

MBRS10H100CT - MBRS10H200CT

10.0 AMPS. Surface Mount Schottky Barrier Rectifiers Switchmode Power Rectifiers

D²PAK

Features

- ◊ Plastic material used carries Underwriters Laboratory Classifications 94V-0
- ◊ Metal silicon junction, majority carrier conduction
- ◊ Low power loss, high efficiency
- ◊ High current capability, low forward voltage drop
- ◊ High surge capability
- ◊ For use in low voltage, high frequency inverters, free wheeling, and polarity protection applications
- ◊ Guardring for overvoltage protection
- ◊ High temperature soldering guaranteed: 260°C/10 seconds, 0.25" (6.35mm) from case

Mechanical Data

- ◊ Cases: D2PAK molded plastic
- ◊ Terminals: Pure tin plated, lead free, solderable per MIL-STD-750, Method 2026
- ◊ Polarity: As marked
- ◊ Mounting position: Any
- ◊ Mounting torque: 5 in. - lbs. max
- ◊ Weight: 0.08 ounce, 2.24 grams

Dimensions in inches and (millimeters)

Maximum Ratings and Electrical Characteristics

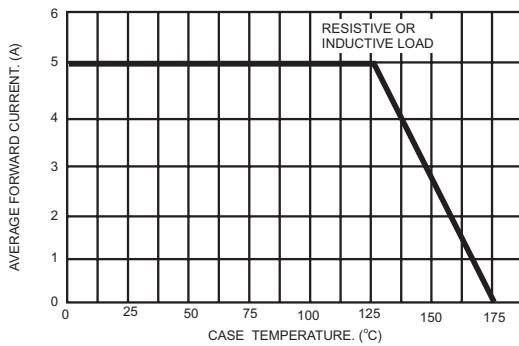
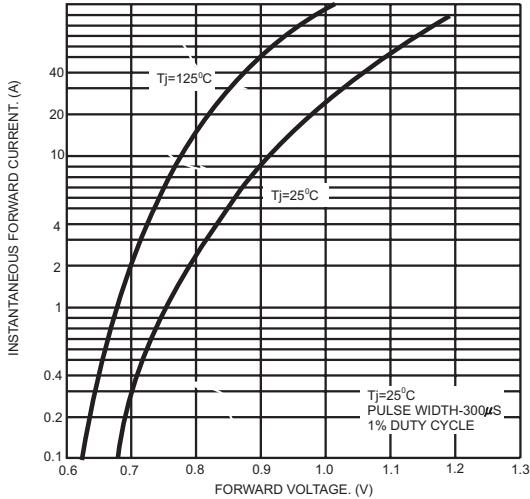
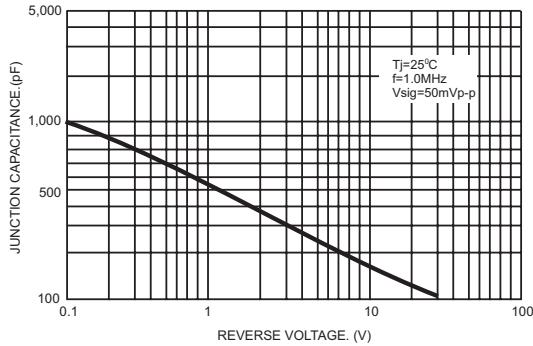
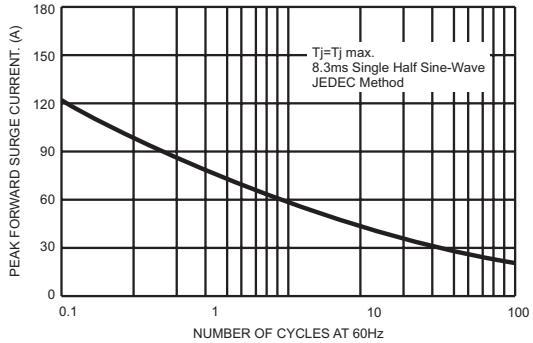
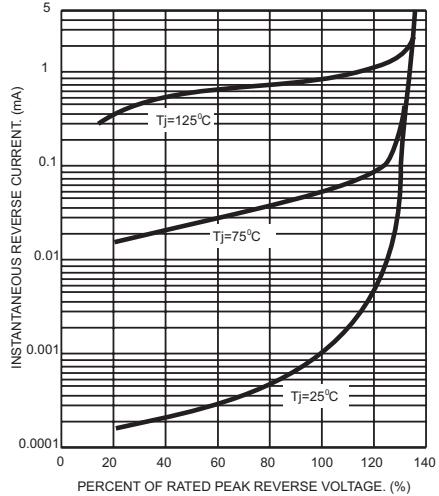
Rating at 25 °C ambient temperature unless otherwise specified.

Single phase, half wave, 60 Hz, resistive or inductive load.

For capacitive load, derate current by 20%

Type Number	Symbol	MBRS 10H100CT	MBRS 10H150CT	MBRS 10H200CT	Units
Maximum Recurrent Peak Reverse Voltage	V_{RRM}	100	150	200	V
Maximum RMS Voltage	V_{RMS}	70	105	140	V
Maximum DC Blocking Voltage	V_{DC}	100	150	200	V
Maximum Average Forward Rectified Current at $T_c=133^\circ\text{C}$	$I_{(AV)}$		10		A
Peak Repetitive Forward Current (Rated V_R , Square Wave, 20KHz) at $T_c=133^\circ\text{C}$	I_{FRM}		10		A
Peak Forward Surge Current, 8.3 ms Single Half Sine-wave Superimposed on Rated Load (JEDEC method)	I_{FSM}		120		A
Peak Repetitive Reverse Surge Current (Note 1)	I_{RRM}		1.0	0.5	A
Maximum Instantaneous Forward Voltage at (Note 2)	V_F	0.85 0.75 0.95 0.85	0.88 0.75 0.97 0.85		V
Maximum Instantaneous Reverse Current at Rated DC Blocking Voltage @ $T_c=25^\circ\text{C}$ @ $T_c=125^\circ\text{C}$	I_R		5.0 1.0		uA mA
Voltage Rate of Change, (Rated V_R)	dV/dt		10,000		V/uS
RMS Isolation Voltage (t=1.0 second, R.H. $\leq 30\%$, $T_A=25^\circ\text{C}$) (Note 4)	V_{ISO}		4500 3500 1500		V
(Note 5)					
(Note 6)					
Typical Thermal Resistance Per Leg (Note3)	$R_{\theta JC}$		3.5		°C/W
Operating Junction Temperature Range	T_J		-65 to +175		°C
Storage Temperature Range	T_{STG}		-65 to +175		°C

Notes: 1. 2.0 us Pulse Width, f=1.0 KHz

2. Pulse Test: 300us Pulse Width, 1% Duty Cycle

3. Thermal Resistance from Junction to Case Per Leg.

4. Clip Mounting (on case), where lead does not overlap heatsink with 0.110" offset.

5. Clip mounting (on case), where leads do overlap heatsink.

6. Screw mounting with 4-40 screw, where washer diameter is ≤ 4.9 mm (0.19")

RATINGS AND CHARACTERISTIC CURVES (MBRS10H100CT - MBRS10H200CT)
FIG.1- FORWARD CURRENT DERATING CURVE

FIG.3- TYPICAL INSTANTANEOUS FORWARD CHARACTERISTICS

FIG.5- TYPICAL JUNCTION CAPACITANCE

FIG.2- MAXIMUM NON-REPETITIVE FORWARD SURGE CURRENT

FIG.4- TYPICAL REVERSE CHARACTERISTICS

FIG.6- TYPICAL TRANSIENT THERMAL CHARACTERISTICS PER LEG
