
Multilayer High Power, High Temperature Mica and PTFE Capacitors

Types MCM and MIN SMT clad PTFE and mica capacitors are top performers for high power applications requiring low inductance at high frequencies and can operate at temperatures up to 200 °C and voltages to 1000 Vdc. Choosing from 16 different configurations offers easy mounting with options for surface mount as well as through-hole and mechanical assembly. To assure high current capability in the smallest capacitors, low-capacitance ratings use polytetrafluorethylene (PTFE) that has ultra-low dielectric absorption - better than polypropylene, polystyrene and NPO ceramic.

Highlights -

- 200 °C rated with no voltage derating
- Wave solderable
- No cracking or delaminating
- CTE ≈ 18 ppm/°C compatible with FR4 PCBs
- Highly thermal conductive package
- Gull-wing terminal minimizes stress
- Typical 100 pF ESR, <11 m Ω @ 100 MHz
- Nonmagnetic for minimal RF loss
- Very low ESL for excellent by-pass action
- Ultra stable: no change with (t), (V) and (f)
- Exact capacitance with tolerances from ± 0.25 pF
- RoHS Compliant

Specifications

Complies with the EU Directive 2002/95/EC requirement restricting the use of Lead (Pb), Mercury (Hg), Cadmium (Cd), Hexavalent chromium (Cr(VI)), PolyBrominated Biphenyls (PBB) and PolyBrominated Diphenyl Ethers (PBDE).

Capacitance Range:
Voltage Ratings:
Temperature Range:
Capacitance Tolerance:
Dielectric Strength:
Insulation Resistance:
Aging Rate:
Marking:

Design Kits for Engineers

MIN300VKIT1 300 Vdc 5 pieces each 13 ratings 3.3 – 150 pF

MCM500VKIT2 Nonmagnetic to 500 Vdc 5 pieces each 10 ratings 10 – 1000 pF

MCM1000VKIT3 1 kVdc 5 pieces each 7 ratings 100 - 750 pF

MCM	MIN		
1 to 1500 pF	1 to 350 pF		
300 to 1000 Vdc	300 Vdc		

-55 °C to +200 °C with no voltage derating

±0.25pF, ±0.5 pF, ±1 pF, ±0.5%, ±1%, ±2%, ±5%

200% of rated voltage for 5 seconds

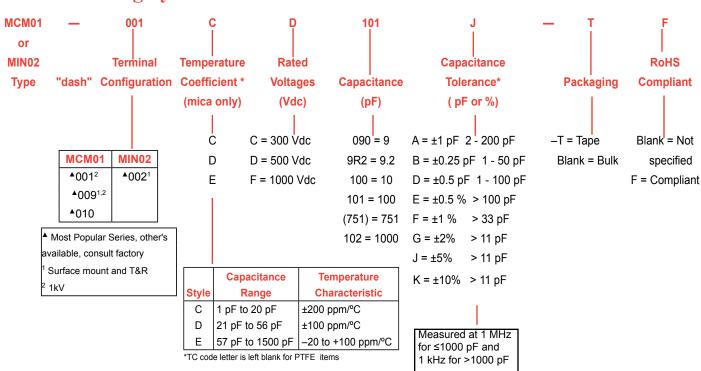
1000 M Ω •µF Need not exceed 100,000 M Ω at 25 °C

None

MIN - Capacitance in pF and ID letters CD
MCM - Capacitance, ID letters CD and voltage if
other than 500 when space permits

RoHS Compliant - marked in green ink

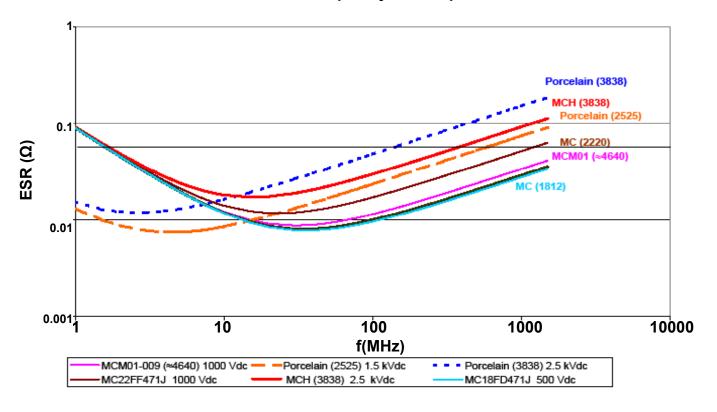
Applications -

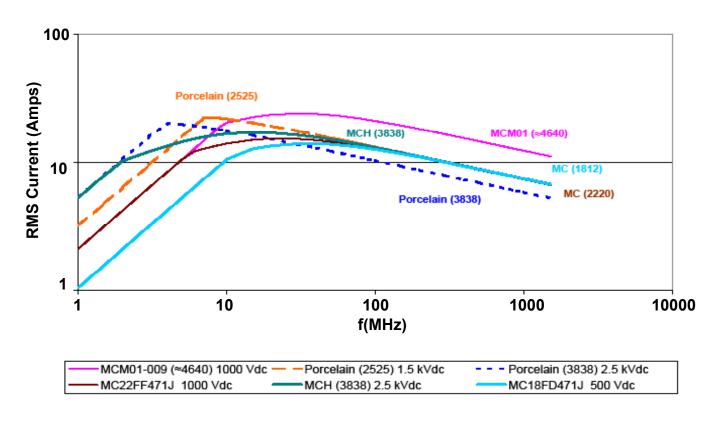

RF Power Amplifiers
Lasers
Mobile Radio
Plasma generators
MRI Coils
RF Medical Equipment
Land Mobile antennas 27 to 900 MHZ

Ratings Available

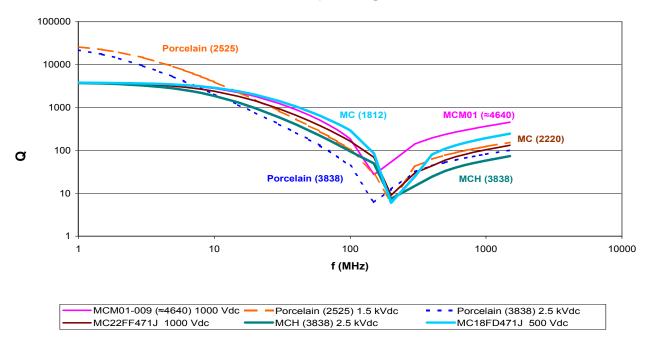
Capacitance	Voltage Ratings			Dielectric			
(pF)		(Vdc)	Dielectric				
	300	300 500 *100					
MIN02							
1 - 2.9	X			PTFE			
3 - 9.9	Х			PTFE or Mica			
10 - 60	X			Mica			
61 - 120	X			Mica			
121 - 180	X			Mica			
181 - 240	Х			Mica			
241 - 300	X			Mica			
301 - 350	X			Mica			
MCM01							
1 - 7		X	X	PTFE			
8 - 32		Х	X	PTFE or Mica			
33 - 250		X	X	Mica			
251 - 500		X	X	Mica			
501 - 750		X	X	Mica			
751 - 1000		Х		Mica			
1001 - 1280		Х		Mica			
1281 - 1500	Х	*1000.14		Mica			

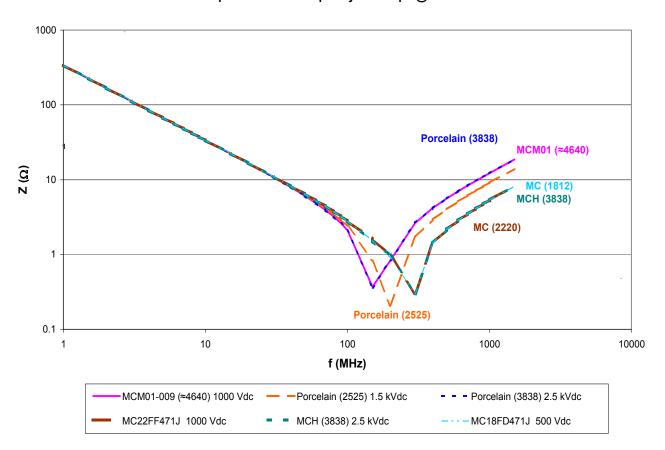
^{*1000} V available in MCM01-001 and -009 style


Part Numbering System


Typical Performance Data

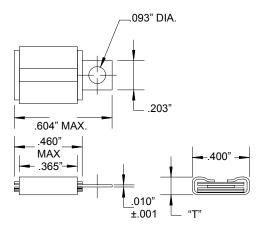
click here to see additional rating charts


ESR vs. Frequency for 470 pF

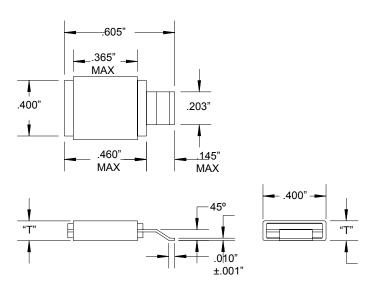

Current Rating (IRMS) for 470 pF at 60 °C Rise

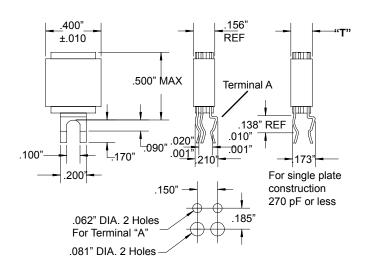
Q vs. Frequency 470 pF @ 25 °C

Impedance Z vs. Frequency for 470 pF @ 25 °C


Outline Drawings for Popular Items

MIN02-002

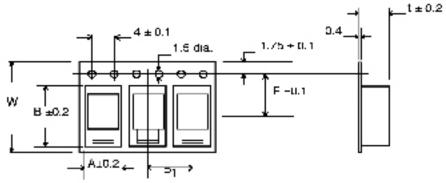

"T" (thickness) depending on capacitance value = .065 to .125±.015


MCM01-001

"T" (thickness) depending on capacitance value= .110 to .165 \pm .015 MCM01-010

MCM01-009

"T" (thickness) depending on capacitance value= .110 to .165±.015 "T" (thickness) depending on capacitance value= .110 to .165±.015


"T" varies with capacitance

Standard Minimum Quantities

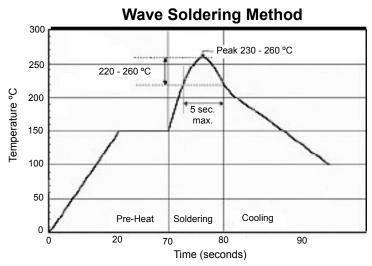
Tape Specifications

Bulk Pack: 100 pieces per bag

Reel Pack: 500 pieces per reel

Tape Dimensions (mm)									
Case	W	Α	В	P1	F	t			
MIN02-002	16	5.56	8.18	8	7.5	2.16			
< 150 pF									
MIN02-002	16	5.66	8.10	8	7.5	3.20			
≥ 150 pF									

Note: 24 mm tape for MCM01-009 and 32 mm tape for MCM01-004 are available upon request.


Solder Profile

Specifications:

Lead free finish

Case and Terminal Material: Silver plated, copper flashed, brass

Reflow Soldering Method 300 Peak 230 - 260 °C 260 220 - 260 °C Temperature °C 200 ■10 sec. max 150 100 50 Pre-Heat Soldering Cooling 0 , 30 50 150 190 200 Time (seconds)

Notice and Disclaimer: All product drawings, descriptions, specifications, statements, information and data (collectively, the "Information") in this datasheet or other publication are subject to change. The customer is responsible for checking, confirming and verifying the extent to which the Information contained in this datasheet or other publication is applicable to an order at the time the order is placed. All Information given herein is believed to be accurate and reliable, but it is presented without any guarantee, warranty, representation or responsibility of any kind, expressed or implied. Statements of suitability for certain applications are based on the knowledge that the Cornell Dubilier company providing such statements ("Cornell Dubilier") has of operating conditions that such Cornell Dubilier company regards as typical for such applications, but are not intended to constitute any guarantee, warranty or representation regarding any such matter – and Cornell Dubilier specifically and expressly disclaims any guarantee, warranty or representation concerning the suitability for a specific customer application, use, storage, transportation, or operating environment. The Information is intended for use only by customers who have the requisite experience and capability to determine the correct products for their application. Any technical advice inferred from this Information or otherwise provided by Cornell Dubilier with reference to the use of any Cornell Dubilier products is given gratis (unless otherwise specified by Cornell Dubilier), and Cornell Dubilier assumes no obligation or liability for the advice given or results obtained. Although Cornell Dubilier strives to apply the most stringent quality and safety standards regarding the design and manufacturing of its products, in light of the current state of the art, isolated component failures may still occur. Accordingly, customer applications which require a high degree of reliability or safety should employ suitable designs or other safeguards (such as installation of protective circuitry or redundancies or other appropriate protective measures) in order to ensure that the failure of an electrical component does not result in a risk of personal injury or property damage. Although all product-related warnings, cautions and notes must be observed, the customer should not assume that all safety measures are indicated in such warnings, cautions and notes, or that other safety measures may not be required.