

CYPRESS

CY7C182

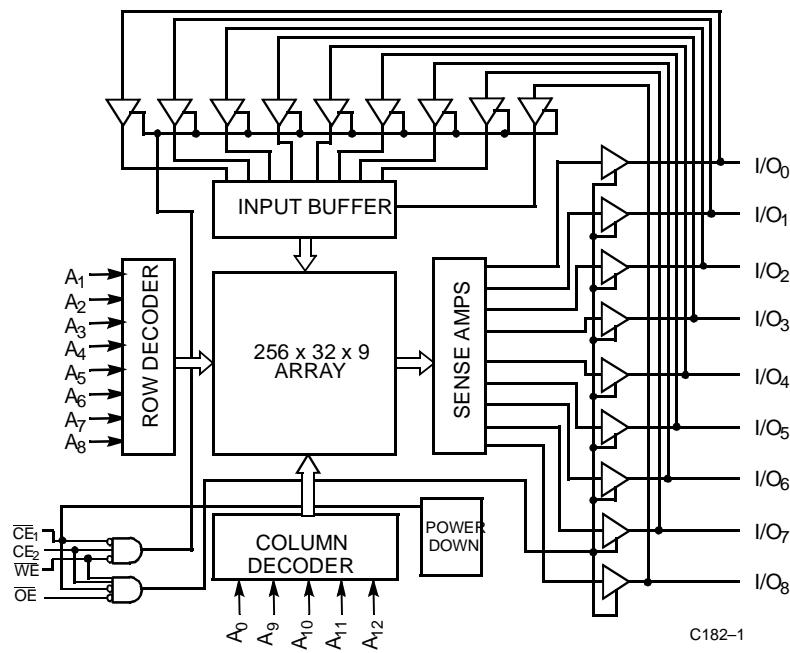
8Kx9 Static RAM

Features

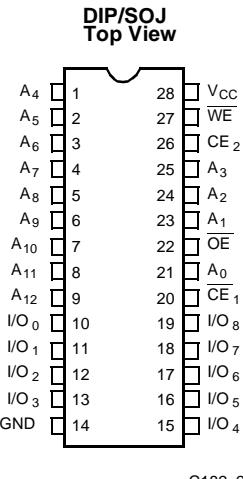
- High speed
 - $t_{AA} = 25$ ns
- x9 organization is ideal for cache memory applications
- CMOS for optimum speed/power
- Low active power
 - 770 mW
- Low standby power
 - 195 mW
- TTL-compatible inputs and outputs
- Automatic power-down when deselected
- Easy memory expansion with \overline{CE}_1 , \overline{CE}_2 , \overline{OE} options

Functional Description

The CY7C182 is a high-speed CMOS static RAM organized as 8,192 by 9 bits and it is manufactured using Cypress's high-performance CMOS technology. Access times as fast as 25 ns are available with maximum power consumption of only 770 mW.


The CY7C182, which is oriented toward cache memory applications, features fully static operation requiring no external clocks or timing strobes. The automatic power-down feature reduces the power consumption by more than 70% when the circuit is deselected. Easy memory expansion is provided by an active-LOW Chip Enable (\overline{CE}_1), an active HIGH Chip Enable (\overline{CE}_2), an active-LOW Output Enable (\overline{OE}), and three-state drivers.

An active-LOW Write Enable signal (\overline{WE}) controls the writing/reading operation of the memory. When \overline{CE}_1 and \overline{WE} inputs are both LOW, data on the nine data input/output pins (I/O₀ through I/O₈) is written into the memory location addressed by the address present on the address pins (A₀ through A₁₂). Reading the device is accomplished by selecting the device and enabling the outputs, (\overline{CE}_1 and \overline{OE} active LOW and \overline{CE}_2 active HIGH), while (\overline{WE}) remains inactive or HIGH. Under these conditions, the contents of the location addressed by the information on address pins is present on the nine data input/output pins.


The input/output pins remain in a high-impedance state unless the chip is selected, outputs are enabled, and write enable (\overline{WE}) is HIGH.

A die coat is used to insure alpha immunity.

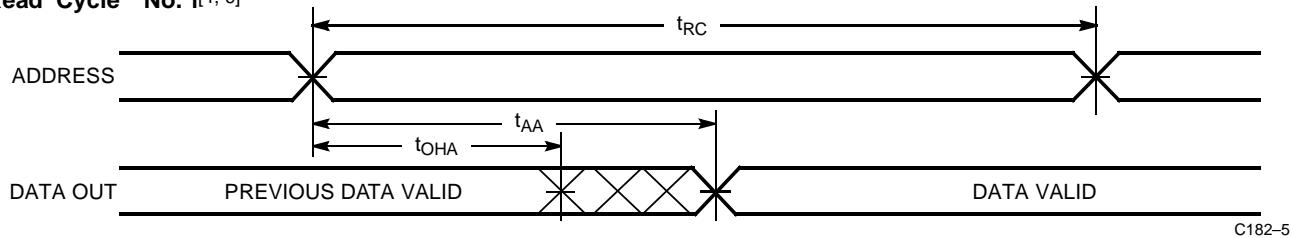
Logic Block Diagram

Pin Configuration

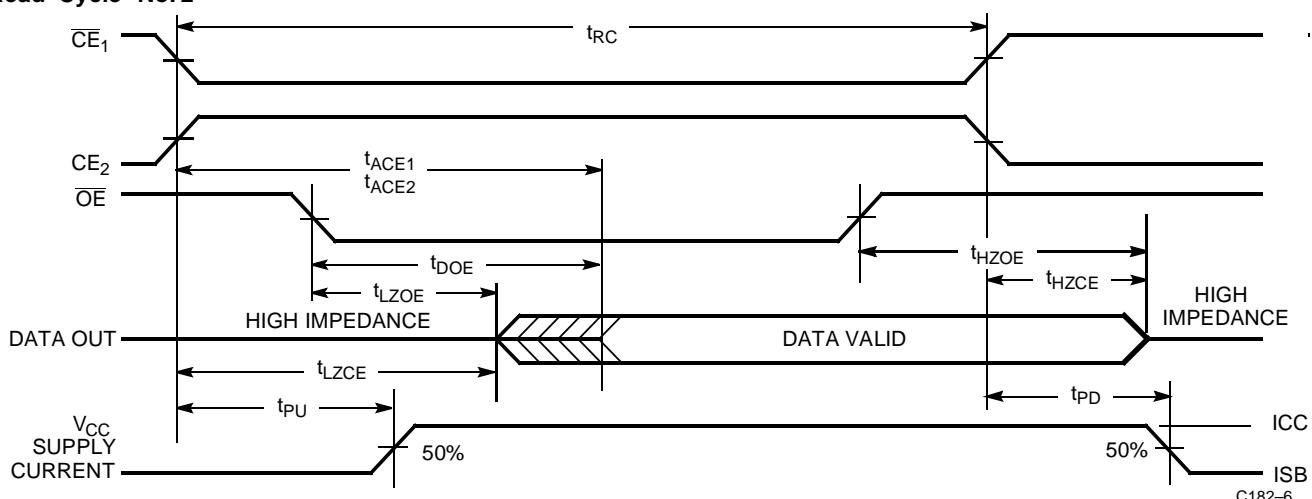
Selection Guide

	7C182-25	7C182-35	7C182-45
Maximum Access Time (ns)	25	35	45
Maximum Operating Current (mA)	140	140	140
Maximum Standby Current (mA)	35	35	35

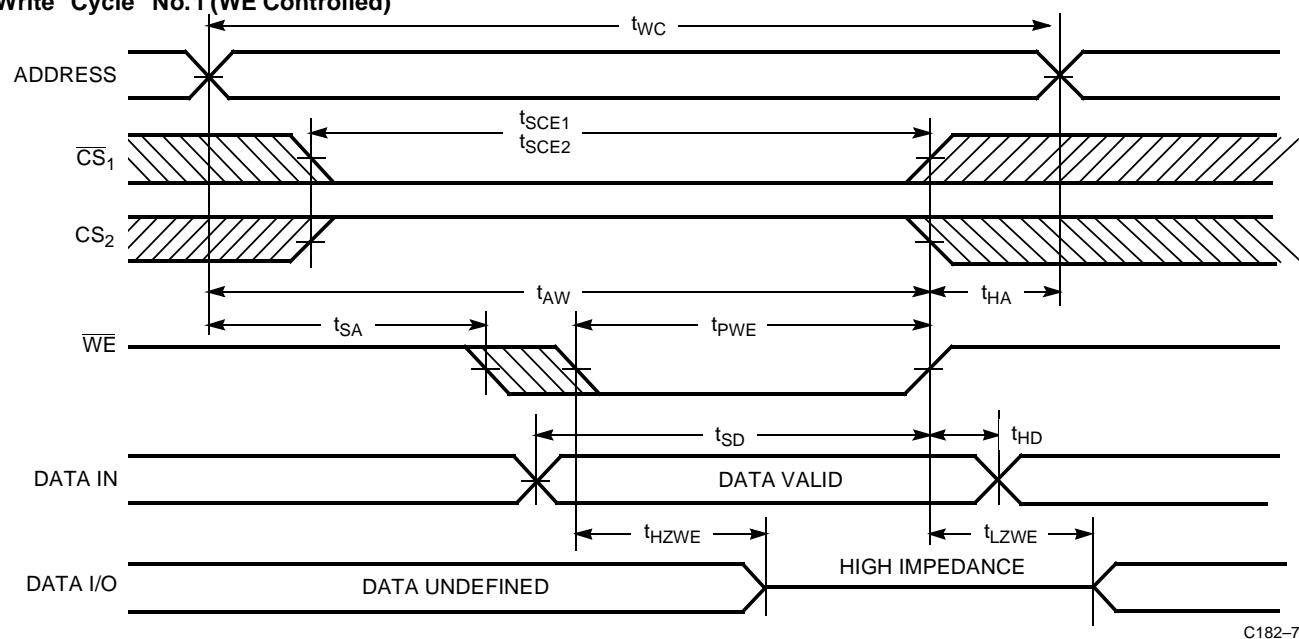
Switching Characteristics Over the Operating Range


Parameter	Description	7C182-25		7C182-35		7C182-45		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE^[4]								
t_{RC}	Read Cycle Time	25		35		45		ns
t_{AA}	Address to Data Valid		25		35		45	ns
t_{OHA}	Data Hold from Address Change	3		3		3		ns
t_{ACE1}	\overline{CE}_1 Access Time		25		35		45	ns
t_{ACE2}	CE_2 Access Time		25		35		45	ns
t_{LZCE1}	\overline{CE}_1 LOW to Low Z	5		5		5		ns
t_{LZCE2}	CE_2 HIGH to Low Z	5		5		5		ns
t_{HZCE1}	\overline{CE}_1 HIGH to High Z ^[5]		18		20		25	ns
t_{HZCE2}	CE_2 LOW to High Z ^[5]		18		20		25	
t_{PU}	\overline{CE}_1 LOW to Power-Up	0		0		0		ns
t_{PD}	\overline{CE}_1 HIGH to Power-Down		20		20		25	ns
t_{DOE}	\overline{OE} Access Time		18		20		20	ns
t_{LZOE}	OE LOW to Low Z	3		3		3		ns
t_{HZOE}	OE HIGH to High Z ^[5]		18		20		25	ns
WRITE CYCLE^[6]								
t_{WC}	Write Cycle Time	25		35		45		ns
t_{SA}	Address Set-Up Time	0		0		0		ns
t_{AW}	Address Valid to End of Write	20		30		40		ns
t_{SD}	Data Set-Up Time	15		20		25		ns
t_{SCE1}	\overline{CE}_1 LOW to Write End	20		30		40		ns
t_{SCE2}	CE_2 HIGH to Write End	20		30		40		ns
t_{PWE}	\overline{WE} Pulse Width	20		25		30		ns
t_{HA}	Address Hold from End of Write	0		0		0		ns
t_{HD}	Data Hold Time	0		0		0		ns
t_{LZWE}	Write HIGH to Low Z ^[7]	3		3		3		ns
t_{HZWE}	Write LOW to High Z ^[5, 7, 8]		13		15		20	ns

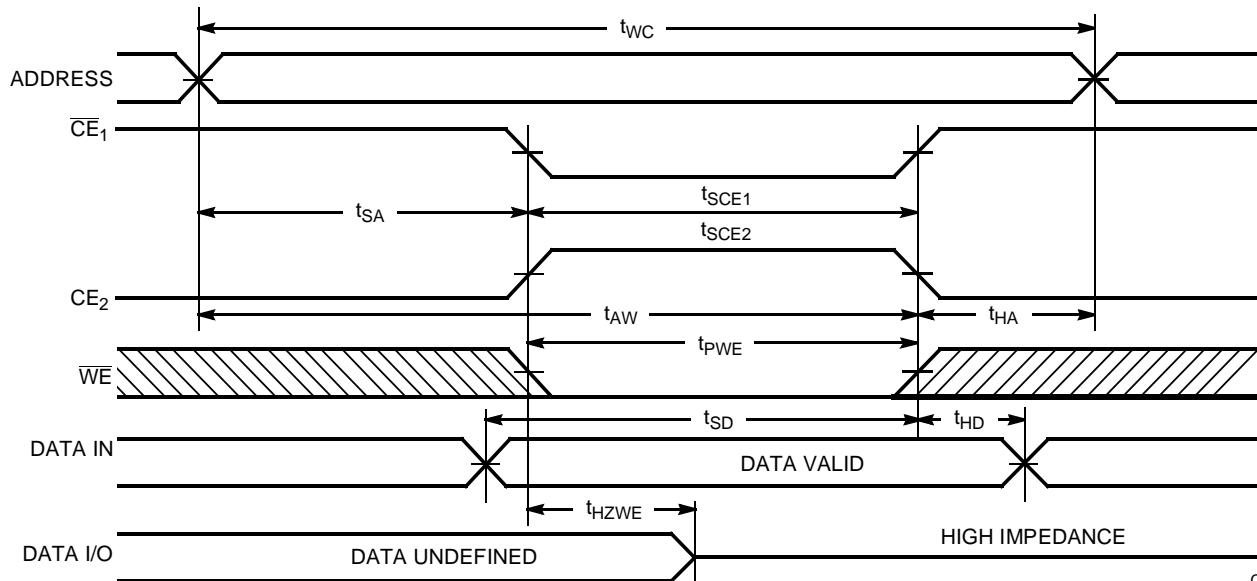
Notes:


4. \overline{WE} is HIGH for read cycle.
5. t_{HZCE} and t_{HZWE} are specified with $C_L = 5$ pF. Transition is measured ± 500 mV from steady-state voltage.
6. The internal write time of the memory is defined by the overlap of \overline{CE}_1 LOW, CE_2 HIGH, and \overline{WE} LOW. All three signals must be asserted to initiate a write and any signal can terminate a write by being deasserted. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
7. At any given temperature and voltage condition, t_{LZWE} is less than t_{HZWE} for any given device. These parameters are sampled and not 100% tested.
8. Address valid prior to or coincident with \overline{CE} transition LOW and CE_2 transition HIGH.

Switching Waveforms


Read Cycle No. 1^[4, 9]

Read Cycle No. 2^[4, 10]



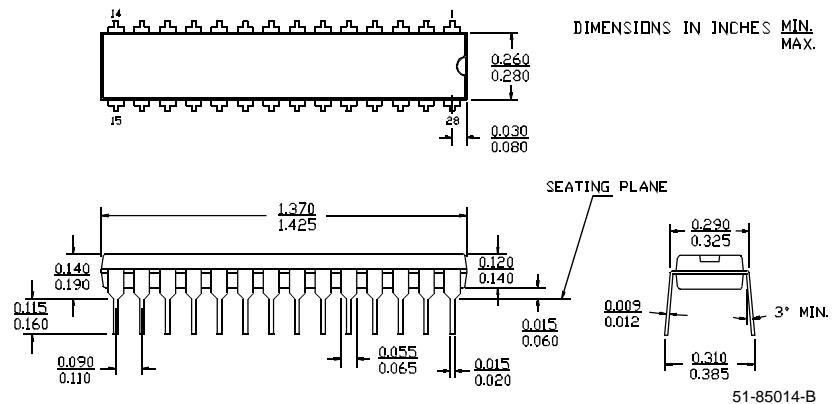
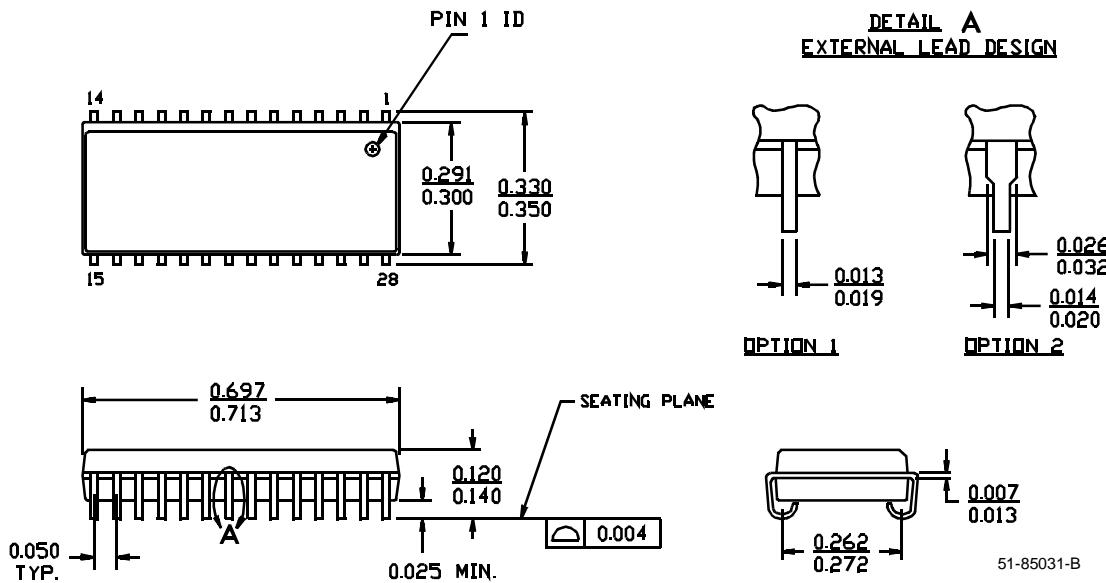
Write Cycle No. 1 (\overline{WE} Controlled)^[6]

Notes:

9. Device is continuously selected. \overline{OE} , $\overline{CE}_1 = V_{IL}$. $CE_2 = V_{IH}$.
10. If \overline{CE}_1 goes HIGH and CE_2 goes LOW simultaneously with \overline{WE} HIGH, the output remains in a high-impedance state.

Switching Waveforms (continued)
Write Cycle No.2 (\overline{CE} Controlled)^[6, 10]

C182-8



Truth Table

\overline{CE}_1	CE_2	OE	WE	Data In	Data Out	Mode
H	X	X	X	Z	Z	Deselect/Power-Down
L	H	L	H	Z	Valid	Read
L	H	X	L	Valid	Z	Write
L	H	H	H	Z	Z	Output Disable
X	L	X	X	Z	Z	Deselect

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
25	CY7C182-25PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C182-25VC	V21	28-Lead Molded SOJ	
35	CY7C182-35PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C182-35VC	V21	28-Lead Molded SOJ	
45	CY7C182-45PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C182-45VC	V21	28-Lead Molded SOJ	

Document #: 38-00110-F

Package Diagrams
28-Lead (300-Mil) Molded DIP P21

28-Lead (300-Mil) Molded SOJ V21
DIMENSIONS IN INCHES MIN. MAX.
