. They combine D-type flip-flops and D-type latches to allow for transparent, latched, clocked, and clock-enabled modes of data transfer identical to the '16601 function. The devices provide an interface between cards operating at LVTTL logic levels and a backplane operating at GTL/GTL+ signal levels. Higher-speed operation is a direct result of the reduced output swing (<1 V), reduced input threshold levels, and OEC™ circuitry.

The user has the flexibility of using these devices at either GTL ($V_{TT} = 1.2$ V and $V_{REF} = 0.8$ V) or the preferred higher noise margin GTL+ ($V_{TT} = 1.5$ V and $V_{REF} = 1$ V) signal levels. GTL+ is the Texas Instruments derivative of the Gunning Transceiver Logic (GTL) JEDEC standard JESD 8-3. The B port normally operates at GTL or GTL+ signal levels, while the A-port and control inputs are compatible with LVTTL logic levels and are 5-V tolerant. V_{REF} is the reference input voltage for the B port.

V_{CC} (5 V) supplies the internal and GTL circuitry while V_{CC} (3.3 V) supplies the LVTTL output buffers.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus, UBT, OEC are trademarks of Texas Instruments.

DESCRIPTION/ORDERING INFORMATION (CONTINUED)

Data flow in each direction is controlled by output-enable (\overline{OEAB} and \overline{OEBA}), latch-enable($LEAB$ and $LEBA$), and clock ($CLKAB$ and $CLKBA$) inputs. The clock can be controlled by the clock-enable ($CEAB$ and $CEBA$) inputs. For A-to-B data flow, the devices operate in the transparent mode when $LEAB$ is high. When $LEAB$ is low, the A data is latched if $CEAB$ is low and $CLKAB$ is held at a high or low logic level. If $LEAB$ is low, the A data is stored in the latch/flip-flop on the low-to-high transition of $CLKAB$ if \overline{CEAB} also is low. When \overline{OEAB} is low, the outputs are active. When \overline{OEAB} is high, the outputs are in the high-impedance state. Data flow for B to A is similar to that for A to B, but uses \overline{OEBA} , $LEBA$, $CLKBA$, and \overline{CEBA} .

These devices are fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

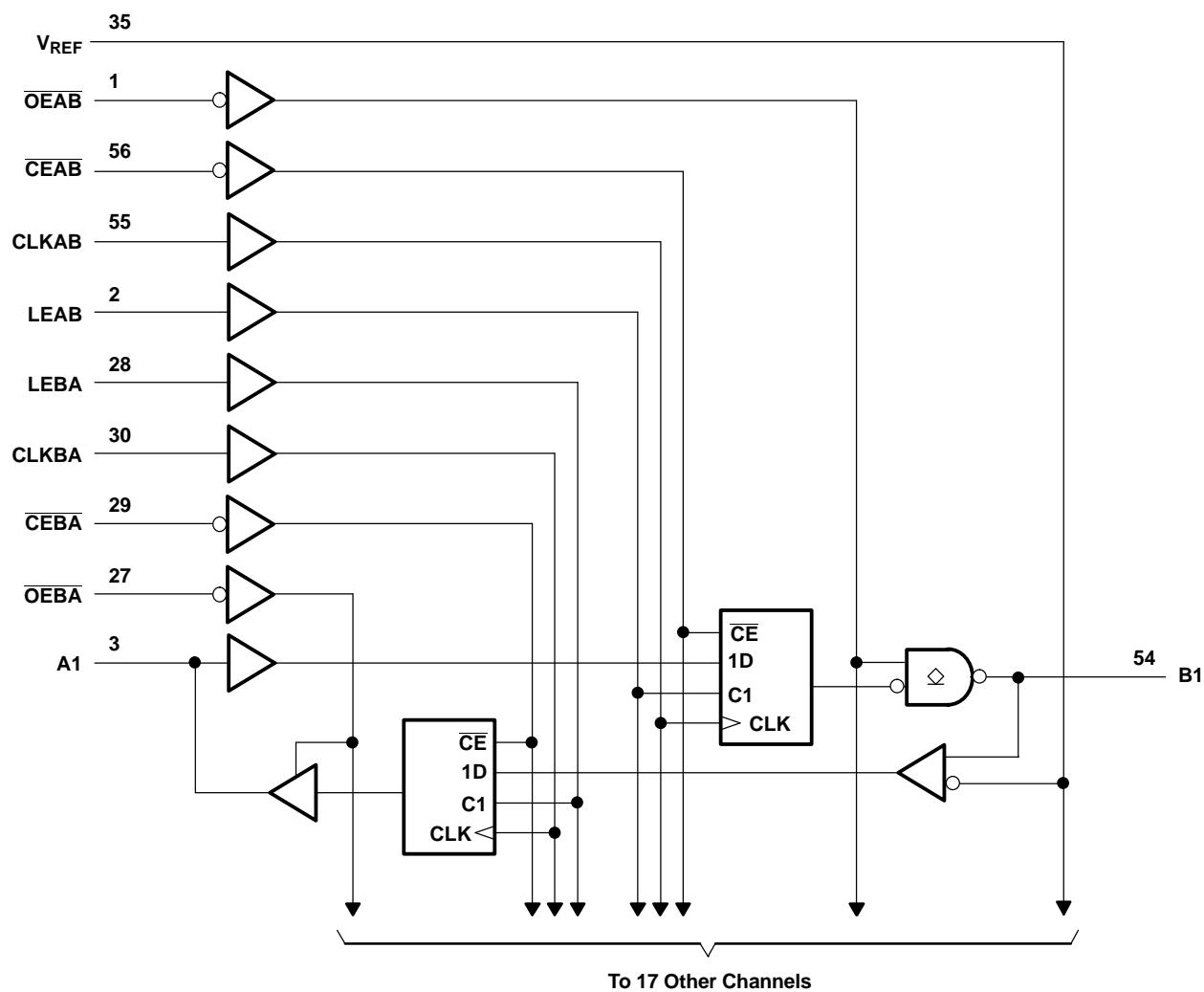
Active bus-hold circuitry holds unused or undriven LVTTL inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

ORDERING INFORMATION

T_A	PACKAGE ⁽¹⁾		ORDERABLE PART NUMBER	TOP-SIDE MARKING
-40°C to 85°C	SSOP – DL	Tube	SN74GTL16612DL	GTL16612
		Tape and reel	SN74GTL16612DLR	
	TSSOP – DGG	Tape and reel	SN74GTL16612DGGR	GTL16612
-55°C to 125°C	CFP – WD	Tube	SNJ54GTL16612WD	SNJ54GTL16612WD

(1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

FUNCTION TABLE⁽¹⁾


INPUTS					OUTPUT B	MODE
$CEAB$	\overline{OEAB}	$LEAB$	$CLKAB$	A		
X	H	X	X	X	Z	Isolation
L	L	L	H	X	$B_0^{(2)}$	Latched storage of A data
L	L	L	L	X	$B_0^{(3)}$	
X	L	H	X	L	L	Transparent
X	L	H	X	H	H	
L	L	L	↑	L	L	Clocked storage of A data
L	L	L	↑	H	H	
H	L	L	X	X	$B_0^{(3)}$	Clock inhibit

(1) A-to-B data flow is shown. B-to-A data flow is similar, but uses \overline{OEBA} , $LEBA$, $CLKBA$, and \overline{CEBA} .

(2) Output level before the indicated steady-state input conditions were established, provided that $CLKAB$ was high before $LEAB$ went low

(3) Output level before the indicated steady-state input conditions were established

LOGIC DIAGRAM (POSITIVE LOGIC)

SN54GTL16612, SN74GTL16612

18-BIT LVTTL-TO-GTL/GTL+ UNIVERSAL BUS TRANSCEIVERS

SCBS480K—JUNE 1994—REVISED JULY 2005

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CC}	Supply voltage range	3.3 V	-0.5	4.6	V
		5 V	-0.5	7	
V _I	Input voltage range ⁽²⁾	A-port and control inputs	-0.5	7	V
		B port and V _{REF}	-0.5	4.6	
V _O	Voltage range applied to any output in the high or power-off state ⁽²⁾	A port	-0.5	7	V
		B port	-0.5	4.6	
I _O	Current into any output in the low state	A port		128	mA
		B port		80	
I _O	Current into any A-port output in the high state ⁽³⁾			64	mA
	Continuous current through each V _{CC} or GND			±100	mA
I _{IK}	Input clamp current	V _I < 0		-50	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
θ _{JA}	Package thermal impedance ⁽⁴⁾	DGG package		64	°C/W
		DL package		56	
T _{stg}	Storage temperature range		-65	150	°C

- (1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- (2) The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
- (3) This current flows only when the output is in the high state and V_O > V_{CC}.
- (4) The package thermal impedance is calculated in accordance with JESD 51-7.

Recommended Operating Conditions⁽¹⁾⁽²⁾⁽³⁾⁽⁴⁾

		SN54GTL16612			SN74GTL16612			UNIT	
		MIN	NOM	MAX	MIN	NOM	MAX		
V _{CC}	Supply voltage	3.3 V	3.15	3.3	3.45	3.15	3.3	3.45	V
		5 V	4.75	5	5.25	4.75	5	5.25	
V _{TT}	Termination voltage	GTL	1.14	1.2	1.26	1.14	1.2	1.26	V
		GTL+	1.35	1.5	1.65	1.35	1.5	1.65	
V _{REF}	Reference voltage	GTL	0.74	0.8	0.87	0.74	0.8	0.87	V
		GTL+	0.87	1	1.1	0.87	1	1.1	
V _I	Input voltage	B port		V _{TT}		V _{TT}		V	
		Except B port		5.5		5.5			
V _{IH}	High-level input voltage	B port	V _{REF} + 50 mV		V _{REF} + 50 mV			V	
		Except B port	2		2				
V _{IL}	Low-level input voltage	B port	V _{REF} - 50 mV		V _{REF} - 50 mV			V	
		Except B port	0.8		0.8				
I _{IK}	Input clamp current		-18		-18			mA	
I _{OH}	High-level output current	A port	-32		-32			mA	
I _{OL}	Low-level output current	A port	64		64			mA	
		B port	40		40				
T _A	Operating free-air temperature		-55	125	-40	85		°C	

- (1) All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.
- (2) Normal connection sequence is GND first, V_{CC} = 5 V second, and V_{CC} = 3.3 V, I/O, control inputs, V_{TT} and V_{REF} (any order) last.
- (3) V_{TT} and R_{TT} can be adjusted to accommodate backplane impedances if the dc recommended I_{OL} ratings are not exceeded.
- (4) V_{REF} can be adjusted to optimize noise margins, but normally is two-thirds V_{TT}.

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		SN54GTL16612			SN74GTL16612			UNIT
			MIN	TYP ⁽¹⁾	MAX	MIN	TYP ⁽¹⁾	MAX	
V _{IK}		V _{CC} (3.3 V) = 3.15 V, V _{CC} (5 V) = 4.75 V	I _I = -18 mA		-1.2			-1.2	V
V _{OH}	A port	V _{CC} (3.3 V) = 3.15 V to 3.45 V, V _{CC} (5 V) = 4.75 V to 5.25 V	I _{OH} = -100 μ A	V _{CC} (3.3 V) - 0.2		V _{CC} (3.3 V) - 0.2			V
		V _{CC} (3.3 V) = 3.15 V, V _{CC} (5 V) = 4.75 V	I _{OH} = -8 mA	2.4		2.4			
			I _{OH} = -32 mA	2		2			
V _{OL}	A port	V _{CC} (3.3 V) = 3.15 V, V _{CC} (5 V) = 4.75 V	I _{OL} = 100 μ A		0.2		0.2		V
			I _{OL} = 16 mA		0.4		0.4		
			I _{OL} = 32 mA		0.5		0.5		
			I _{OL} = 64 mA		0.6		0.55		
B port		V _{CC} (3.3 V) = 3.15 V, V _{CC} (5 V) = 4.75 V, I _{OL} = 40 mA			0.5		0.4		
I _I	Control inputs	V _{CC} (3.3 V) = 0 or 3.45 V, V _{CC} (5 V) = 0 or 5.25 V	V _I = 5.5 V		10		10		μ A
	A port	V _{CC} (3.3 V) = 3.45 V, V _{CC} (5 V) = 5.25 V	V _I = 5.5 V		1000		20		
			V _I = V _{CC} (3.3 V)		1		1		
			V _I = 0		-30		-30		
	B port	V _{CC} (3.3 V) = 3.45 V, V _{CC} (5 V) = 5.25 V	V _I = V _{CC} (3.3 V)		5		5		
			V _I = 0		-5		-5		
I _{off}		V _{CC} = 0,	V _I or V _O = 0 to 4.5 V		1000		100		μ A
I _{I(hold)}	A port	V _{CC} (3.3 V) = 3.15 V, V _{CC} (5 V) = 4.75 V	V _I = 0.8 V	75		75			μ A
			V _I = 2 V	-75		-75			
			V _I = 0 to V _{CC} (3.3 V) ⁽²⁾		\pm 500		\pm 500		
I _{OZH}	A port	V _{CC} (3.3 V) = 3.45 V, V _{CC} (5 V) = 5.25 V, V _O = 3 V			1		1		μ A
	B port	V _{CC} (3.3 V) = 3.45 V, V _{CC} (5 V) = 5.25 V, V _O = 1.2 V			10		10		
I _{OZL}	A port	V _{CC} (3.3 V) = 3.45 V, V _{CC} (5 V) = 5.25 V, V _O = 0.5 V			-1		-1		μ A
	B port	V _{CC} (3.3 V) = 3.45 V, V _{CC} (5 V) = 5.25 V, V _O = 0.4 V			-10		-10		
I _{CC} (3.3 V)	A or B port	V _{CC} (3.3 V) = 3.45 V, V _{CC} (5 V) = 5.25 V, I _O = 0, V _I = V _{CC} (3.3 V) or GND	Outputs high		1		1		mA
			Outputs low		5		5		
			Outputs disabled		1		1		
I _{CC} (5 V)	A or B port	V _{CC} (3.3 V) = 3.45 V, V _{CC} (5 V) = 5.25 V, I _O = 0, V _I = V _{CC} (3.3 V) or GND	Outputs high		120		120		mA
			Outputs low		120		120		
			Outputs disabled		120		120		
Δ I _{CC} ⁽³⁾		V _{CC} (3.3 V) = 3.45 V, V _{CC} (5 V) = 5.25 V, A-port or control inputs at V _{CC} (3.3 V) or GND, One input at 2.7 V			1		1		mA
C _i	Control inputs	V _I = 3.15 V or 0		3.5	12		3.5		pF
C _{io}	A port	V _O = 3.15 V or 0		12	18		12		pF
					10			5	

(1) All typical values are at V_{CC} (3.3 V) = 3.3 V, V_{CC} (5 V) = 5 V, T_A = 25°C.

(2) This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another.

(3) This is the increase in supply current for each input that is at the specified TTL voltage level, rather than V_{CC} or GND.

SN54GTL16612, SN74GTL16612 18-BIT LVTTL-TO-GTL/GTL+ UNIVERSAL BUS TRANSCEIVERS

SCBS480K—JUNE 1994—REVISED JULY 2005

Timing Requirements

over recommended ranges of supply voltage and operating free-air temperature,
 $V_{TT} = 1.2$ V and $V_{REF} = 0.8$ V for GTL (unless otherwise noted) (see [Figure 1](#))

			SN54GTL16612	SN74GTL16612	UNIT
		MIN	MAX	MIN	MAX
f_{clock}	Clock frequency		95	95	MHz
t_w	Pulse duration	LEAB or LEBA high	3.3	3.3	ns
		CLKAB or CLKBA high or low	5.6	5.6	
t_{su}	Setup time	A before CLKAB \uparrow	1.3	1.3	ns
		B before CLKBA \uparrow	3.4	2.5	
		A before LEAB \downarrow	1.2	0	
		B before LEBA \downarrow	1	1	
		CEAB before CLKAB \uparrow	2.1	2	
		CEBA before CLKBA \uparrow	2.6	2.2	
t_h	Hold time	A after CLKAB \uparrow	2.9	1.6	ns
		B after CLKBA \uparrow	4.1	0.3	
		A after LEAB \downarrow	4.5	4	
		B after LEBA \downarrow	4.3	3.6	
		CEAB after CLKAB \uparrow	2	0.8	
		CEBA after CLKBA \uparrow	1.1	1.1	

Switching Characteristics

over recommended ranges of supply voltage and operating free-air temperature,
 $V_{TT} = 1.2$ V and $V_{REF} = 0.8$ V for GTL (see [Figure 1](#))

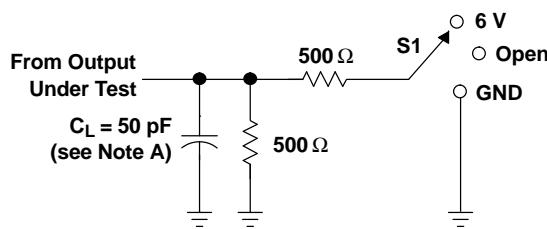
PARAMETER	FROM (INPUT)	TO (OUTPUT)	SN54GTL16612			SN74GTL16612			UNIT	
			MIN	TYP ⁽¹⁾	MAX	MIN	TYP ⁽¹⁾	MAX		
f_{max}			95		95				MHz	
t_{PLH}	A	B	1	2.8	4.5	1.5	2.8	4.1	ns	
t_{PHL}			1	2.5	4.5	1.3	2.5	4		
t_{PLH}	LEAB	B	1	3.6	5.5	2	3.6	5.3	ns	
t_{PHL}			1	3.5	6	1.9	3.5	5.4		
t_{PLH}	CLKAB	B	1	3.7	5.5	2.3	3.7	5.3	ns	
t_{PHL}			1	3.4	5.5	1.9	3.4	5.4		
t_{en}	\overline{OEAB}	B	1	3.3	5.5	2	3.3	5.5	ns	
t_{dis}			1	3.4	5.5	2	3.4	5.1		
t_r	Transition time, B outputs (0.5 V to 1 V)			1.3			1.3		ns	
t_f	Transition time, B outputs (1 V to 0.5 V)			0.5			0.5		ns	
t_{PLH}	B	A	2	4.1	6.9	2.1	4.1	6.3	ns	
t_{PHL}			1	2.9	5.1	1.2	2.9	4.6		
t_{PLH}	LEBA	A	2	3.7	6.1	2.3	3.7	5.7	ns	
t_{PHL}			1	3	5.1	1.8	3	4.8		
t_{PLH}	CLKBA	A	2	3.8	6.4	2.5	3.8	6.1	ns	
t_{PHL}			2	3.3	5.6	2.3	3.3	5.2		
t_{en}	\overline{OEBA}	A	1	5	7.5	2.3	5	7.4	ns	
t_{dis}			2	4.3	6.9	2.5	4.3	6.4		

(1) All typical values are at V_{CC} (3.3 V) = 3.3 V, V_{CC} (5 V) = 5 V, T_A = 25°C.

Timing Requirements

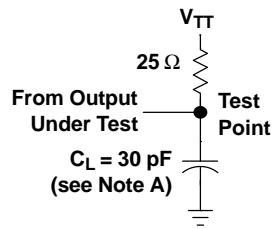
over recommended ranges of supply voltage and operating free-air temperature,
 $V_{TT} = 1.5$ V and $V_{REF} = 1$ V for GTL+ (unless otherwise noted) (see [Figure 1](#))

			SN54GTL16612	SN74GTL16612	UNIT
			MIN	MAX	
f_{clock}	Clock frequency		95	95	MHz
t_w	Pulse duration	LEAB or LEBA high	3.3	3.3	ns
		CLKAB or CLKBA high or low	5.6	5.6	
t_{su}	Setup time	A before CLKAB \uparrow	1.3	1.3	ns
		B before CLKBA \uparrow	3.2	2.3	
		A before LEAB \downarrow	1.2	0	
		B before LEBA \downarrow	1.3	1.3	
		CEAB before CLKAB \uparrow	2.1	2	
		CEBA before CLKBA \uparrow	2.6	2.2	
t_h	Hold time	A after CLKAB \uparrow	2.9	1.6	ns
		B after CLKBA \uparrow	4.4	0.3	
		A after LEAB \downarrow	4.5	4	
		B after LEBA \downarrow	4.3	3.6	
		CEAB after CLKAB \uparrow	2	0.8	
		CEBA after CLKBA \uparrow	1.1	1.1	

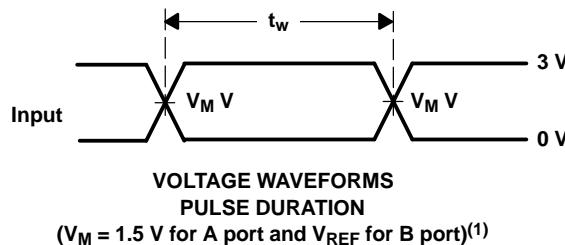

Switching Characteristics

over recommended ranges of supply voltage and operating free-air temperature,
 $V_{TT} = 1.5$ V and $V_{REF} = 1$ V for GTL+ (see [Figure 1](#))

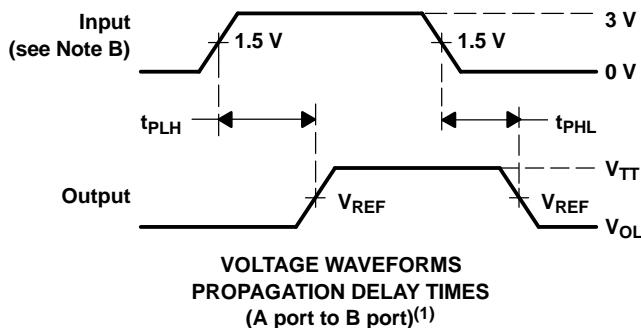
PARAMETER	FROM (INPUT)	TO (OUTPUT)	SN54GTL16612			UNIT	
			MIN	TYP⁽¹⁾	MAX		
f_{max}			95	95		MHz	
t_{PLH}	A	B	1	2.8	4.5	1.5	
t_{PHL}			1	2.5	4.6	1.3	
t_{PLH}	LEAB	B	1	3.6	5.5	2	
t_{PHL}			1	3.5	6.1	1.9	
t_{PLH}	CLKAB	B	1	3.7	5.5	2.3	
t_{PHL}			1	3.4	5.6	1.9	
t_{PLH}	\overline{OEAB}	B	1	3.4	5.5	2	
t_{PHL}			1	3.3	5.6	3.4	
t_r	Transition time, B outputs (0.5 V to 1 V)		1.5	1.5		ns	
t_f	Transition time, B outputs (1 V to 0.5 V)		0.8	0.8		ns	
t_{PLH}	B	A	1.9	4	6.9	2	
t_{PHL}			0.9	2.8	4.9	1.1	
t_{PLH}	LEBA	A	2	3.7	6.1	2.3	
t_{PHL}			1	3	5.1	1.8	
t_{PLH}	CLKBA	A	2	3.8	6.4	2.5	
t_{PHL}			2	3.3	5.6	2.3	
t_{en}	\overline{OEBA}	A	1	5	7.5	2.3	
t_{dis}			2	4.3	6.9	4.3	

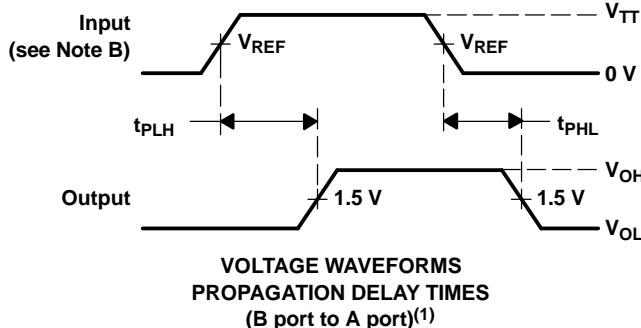

(1) All typical values are at V_{CC} (3.3 V) = 3.3 V, V_{CC} (5 V) = 5 V, T_A = 25°C.

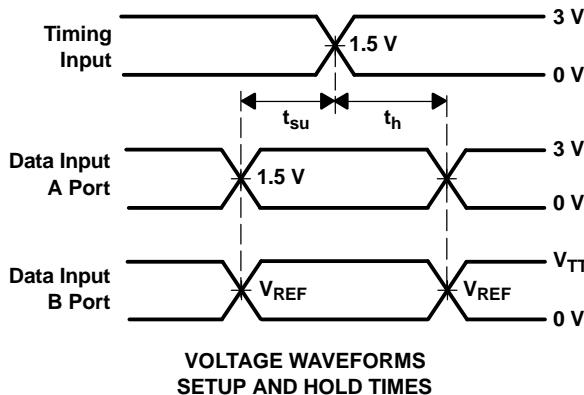
PARAMETER MEASUREMENT INFORMATION
 $V_{TT} = 1.2 \text{ V}$, $V_{REF} = 0.8 \text{ V}$ for GTL and $V_{TT} = 1.5 \text{ V}$, $V_{REF} = 1 \text{ V}$ for GTL+

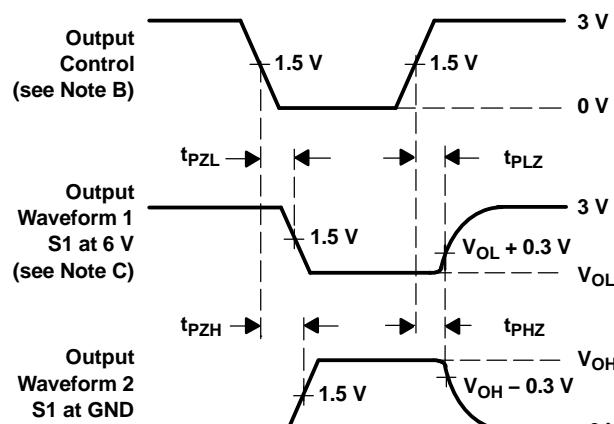


LOAD CIRCUIT FOR A OUTPUTS


TEST	S1
t_{PLH}/t_{PHL}	Open
t_{PLZ}/t_{PZL}	6 V
t_{PHZ}/t_{PZH}	GND


LOAD CIRCUIT FOR B OUTPUTS


VOLTAGE WAVEFORMS
PULSE DURATION
($V_M = 1.5 \text{ V}$ for A port and V_{REF} for B port)⁽¹⁾


VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
(A port to B port)⁽¹⁾

VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
(B port to A port)⁽¹⁾

VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
(A port)

⁽¹⁾ All control inputs are TTL levels.

NOTES: A. C_L includes probe and jig capacitance.

B. All input pulses are supplied by generators having the following characteristics: $PRR \leq 10 \text{ MHz}$, $Z_O = 50 \Omega$, $t_r \leq 2.5 \text{ ns}$, $t_f \leq 2.5 \text{ ns}$.

C. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.

D. The outputs are measured one at a time, with one transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
5962-9689001QXA	LIFEBUY	CFP	WD	56	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-9689001QX A SNJ54GTL16612WD	
SN74GTL16612DGGR	ACTIVE	TSSOP	DGG	56	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	GTL16612	Samples
SN74GTL16612DL	ACTIVE	SSOP	DL	56	20	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	GTL16612	Samples
SNJ54GTL16612WD	LIFEBUY	CFP	WD	56	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-9689001QX A SNJ54GTL16612WD	

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBsolete: TI has discontinued the production of the device.

(2) **RoHS:** TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

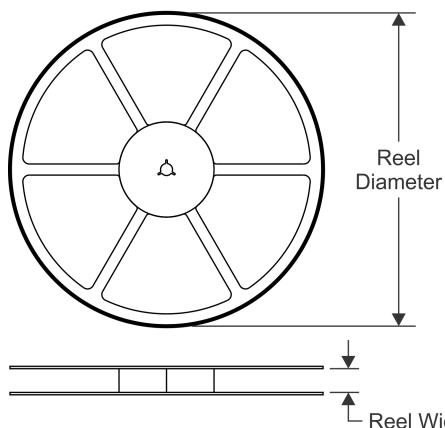
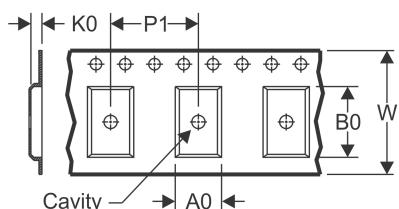
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

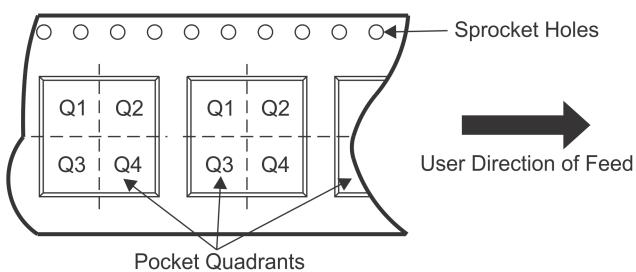
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

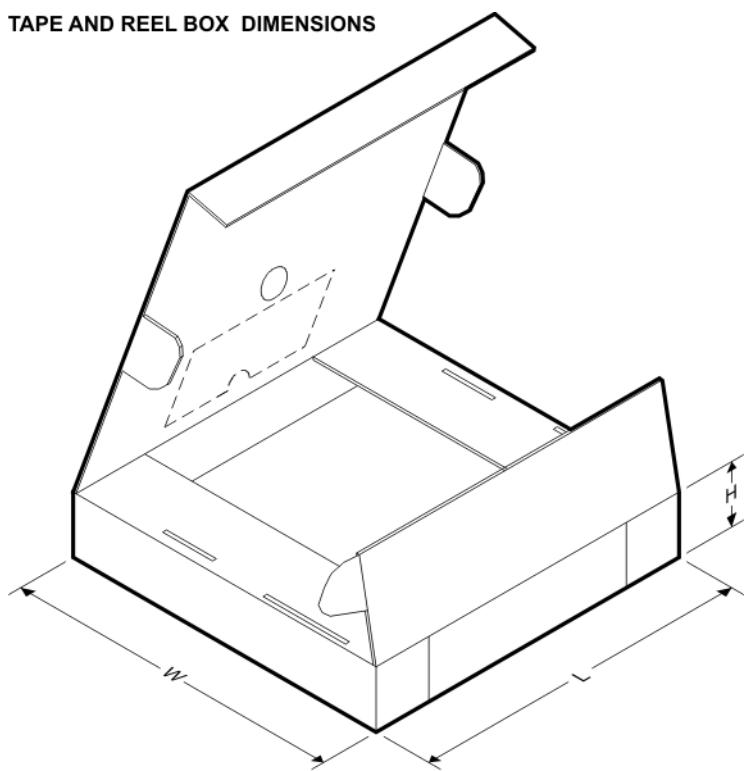


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN54GTL16612, SN74GTL16612 :


- Catalog: [SN74GTL16612](#)
- Military: [SN54GTL16612](#)

NOTE: Qualified Version Definitions:

- Catalog - TI's standard catalog product
- Military - QML certified for Military and Defense Applications


TAPE AND REEL INFORMATION
REEL DIMENSIONS

TAPE DIMENSIONS

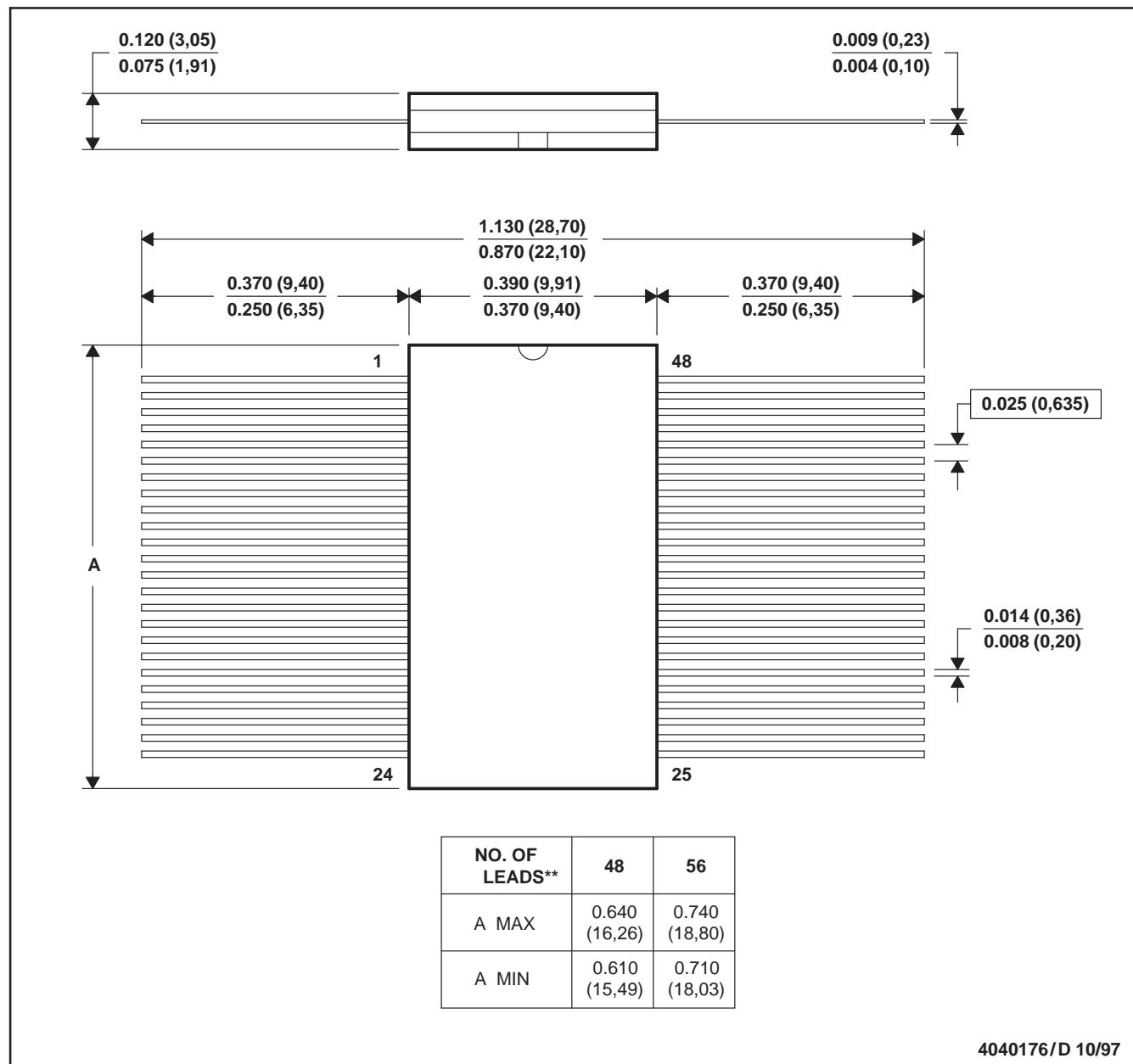
A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74GTL16612DGGR	TSSOP	DGG	56	2000	330.0	24.4	8.6	15.6	1.8	12.0	24.0	Q1

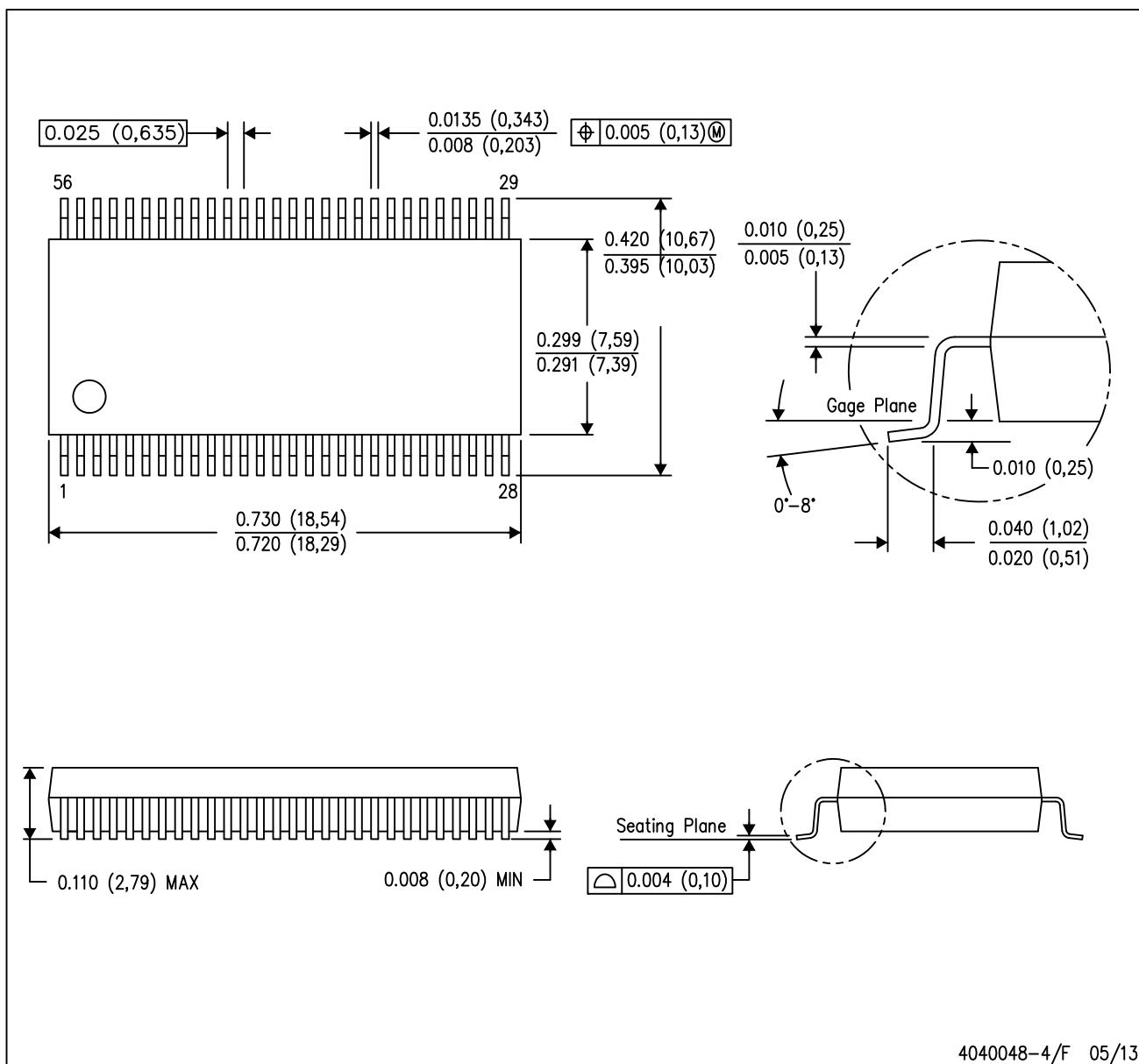
TAPE AND REEL BOX DIMENSIONS


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74GTL16612DGGR	TSSOP	DGG	56	2000	367.0	367.0	45.0

WD (R-GDFP-F**)

CERAMIC DUAL FLATPACK


48 LEADS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).
 B. This drawing is subject to change without notice.
 C. This package can be hermetically sealed with a ceramic lid using glass frit.
 D. Index point is provided on cap for terminal identification only.
 E. Falls within MIL STD 1835: GDFP1-F48 and JEDEC MO-146AA
 GDFP1-F56 and JEDEC MO-146AB

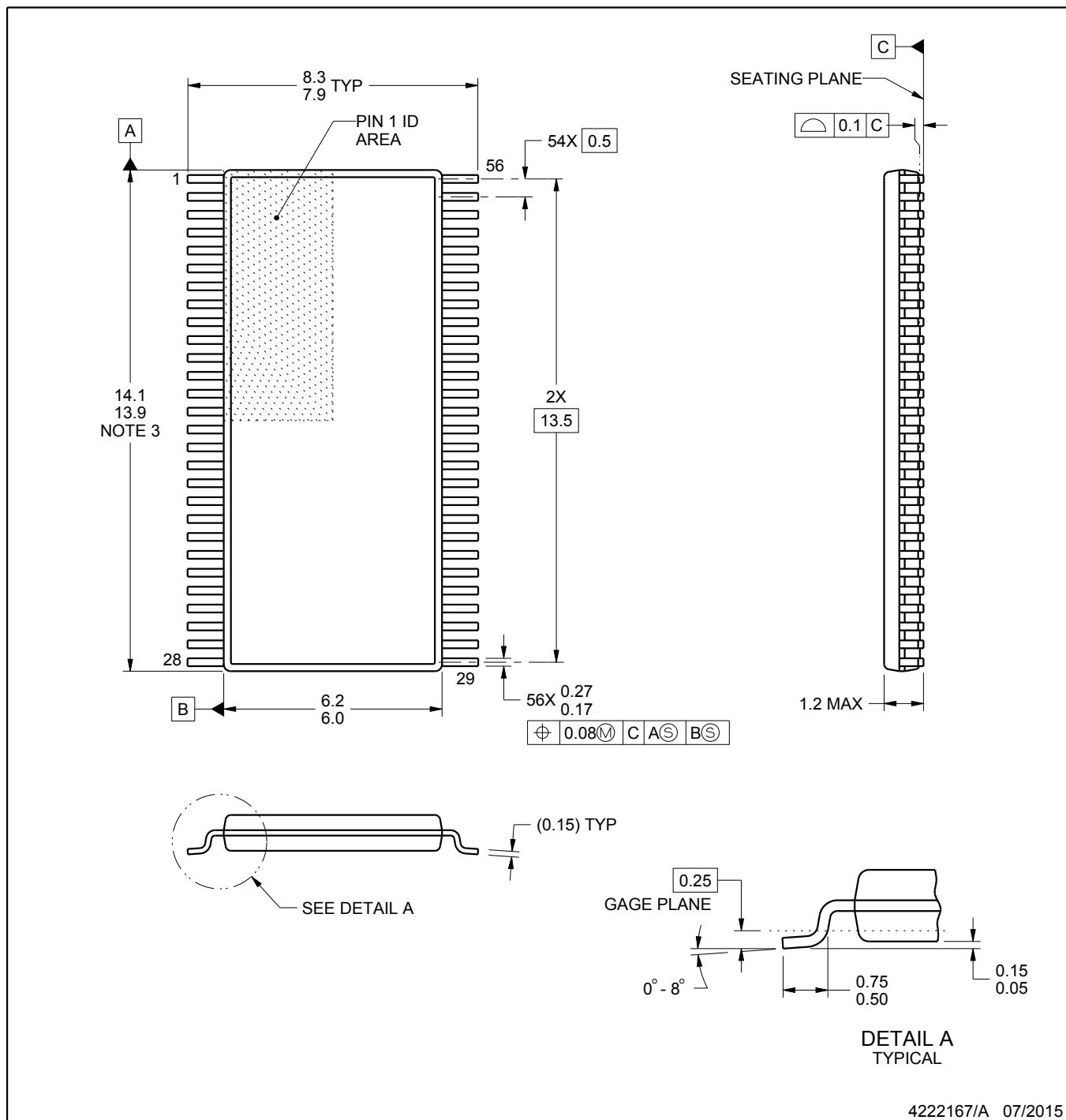
DL (R-PDSO-G56)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- All linear dimensions are in inches (millimeters).
- This drawing is subject to change without notice.
- Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0.15).
- Falls within JEDEC MO-118

PowerPAD is a trademark of Texas Instruments.

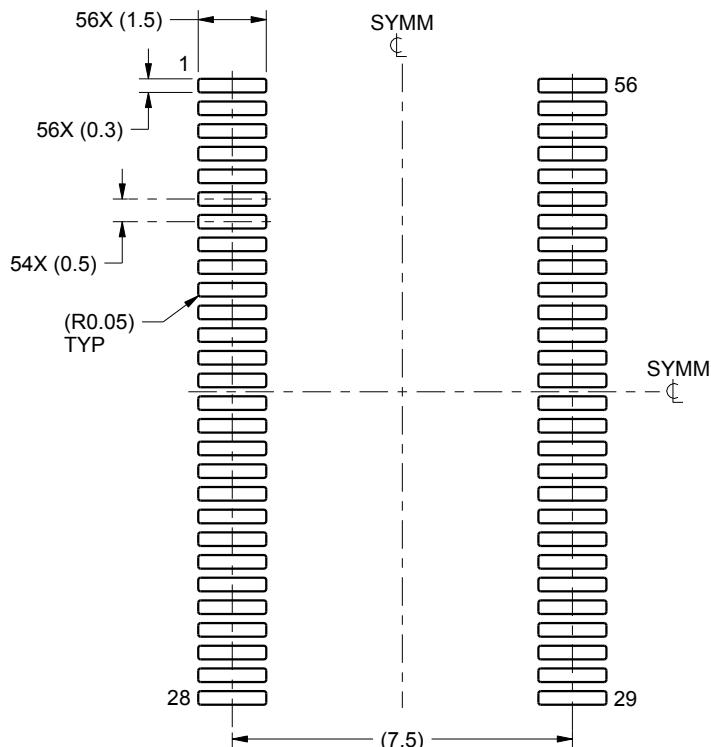

PACKAGE OUTLINE

DGG0056A

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES:


1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
4. Reference JEDEC registration MO-153.

EXAMPLE BOARD LAYOUT

DGG0056A

TSSOP - 1.2 mm max height

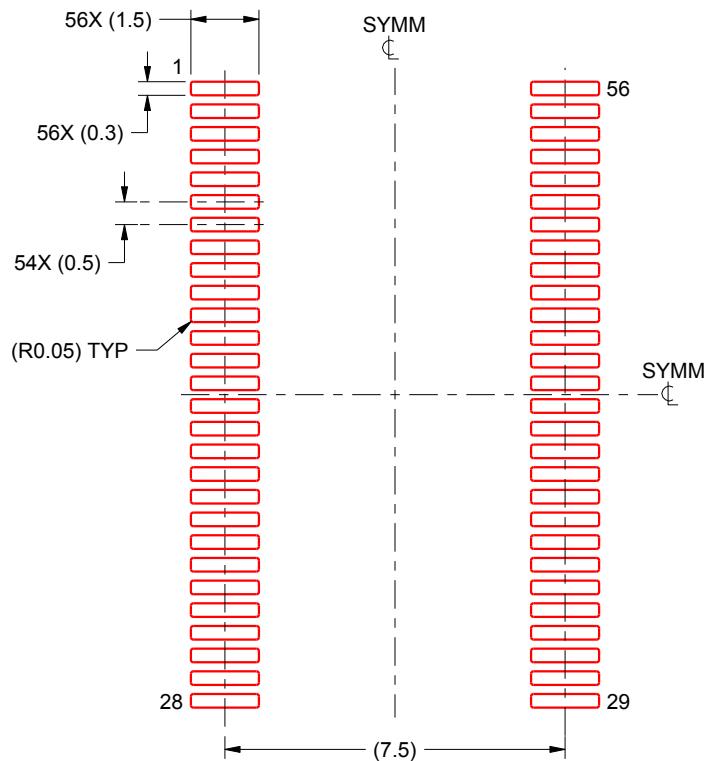
SMALL OUTLINE PACKAGE

LAND PATTERN EXAMPLE
SCALE:6X

SOLDER MASK DETAILS

4222167/A 07/2015

NOTES: (continued)


5. Publication IPC-7351 may have alternate designs.
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

EXAMPLE STENCIL DESIGN

DGG0056A

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL
SCALE:6X

4222167/A 07/2015

NOTES: (continued)

7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
8. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (<http://www.ti.com/sc/docs/stdterms.htm>) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.