**Product data sheet** 

### 1 General description

The BGU8061 is, also known as the BTS3001L, a high-linearity bypass amplifier for wireless infrastructure applications, equipped with fast shutdown to support TDD systems. The LNA has a high input and output return loss and is designed to operate between 0.7 GHz and 1.5 GHz. It is housed in a 3 mm × 3 mm × 0.85 mm 10-terminal plastic thin small outline package. The LNA is ESD protected on all terminals.

#### 2 Features and benefits

- Low-noise performance: NF = 1.1 dB
- High-linearity performance: IP3<sub>O</sub> = 36.5 dBm
- High-input return loss > 10 dB
- High-output return loss > 10 dB
- Unconditionally stable up to 20 GHz
- Small 10-terminal leadless package 3 mm × 3 mm × 0.85 mm
- ESD protection on all terminals
- · Moisture sensitivity level 1
- Fast shut down to support TDD systems
- +5 V single supply

### 3 Applications

- · Wireless infrastructure
- Low noise and high-linearity applications
- LTE, W-CDMA, CDMA, GSM
- General-purpose wireless applications
- TDD or FDD systems
- · Suitable for small cells



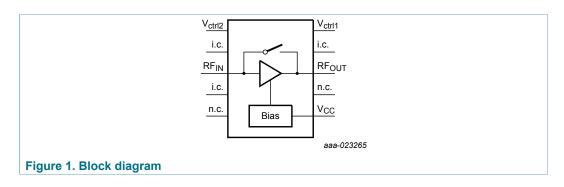
low-noise high-linearity amplifier

## 4 Quick reference data

#### Table 1. Quick reference data

f = 900 MHz;  $V_{CC}$  = 5 V;  $T_{amb}$  = 25 °C; input and output 50  $\Omega$ ; unless otherwise specified. All RF parameters are measured on an application board with the circuit as shown in Figure 29 and components listed in Table 9 implemented. This board is optimized for f = 900 MHz.

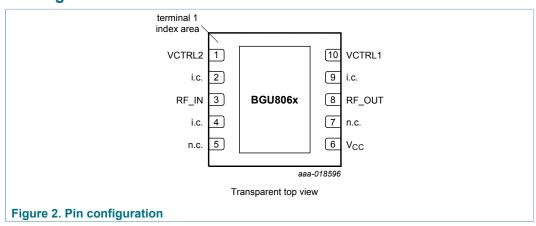
| Symbol              | Parameter                             | Conditions                                        | Min  | Тур  | Max | Unit |
|---------------------|---------------------------------------|---------------------------------------------------|------|------|-----|------|
| I <sub>CC</sub>     | supply current                        | LNA enable; bypass off                            | -    | 70   | 85  | mA   |
|                     |                                       | LNA disable; bypass on                            | _    | 3    | 5   | mA   |
| G <sub>ass</sub>    | associated gain                       | LNA enable; bypass off                            | 19   | 20.5 | 22  | dB   |
|                     |                                       | LNA disable; bypass on                            | -1.6 | -1.0 | -   | dB   |
| NF                  | noise figure                          | LNA enable; bypass off [1]                        | -    | 1.1  | 1.8 | dB   |
| P <sub>L(1dB)</sub> | output power at 1 dB gain compression | LNA enable; bypass off                            | 19   | 20.5 | -   | dBm  |
| IP3 <sub>O</sub>    | output third-order intercept point    | 2-tone; tone spacing = 1 MHz; PL = 5 dBm per tone |      |      |     |      |
|                     |                                       | LNA enable; bypass off                            | 33.5 | 36.5 | -   | dBm  |
|                     |                                       | LNA disable; bypass on                            | -    | 44   | -   | dBm  |


<sup>[1]</sup> Connector and Printed-Circuit Board (PCB) losses have been de-embedded.

## 5 Ordering information

**Table 2. Ordering information** 

| Туре    | Package |                                                                                                              |          |  |  |  |
|---------|---------|--------------------------------------------------------------------------------------------------------------|----------|--|--|--|
| number  | Name    | Description                                                                                                  | Version  |  |  |  |
| BGU8061 | HVSON10 | plastic thermal enhanced very thin small outline package; no leads; 10 terminals; body 3 mm × 3 mm × 0.85 mm | SOT650-2 |  |  |  |


## 6 Block diagram



low-noise high-linearity amplifier

# 7 Pinning information

### 7.1 Pinning



### 7.2 Pin description

Table 3. Pin description

| Symbol          | Pin             | Description                                                           |
|-----------------|-----------------|-----------------------------------------------------------------------|
| VCTRL2          | 1               | voltage control 2                                                     |
| i.c.            | 2, 4, 9         | internally connected, can be grounded or left open in the application |
| RF_IN           | 3               | RF input                                                              |
| n.c.            | 5               | not connected                                                         |
| V <sub>CC</sub> | 6               | supply voltage                                                        |
| n.c.            | 7               | not connected                                                         |
| RF_OUT          | 8               | RF output                                                             |
| VCTRL1          | 10              | voltage control 1                                                     |
| GND             | exposed die pad | ground                                                                |

low-noise high-linearity amplifier

# 8 Limiting values

#### **Table 4. Limiting values**

In accordance with the Absolute Maximum Rating System (IEC 60134).

| Symbol                | Parameter                          | Conditions                                                               | Min | Max  | Unit |
|-----------------------|------------------------------------|--------------------------------------------------------------------------|-----|------|------|
| $V_{CC}$              | supply voltage                     |                                                                          | -   | 6    | V    |
| V <sub>i(CTRL1)</sub> | input voltage on pin CTRL1         |                                                                          | -   | 3.6  | V    |
| $V_{i(CTRL2)}$        | input voltage on pin CTRL2         |                                                                          | -   | 3.6  | V    |
| P <sub>i(RF)CW</sub>  | continuous waveform RF input power |                                                                          | -   | 20   | dBm  |
| T <sub>amb</sub>      | ambient temperature                |                                                                          | -40 | +85  | °C   |
| T <sub>stg</sub>      | storage temperature                |                                                                          | -40 | +150 | °C   |
| Tj                    | junction temperature               |                                                                          | -   | 150  | °C   |
| Р                     | power dissipation                  | $T_{case} \le 125  ^{\circ}C$ [1]                                        | -   | 510  | mW   |
| $V_{ESD}$             | electrostatic discharge voltage    | Human Body Model (HBM) according to ANSI/ESDA/JEDEC standard JS-001-2010 | -   | 2.0  | kV   |
|                       |                                    | Charged Device Model (CDM) according to JEDEC standard 22-C101B          | -   | 1.0  | kV   |

<sup>[1]</sup> Case is ground solder pad.

# 9 Recommended operating conditions

#### **Table 5. Characteristics**

| Symbol   | Parameter                | Conditions | Min  | Тур | Max  | Unit |
|----------|--------------------------|------------|------|-----|------|------|
| $V_{CC}$ | supply voltage           |            | 4.75 | 5   | 5.25 | V    |
| $Z_0$    | characteristic impedance |            | -    | 50  | -    | Ω    |

### 10 Thermal characteristics

#### **Table 6. Thermal characteristics**

| Symbol                  | Parameter                                | Conditions | Min | Тур | Max | Unit |
|-------------------------|------------------------------------------|------------|-----|-----|-----|------|
| R <sub>th(j-case)</sub> | thermal resistance from junction to case | [1] [2]    | -   | 55  | -   | K/W  |

<sup>[1]</sup> Case is ground solder pad.

Thermal resistance measured using infrared measurement technique, device mounted on application board and placed in still air.

low-noise high-linearity amplifier

### 11 Characteristics

#### **Table 7. Characteristics**

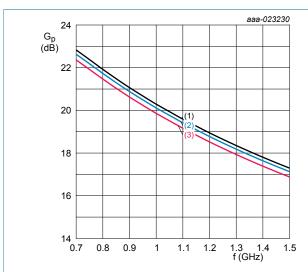
f = 900 MHz;  $V_{CC}$  = 5 V;  $T_{amb}$  = 25 °C; input and output 50  $\Omega$ ; unless otherwise specified. All RF parameters are measured on an application board with the circuit as shown in Figure 29 and components listed in Table 9 implemented. This board is optimized for f = 900 MHz.

| Symbol               | Parameter                             | Conditions                                                    | Min  | Тур  | Max | Unit |
|----------------------|---------------------------------------|---------------------------------------------------------------|------|------|-----|------|
| I <sub>CC</sub>      | supply current                        | LNA enable; bypass off                                        | -    | 70   | 85  | mA   |
|                      |                                       | LNA disable; bypass on                                        | -    | 3    | 5   | mA   |
| G <sub>ass</sub>     | associated gain                       | LNA enable; bypass off                                        | 19   | 20.5 | 22  | dB   |
|                      |                                       | LNA disable; bypass on                                        | -1.6 | -1.0 | -   | dB   |
| G <sub>flat</sub>    | gain flatness                         | within 100 MHz bandwidth; LNA enable; bypass off              |      |      |     |      |
|                      |                                       | 700 MHz ≤ f ≤ 1500 MHz                                        | -    | 0.9  | -   | dB   |
|                      |                                       | 1000 MHz ≤ f ≤ 1500 MHz                                       | -    | 0.8  | -   | dB   |
| NF                   | noise figure                          | LNA enable; bypass off [1]                                    | -    | 1.1  | 1.8 | dB   |
| ΔG                   | gain variation                        | 700 MHz ≤ f ≤ 1500 MHz                                        | -    | 5.5  | -   | dB   |
| P <sub>L(1dB)</sub>  | output power at 1 dB gain compression | LNA enable; bypass off                                        | 19   | 20.5 | -   | dBm  |
| IP3 <sub>O</sub>     | output third-order intercept point    | 2-tone; tone spacing = 1 MHz; P <sub>L</sub> = 5 dBm per tone |      |      |     |      |
|                      |                                       | LNA enable; bypass off                                        | 33.5 | 36.5 | -   | dBm  |
|                      |                                       | LNA disable; bypass on                                        | -    | 44   | -   | dBm  |
| RLin                 | input return loss                     | LNA enable; bypass off                                        | -    | 10   | -   | dB   |
|                      |                                       | LNA disable; bypass on                                        | -    | 15   | -   | dB   |
| RL <sub>out</sub>    | output return loss                    | LNA enable; bypass off                                        | -    | 10   | -   | dB   |
|                      |                                       | LNA disable; bypass on                                        | -    | 15   | -   | dB   |
| ISL                  | isolation                             | LNA disable; bypass off                                       | -    | 30   | -   | dB   |
|                      |                                       | LNA enable; bypass off                                        | -    | 20   | -   | dB   |
| t <sub>s(pon)</sub>  | power-on settling time                | P <sub>i</sub> = −20 dBm                                      | -    | 0.5  | -   | μs   |
| t <sub>s(poff)</sub> | power-off settling time               | P <sub>i</sub> = −20 dBm                                      | -    | 0.1  | -   | μs   |
| K                    | Rollett stability factor              | both on-state and off-state up to f = 20 GHz                  | 1    | -    | -   | -    |

<sup>[1]</sup> Connector and Printed-Circuit Board (PCB) losses have been de-embedded.

## low-noise high-linearity amplifier

#### **Table 8. Control truth table**


 $V_{CC}$  = 5 V;  $T_{amb}$  = 25 °C.

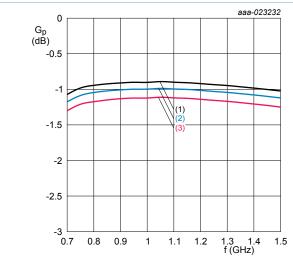
| Control signal setting <sup>[1]</sup> |                | Mode of operation |        |  |
|---------------------------------------|----------------|-------------------|--------|--|
| CTRL2 (pin 1)                         | CTRL1 (pin 10) | LNA               | bypass |  |
| HIGH                                  | LOW            | disable           | on     |  |
| HIGH                                  | HIGH           | disable           | on     |  |
| LOW                                   | LOW            | enable            | off    |  |
| LOW                                   | HIGH           | disable           | off    |  |

<sup>[1]</sup> A logic LOW is the result of an input voltage on that specific pin between -0.3 V and +0.7 V. A logic HIGH is the result of an input voltage on that specific pin between 1.2 V and 3.6 V.

low-noise high-linearity amplifier

# 12 Graphics




$$V_{CC} = 5 V$$

(1) 
$$T_{amb} = -40 \, ^{\circ}C$$

(2) 
$$T_{amb} = +25 \, ^{\circ}C$$

(3) 
$$T_{amb}$$
 = +95 °C

Figure 3. Power gain as a function of frequency Gain mode; typical values



$$V_{CC} = 5 V$$

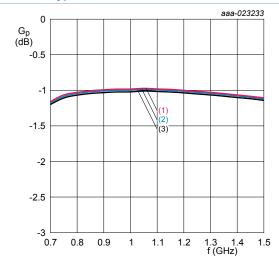
(1) 
$$T_{amb} = -40 \, ^{\circ}C$$

(2) 
$$T_{amb} = +25 \, ^{\circ}C$$

(3) 
$$T_{amb} = +95 \, ^{\circ}C$$

Figure 5. Power gain as a function of frequency Bypass mode; typical values




$$T_{amb} = +25 \, ^{\circ}C$$

(1) 
$$V_{CC} = 4.75 \text{ V}$$

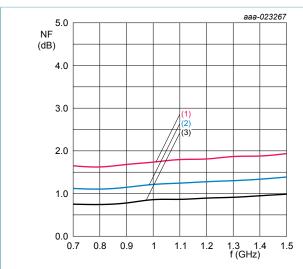
(2) 
$$V_{CC} = 5 V$$

$$(3) V_{CC} = 5.25 V$$

Figure 4. Power gain as a function of frequency Gain mode; typical values



$$T_{amb}$$
 = +25 °C


(1) 
$$V_{CC} = 4.75 \text{ V}$$

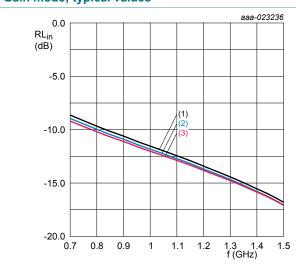
(2) 
$$V_{CC} = 5 V$$

$$(3) V_{CC} = 5.25 V$$

Figure 6. Power gain as a function of frequency Bypass mode; typical values

#### low-noise high-linearity amplifier




$$V_{CC} = 5 V$$

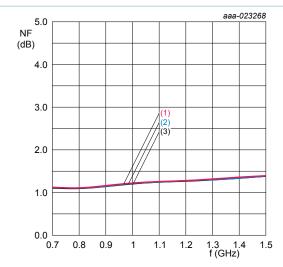
(1) 
$$T_{amb} = -40 \, ^{\circ}C$$

(2) 
$$T_{amb} = +25 \, ^{\circ}C$$

(3) 
$$T_{amb} = +95 \, ^{\circ}C$$

Figure 7. Noise figure as a function of frequency Gain mode; typical values




$$V_{CC} = 5 V$$

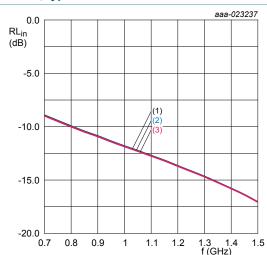
(1) 
$$T_{amb} = -40 \, ^{\circ}C$$

(2) 
$$T_{amb} = +25 \, ^{\circ}C$$

(3) 
$$T_{amb} = +95 \, ^{\circ}C$$

Figure 9. Input return loss as a function of frequency Gain mode; typical values




$$T_{amb}$$
 = +25 °C

(1) 
$$V_{CC} = 4.75 \text{ V}$$

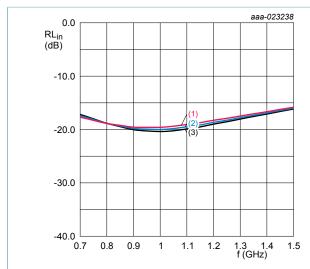
(2) 
$$V_{CC} = 5 V$$

(3) 
$$V_{CC} = 5.25 \text{ V}$$

Figure 8. Noise figure as a function of frequency Gain mode; typical values



$$T_{amb}$$
 = +25 °C


(1) 
$$V_{CC} = 4.75 \text{ V}$$

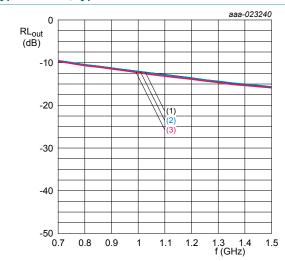
(2) 
$$V_{CC} = 5 V$$

$$(3) V_{CC} = 5.25 V$$

Figure 10. Input return loss as a function of frequency Gain mode; typical values

#### low-noise high-linearity amplifier




$$V_{CC} = 5 V$$

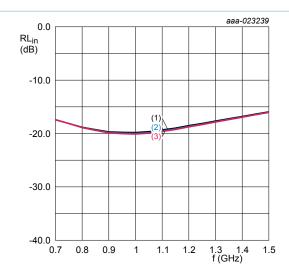
(1) 
$$T_{amb} = -40 \, ^{\circ}C$$

(2) 
$$T_{amb} = +25 \, ^{\circ}C$$

(3) 
$$T_{amb} = +95 \, ^{\circ}C$$

Figure 11. Input return loss as a function of frequency Bypass mode; typical values




$$V_{CC} = 5 V$$

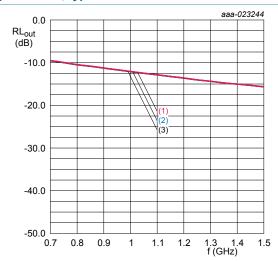
(1) 
$$T_{amb} = -40 \, ^{\circ}C$$

(2) 
$$T_{amb} = +25 \, ^{\circ}C$$

(3) 
$$T_{amb} = +95 \, ^{\circ}C$$

Figure 13. Output return loss as a function of frequency Gain mode; typical values




$$T_{amb}$$
 = +25 °C

(1) 
$$V_{CC} = 4.75 \text{ V}$$

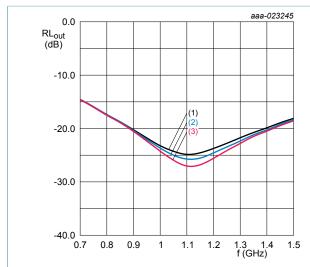
(2) 
$$V_{CC} = 5 V$$

(3) 
$$V_{CC} = 5.25 \text{ V}$$

Figure 12. Input return loss as a function of frequency Bypass mode; typical values



$$T_{amb}$$
 = +25 °C


(1) 
$$V_{CC} = 4.75 \text{ V}$$

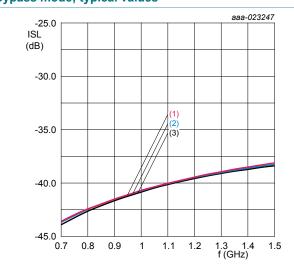
(2) 
$$V_{CC} = 5 V$$

$$(3) V_{CC} = 5.25 V$$

Figure 14. Output return loss as a function of frequency Gain mode; typical values

#### low-noise high-linearity amplifier




$$V_{CC} = 5 V$$

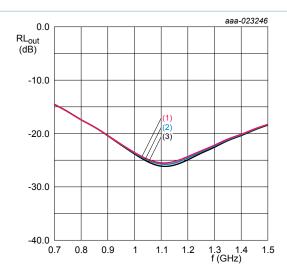
(1) 
$$T_{amb} = -40 \, ^{\circ}C$$

(2) 
$$T_{amb} = +25 \, ^{\circ}C$$

(3) 
$$T_{amb} = +95 \, ^{\circ}C$$

Figure 15. Output return loss as a function of frequency Bypass mode; typical values




$$V_{CC} = 5 V$$

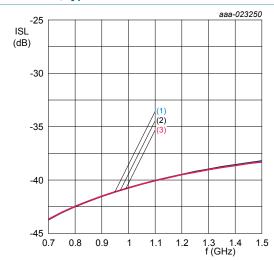
(1) 
$$T_{amb} = -40 \, ^{\circ}C$$

(2) 
$$T_{amb} = +25 \, ^{\circ}C$$

(3) 
$$T_{amb} = +95 \, ^{\circ}C$$

Figure 17. Isolation as a function of frequency Isolation mode; typical values




$$T_{amb} = +25 \, ^{\circ}C$$

(1) 
$$V_{CC} = 4.75 \text{ V}$$

(2) 
$$V_{CC} = 5 V$$

(3) 
$$V_{CC} = 5.25 \text{ V}$$

Figure 16. Output return loss as a function of frequency Bypass mode; typical values



$$T_{amb}$$
 = +25 °C

$$(1) V_{CC} = 4.75 V$$

(2) 
$$V_{CC} = 5 V$$

$$(3) V_{CC} = 5.25 V$$

Figure 18. Isolation as a function of frequency Isolation mode; typical values

#### low-noise high-linearity amplifier

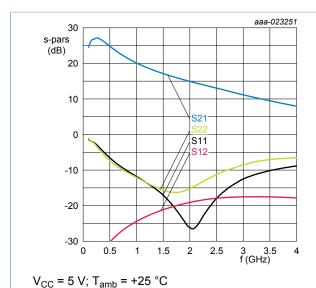
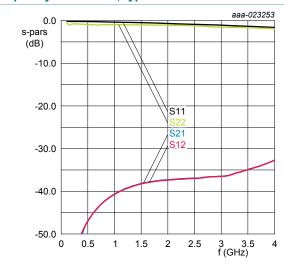




Figure 19. Wideband S-parameters as function of frequency Gain mode; typical values



 $V_{CC}$  = 5 V;  $T_{amb}$  = +25 °C

Figure 21. Wideband S-parameters as function of frequency Isolation mode; typical values

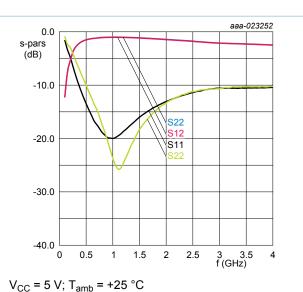
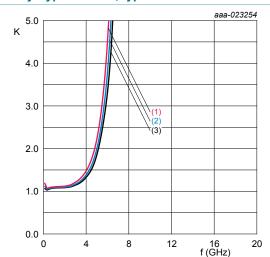
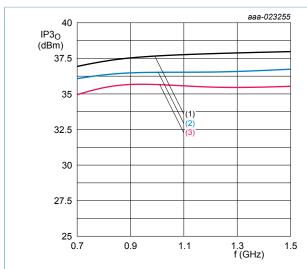




Figure 20. Wideband S-parameters as function of frequency Bypass mode; typical values



 $V_{CC} = 5 V$ 


(1)  $T_{amb} = -40 \, ^{\circ}C$ 

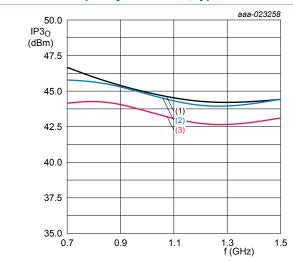
(2)  $T_{amb}$  = +25 °C

(3)  $T_{amb}$  = +95 °C

Figure 22. Rollett Stability factor as function of frequency Gain mode; typical values

#### low-noise high-linearity amplifier




$$V_{CC} = 5 V$$

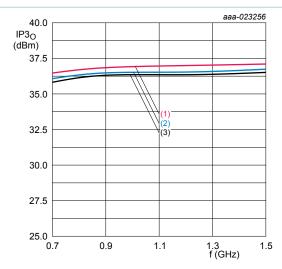
(1) 
$$T_{amb} = -40 \, ^{\circ}C$$

(2) 
$$T_{amb} = +25 \, ^{\circ}C$$

(3) 
$$T_{amb} = +95 \, ^{\circ}C$$

Figure 23. Output third-order intercept point as a function of frequency Gain mode; typical values




$$V_{CC} = 5 V$$

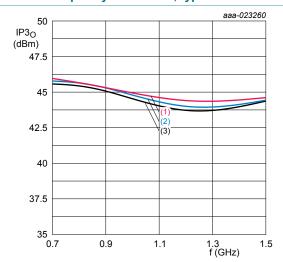
(1) 
$$T_{amb} = -40 \, ^{\circ}C$$

(2) 
$$T_{amb} = +25 \, ^{\circ}C$$

(3) 
$$T_{amb} = +95 \, ^{\circ}C$$

Figure 25. Output third-order intercept point as a function of frequency Bypass mode; typical values




$$T_{amb}$$
 = +25 °C

(1) 
$$V_{CC} = 4.75 \text{ V}$$

(2) 
$$V_{CC} = 5 V$$

(3) 
$$V_{CC} = 5.25 \text{ V}$$

Figure 24. Output third-order intercept point as a function of frequency Gain mode; typical values



$$T_{amb}$$
 = +25 °C

(1) 
$$V_{CC} = 4.75 \text{ V}$$

(2) 
$$V_{CC} = 5 V$$

(3) 
$$V_{CC} = 5.25 \text{ V}$$

Figure 26. Output third-order intercept point as a function of frequency Bypass mode; typical values

#### low-noise high-linearity amplifier

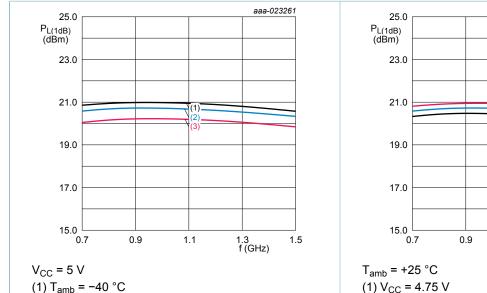



Figure 27. Output power at 1 dB gain compression as a function of frequency Gain mode; typical values

(2)  $T_{amb} = +25 \, ^{\circ}C$ 

(3)  $T_{amb} = +95 \, ^{\circ}C$ 

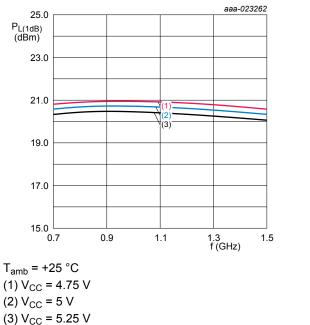
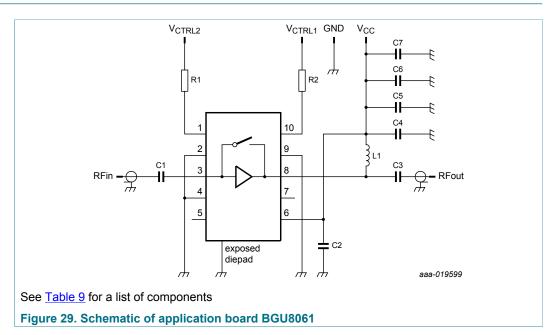
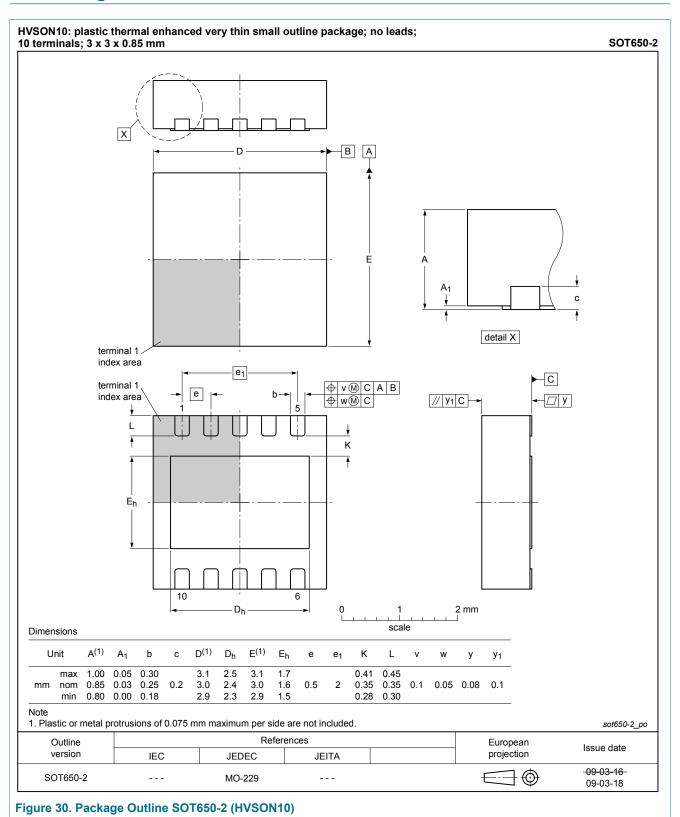




Figure 28. Output power at 1 dB gain compression as a function of frequency Gain mode; typical values

low-noise high-linearity amplifier

# 13 Application information




**Table 9. List of components** 

See Figure 29 for schematics.

| Component | Description | Value  | Remarks  |
|-----------|-------------|--------|----------|
| C1        | capacitor   | 100 nF |          |
| C2, C3    | capacitor   | 100 pF |          |
| C4        | capacitor   | 1 nF   |          |
| C5        | capacitor   | -      | optional |
| C6        | capacitor   | 10 nF  |          |
| C7        | capacitor   | 1 μF   |          |
| L1        | inductor    | 15 nH  |          |
| R1, R2    | resistor    | 1 kΩ   |          |

low-noise high-linearity amplifier

# 14 Package outline



low-noise high-linearity amplifier

### 15 Abbreviations

#### **Table 10. Abbreviations**

| Acronym | Description                            |
|---------|----------------------------------------|
| CDMA    | Code Division Multiple Access          |
| ESD     | ElectroStatic Discharge                |
| FDD     | Frequency-Division Duplexing           |
| GSM     | Global System for Mobile communication |
| LNA     | Low Noise Amplifier                    |
| LTE     | Long Term Evolution                    |
| TDD     | Time-Division Duplexing                |
| W-CDMA  | Wideband Code Division Multiple Access |

# 16 Revision history

#### **Table 11. Revision history**

| Document ID   | Release date                                                             | Data sheet status  | Change notice | Supersedes  |  |  |
|---------------|--------------------------------------------------------------------------|--------------------|---------------|-------------|--|--|
| BGU8061 v.2   | 20170127                                                                 | product data sheet | -             | BGU8061 v.1 |  |  |
| Modifications | <u>Section 1</u> : added BTS3001L according to our new naming convention |                    |               |             |  |  |
| BGU8061 v.1   | <tbd></tbd>                                                              | product data sheet | -             | -           |  |  |

**BGU8061** 

### low-noise high-linearity amplifier

### **Contents**

| 1   | General description              | 1  |
|-----|----------------------------------|----|
| 2   | Features and benefits            |    |
| 3   | Applications                     | 1  |
| 4   | Quick reference data             | 2  |
| 5   | Ordering information             | 2  |
| 6   | Block diagram                    |    |
| 7   | Pinning information              |    |
| 7.1 | Pinning                          |    |
| 7.2 | Pin description                  |    |
| 8   | Limiting values                  |    |
| 9   | Recommended operating conditions | 4  |
| 10  | Thermal characteristics          |    |
| 11  | Characteristics                  | 5  |
| 12  | Graphics                         | 7  |
| 13  | Application information          | 14 |
| 14  | Package outline                  | 15 |
| 15  | Abbreviations                    |    |
| 16  | Revision history                 |    |

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.