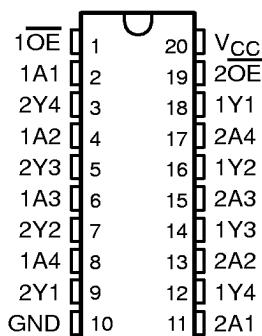
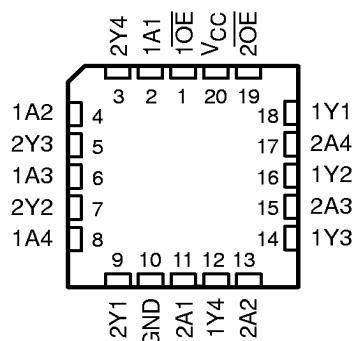


- Inputs Are TTL-Voltage Compatible
- **EPIC™** (Enhanced-Performance Implanted CMOS) Process
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- Package Options Include Plastic Small-Outline (DW), Shrink Small-Outline (DB), Thin Very Small-Outline (DGV), Thin Shrink Small-Outline (PW), and Ceramic Flat (W) Packages, Ceramic Chip Carriers (FK), and Standard Plastic (N) and Ceramic (J) DIPs

description


These octal buffers/drivers are designed specifically to improve both the performance and density of 3-state memory-address drivers, clock drivers, and bus-oriented receivers and transmitters.

The 'AHCT244 devices are organized as two 4-bit buffers/line drivers with separate output-enable (\overline{OE}) inputs. When \overline{OE} is low, the device passes data from the A inputs to the Y outputs. When \overline{OE} is high, the outputs are in the high-impedance state.


To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN54AHCT244 is characterized for operation over the full military temperature range of -55°C to 125°C . The SN74AHCT244 is characterized for operation from -40°C to 85°C .

**SN54AHCT244 . . . J OR W PACKAGE
SN74AHCT244 . . . DB, DGV, DW, N, OR PW PACKAGE
(TOP VIEW)**

**SN54AHCT244 . . . FK PACKAGE
(TOP VIEW)**

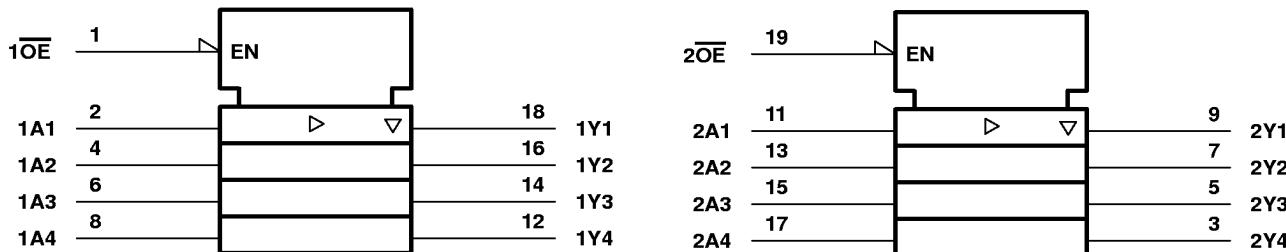
**FUNCTION TABLE
(each buffer/driver)**

INPUTS		OUTPUT
\overline{OE}	A	Y
L	H	H
L	L	L
H	X	Z

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC is a trademark of Texas Instruments Incorporated.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.


POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

Copyright © 1998, Texas Instruments Incorporated
On products compliant to MIL-PRF-38535, all parameters are tested unless otherwise noted. On all other products, production processing does not necessarily include testing of all parameters.

SN54AHCT244, SN74AHCT244 OCTAL BUFFERS/DRIVERS WITH 3-STATE OUTPUTS

SCLS228G – OCTOBER 1995 – REVISED JULY 1998

logic symbol

[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)‡

‡ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

- The package thermal impedance is calculated in accordance with JESD 51, except for through-hole packages, which use a trace length of zero.

recommended operating conditions (see Note 3)

		SN54AHCT244		SN74AHCT244		UNIT
		MIN	MAX	MIN	MAX	
V_{CC}	Supply voltage	4.5	5.5	4.5	5.5	V
V_{IH}	High-level input voltage	2		2		V
V_{IL}	Low-level input voltage		0.8		0.8	V
V_I	Input voltage	0	5.5	0	5.5	V
V_O	Output voltage	0	V_{CC}	0	V_{CC}	V
I_{OH}	High-level output current		-8		-8	mA
I_{OL}	Low-level output current		8		8	mA
T_A	Operating free-air temperature	-55	125	-40	85	°C

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	V_{CC}	$T_A = 25^\circ\text{C}$			UNIT
			MIN	TYP	MAX	
V_{OH}	$I_{OH} = -50 \mu\text{A}$	4.5 V	4.4	4.5	4.4	V
	$I_{OH} = -8 \text{ mA}$		3.94		3.8	
V_{OL}	$I_{OL} = 50 \mu\text{A}$	4.5 V		0.1	0.1	V
	$I_{OL} = 8 \text{ mA}$			0.36	0.44	
I_{OZ}	$V_O = V_{CC}$ or GND	5.5 V		± 0.25	± 2.5	± 2.5 μA
I_I	$V_I = V_{CC}$ or GND	5.5 V		± 0.1	± 1	± 1 μA
I_{CC}	$V_I = V_{CC}$ or GND, $I_O = 0$	5.5 V		4	40	40 μA
ΔI_{CC}^\dagger	One input at 3.4 V, Other inputs at V_{CC} or GND	5.5 V		1.35	1.5	1.5 mA
C_i	$V_I = V_{CC}$ or GND	5 V	2.5	10		10 pF
C_o	$V_O = V_{CC}$ or GND	5 V	3			pF

† This is the increase in supply current for each input at one of the specified TTL voltage levels rather than 0 V or V_{CC} .

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

**SN54AHCT244, SN74AHCT244
OCTAL BUFFERS/DRIVERS
WITH 3-STATE OUTPUTS**

SCLS228G – OCTOBER 1995 – REVISED JULY 1998

**switching characteristics over recommended operating free-air temperature range,
 $V_{CC} = 5 \text{ V} \pm 0.5 \text{ V}$ (unless otherwise noted) (see Figure 1)**

PARAMETER	FROM (INPUT)	TO (OUTPUT)	LOAD CAPACITANCE	SN54AHCT244			UNIT
				$T_A = 25^\circ\text{C}$		MIN	MAX
				MIN	TYP		
t_{PLH}^*	A	Y	$C_L = 15 \text{ pF}$	5.4	7.4	1	8.5
t_{PHL}^*				5.4	7.4	1	8.5
t_{PZH}^*	\overline{OE}	Y	$C_L = 15 \text{ pF}$	7.7	10.4	1	12
t_{PZL}^*				7.7	10.4	1	12
t_{PHZ}^*	\overline{OE}	Y	$C_L = 15 \text{ pF}$	5	9.4	1	10
t_{PLZ}^*				5	9.4	1	10
t_{PLH}	A	Y	$C_L = 50 \text{ pF}$	5.9	8.4	1	9.5
t_{PHL}				5.9	8.4	1	9.5
t_{PZH}	\overline{OE}	Y	$C_L = 50 \text{ pF}$	8.2	11.4	1	13
t_{PZL}				8.2	11.4	1	13
t_{PHZ}	\overline{OE}	Y	$C_L = 50 \text{ pF}$	8.8	11.4	1	13
t_{PLZ}				8.8	11.4	1	13

* On products compliant to MIL-PRF-38535, this parameter is not production tested.

**switching characteristics over recommended operating free-air temperature range,
 $V_{CC} = 5 \text{ V} \pm 0.5 \text{ V}$ (unless otherwise noted) (see Figure 1)**

PARAMETER	FROM (INPUT)	TO (OUTPUT)	LOAD CAPACITANCE	SN74AHCT244			UNIT
				$T_A = 25^\circ\text{C}$		MIN	MAX
				MIN	TYP		
t_{PLH}	A	Y	$C_L = 15 \text{ pF}$	5.4	7.4	1	8.5
t_{PHL}				5.4	7.4	1	8.5
t_{PZH}	\overline{OE}	Y	$C_L = 15 \text{ pF}$	7.7	10.4	1	12
t_{PZL}				7.7	10.4	1	12
t_{PHZ}	\overline{OE}	Y	$C_L = 15 \text{ pF}$	5	9.4	1	10
t_{PLZ}				5	9.4	1	10
t_{PLH}	A	Y	$C_L = 50 \text{ pF}$	5.9	8.4	1	9.5
t_{PHL}				5.9	8.4	1	9.5
t_{PZH}	\overline{OE}	Y	$C_L = 50 \text{ pF}$	8.2	11.4	1	13
t_{PZL}				8.2	11.4	1	13
t_{PHZ}	\overline{OE}	Y	$C_L = 50 \text{ pF}$	8.8	11.4	1	13
t_{PLZ}				8.8	11.4	1	13
$t_{sk(o)}^{\dagger}$			$C_L = 50 \text{ pF}$			1	1

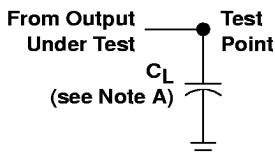
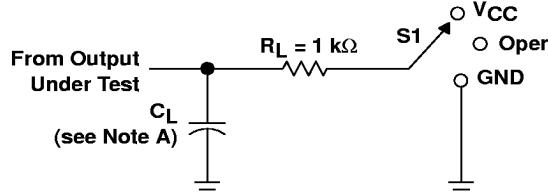
† Skew between any two outputs of the same package switching in the same direction

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

noise characteristics, $V_{CC} = 5$ V, $C_L = 50$ pF, $T_A = 25^\circ\text{C}$ (see Note 4)

PARAMETER	SN74AHCT244			UNIT
	MIN	TYP	MAX	
$V_{OH(V)}$ Quiet output, minimum dynamic V_{OH}		4.1		V
$V_{IH(D)}$ High-level dynamic input voltage		2		V
$V_{IL(D)}$ Low-level dynamic input voltage			0.8	V

NOTE 4: Characteristics are for surface-mount packages only.



operating characteristics, $V_{CC} = 5$ V, $T_A = 25^\circ\text{C}$

PARAMETER	TEST CONDITIONS	TYP	UNIT
C_{pd} Power dissipation capacitance	No load, $f = 1$ MHz	8.2	pF

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT FOR
TOTEM-POLE OUTPUTSLOAD CIRCUIT FOR
3-STATE AND OPEN-DRAIN OUTPUTS

TEST	S1
t_{PLH}/t_{PHL}	Open
t_{PLZ}/t_{PZL}	V_{CC}
t_{PHZ}/t_{PZH}	GND
Open Drain	V_{CC}



Figure 1. Load Circuit and Voltage Waveforms