SCES203B - APRIL 1999 - REVISED FEBRUARY 2000

- EPIC™ (Enhanced-Performance Implanted CMOS) Submicron Process
- I_{off} Supports Partial-Power-Down Mode Operation
- Supports 5-V V_{CC} Operation
- Package Options Include Plastic Thin Shrink Small-Outline (DCT, DCU) Packages

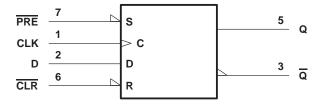
CLK 1 8 V_{CC} D 2 7 PRE Q 3 6 CLR GND 4 5 Q

description

This single positive-edge-triggered D-type flip-flop is designed for 1.65-V to 5.5-V V_{CC} operation.

A low level at the preset (PRE) or clear (CLR) input sets or resets the outputs, regardless of the levels of the other inputs. When PRE and CLR are inactive (high), data at the data (D) input meeting the setup time requirements is transferred to the outputs on the positive-going edge of the clock pulse. Clock triggering occurs at a voltage level and is not directly related to the rise time of the clock pulse. Following the hold-time interval, data at the D input can be changed without affecting the levels at the outputs.

This device is fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.


The SN74LVC2G74 is characterized for operation from -40°C to 85°C.

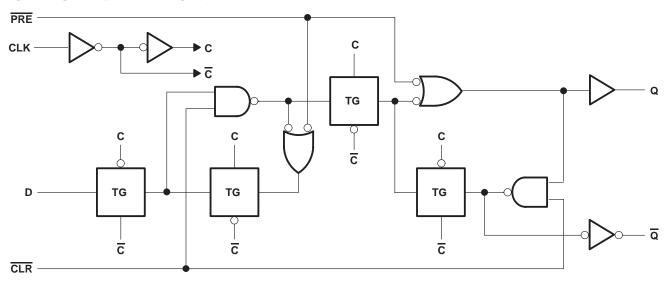
FUNCTION TABLE

	INP	OUTPUTS			
PRE	CLR	CLK	D	Q	Q
L	Н	Х	Χ	Н	L
Н	L	X	Χ	L	Н
L	L	X	Χ	H [†]	н†
Н	Н	\uparrow	Н	Н	L
Н	Н	\uparrow	L	L	Н
Н	Н	L	Χ	Q ₀	\overline{Q}_0

[†] This configuration is nonstable; that is, it does not persist when $\overline{\mathsf{PRE}}$ or $\overline{\mathsf{CLR}}$ returns to its inactive (high) level.

logic symbol†

† This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC is a trademark of Texas Instruments Incorporated.

SCES203B - APRIL 1999 - REVISED FEBRUARY 2000

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage range, V _{CC}	
Input voltage range, V _I (see Note 1)	
Output voltage range, VO (see Notes 1 and 2)	
Input clamp current, I_{IK} ($V_I < 0$)	—50 mA
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Continuous output current, IO	±50 mA
Continuous current through V _{CC} or GND	±100 mA
Package thermal impedance, θ _{JA} (see Note 3): DCT package	296°C/W
DCU package	329°C/W
Storage temperature range, T _{stg}	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.
 - 2. The value of V_{CC} is provided in the recommended operating conditions table.
 - 3. The package thermal impedance is calculated in accordance with JESD 51.

SCES203B - APRIL 1999 - REVISED FEBRUARY 2000

recommended operating conditions (see Note 4)

			MIN	MAX	UNIT
\/00	Supply voltage	Operating	1.65	5.5	V
VCC	Supply voltage	Data retention only	1.5]
		V _{CC} = 1.65 V to 1.95 V	$0.65 \times V_{CC}$		
\/	High-level input voltage	V _{CC} = 2.3 V to 2.7 V	1.7		\ _\
VIH	nigii-ievei iriput voitage	V _{CC} = 3 V to 3.6 V	2		ľ
		V _{CC} = 4.5 V to 5.5 V	$0.7 \times V_{CC}$		
		V _{CC} = 1.65 V to 1.95 V		0.35 × V _{CC}	
V_{IL}	Low level input voltage	V _{CC} = 2.3 V to 2.7 V		0.7	
	Low-level input voltage VCC = 3 V to 3.6 V		0.8	V	
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$		$0.3 \times V_{CC}$	
٧ _I	Input voltage		0	5.5	V
VO	Output voltage		0	Vcc	V
		V _{CC} = 1.65 V		-4	
	High-level output current $ V_{CC} = 2.3 \text{ V} $ $ V_{CC} = 3 \text{ V} $	V _{CC} = 2.3 V		-8	
IOH			-16	mA	
		VCC = 3 V		-24	
		V _{CC} = 4.5 V	0.2.7 ∨ 1.7 0.6 ∨ 2 0.5.5 ∨ 0.7 × V _{CC} 0.1.95 ∨ 0.35 × V _{CC} 0.2.7 ∨ 0.7 0.6 ∨ 0.8 0.5.5 ∨ 0.3 × V _{CC} 0 5.5 0 V _{CC} -4 -8 -16 -24 -32 4 8 16 24 32 0.15 ∨, 2.5 ∨ ± 0.2 ∨ 20 0.3 ∨ 0.3 × 0.3		
		V _{CC} = 1.65 V		4	
		V _{CC} = 2.3 V		8	
I_{OL}	Low-level output current	vel output current V _{CC} = 3 V		16	mA
		vCC = 3 v		24	
		V _{CC} = 4.5 V		32	
		$V_{CC} = 1.8 \text{ V} \pm 0.15 \text{ V}, 2.5 \text{ V} \pm 0.2 \text{ V}$		20	
$\Delta t/\Delta v$	Input transition rise or fall rate	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$		10	ns/V
		$V_{CC} = 5 V \pm 0.5 V$		5	
TA	Operating free-air temperature		-40	85	°C

NOTE 4: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCES203B - APRIL 1999 - REVISED FEBRUARY 2000

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PA	RAMETER	TEST CONDITIONS	VCC	MIN	TYP	MAX	UNIT
		$I_{OH} = -100 \mu A$	1.65 V to 5.5 V	V _{CC} -0.1			
00	1.2						
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		V				
VOH		$I_{OH} = -16 \text{ mA}$	2.1/	2.4			V
		$I_{OH} = -24 \text{ mA}$	3 V	2.3			
		I _{OH} = -32 mA	4.5 V	3.8			
		I _{OL} = 100 μA	1.65 V to 5.5 V			0.1	
		I _{OL} = 4 mA	1.65 V			0.45	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	V _{OL}	I _{OL} = 8 mA	2.3 V			0.3	V
VOL		I _{OL} = 16 mA	2.1/	0.4			, v
VOL	I _{OL} = 24 mA	3 V			0.55		
		I _{OL} = 32 mA	4.5 V			0.55	
II	Control inputs	V _I = 5.5 V or GND	0 to 5.5 V			±5	μА
loff		V_I or $V_O = 5.5 V$	0			±10	μΑ
Icc	·	$V_I = 5.5 \text{ V or GND}, \qquad I_O = 0$	1.65 V to 5.5 V			10	μΑ
Δlcc		One input at V _{CC} – 0.6 V, Other inputs at V _{CC} or GND	3 V to 5.5 V			500	μΑ
Ci		$V_I = V_{CC}$ or GND	3.3 V				pF

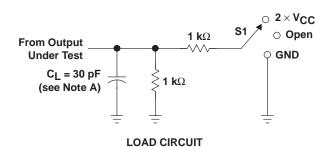
[†] All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 through 4)

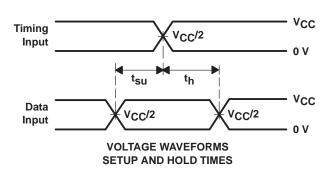
			V _{CC} =		V _{CC} =		V _{CC} =		VCC =		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
fclock	f _{clock}										MHz
_	Pulse duration	CLK									ns
t _W		PRE or CLR low									
	t 0 : : 1 (0)!(^	Data									ne
t _{su}	Setup time before CLK↑	PRE or CLR inactive									ns
th Hold time, data after CLK↑										ns	

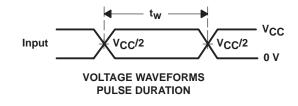
switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 through 4)

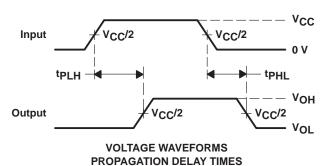
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} =	1.8 V 5 V	V _{CC} =		V _{CC} =		V _{CC} =		UNIT
	(INFOT)	(001701)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
f _{max}											MHz
^t pd	CLK	Q									no
	PRE or CLR	Q or $\overline{\mathbb{Q}}$									ns

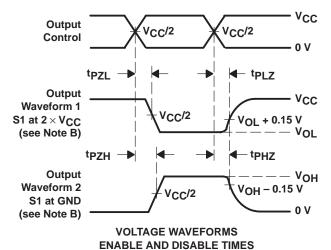


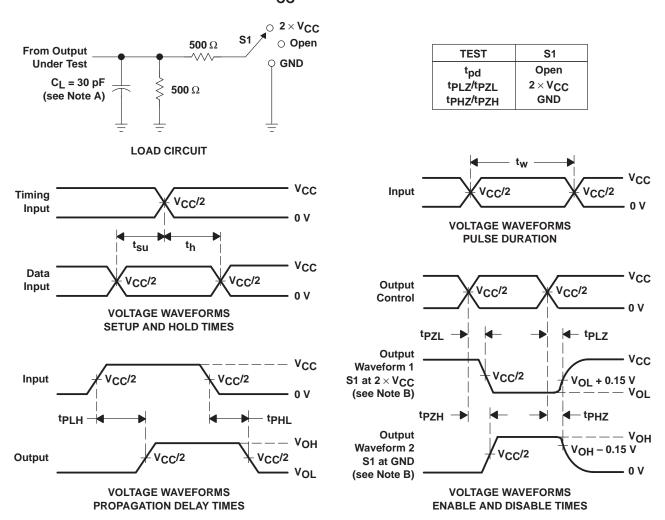

SCES203B - APRIL 1999 - REVISED FEBRUARY 2000


operating characteristics, T_A = 25°C


PARAMETER		TEST CONDITIONS	V _{CC} = 1.8 V	V _{CC} = 2.5 V	V _{CC} = 3.3 V	V _{CC} = 5 V	UNIT
	PARAMETER	TEST CONDITIONS	TYP	TYP	TYP	TYP	ONIT
C _{pd}	Power dissipation capacitance	f = 10 MHz					pF


PARAMETER MEASUREMENT INFORMATION $V_{CC} = 1.8 \text{ V} \pm 0.15 \text{ V}$

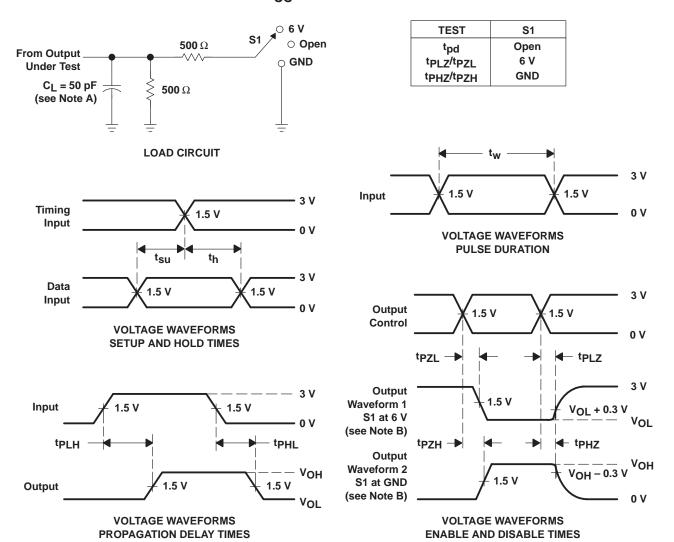



NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50~\Omega$, $t_f \leq$ 2 ns, $t_f \leq$ 2 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLZ and tpHZ are the same as tdis.
- F. tpzL and tpzH are the same as ten.
- G. tpLH and tpHL are the same as tpd.

Figure 1. Load Circuit and Voltage Waveforms

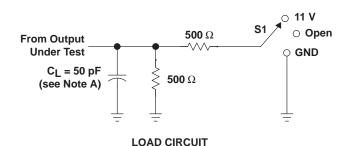
PARAMETER MEASUREMENT INFORMATION $V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$



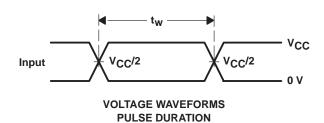
- NOTES: A. C_L includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_Q = 50~\Omega$, $t_f \leq$ 2 ns, $t_f \leq$ 2 ns.
 - D. The outputs are measured one at a time with one transition per measurement.
 - E. tpLz and tpHz are the same as tdis.
 - F. t_{PZL} and t_{PZH} are the same as t_{en} .
 - G. t_{PLH} and t_{PHL} are the same as t_{pd} .

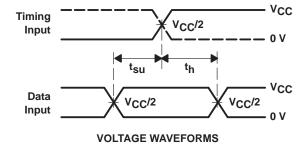
Figure 2. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$

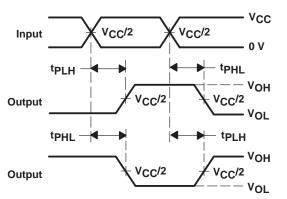


NOTES: A. C_L includes probe and jig capacitance.

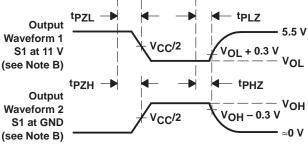

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_{O} = 50 \, \Omega$, $t_{f} \leq 2.5 \, \text{ns}$, $t_{f} \leq 2.5 \, \text{ns}$.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLZ and tpHZ are the same as tdis.
- F. tpzL and tpzH are the same as ten.
- G. tpLH and tpHL are the same as tpd.


Figure 3. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION $V_{CC} = 5 V \pm 0.5 V$



VCC


0 V

V_{CC}/2

SETUP AND HOLD TIMES Output

V_{CC}/2

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES **INVERTING AND NONINVERTING OUTPUTS**

VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING

NOTES: A. C_I includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f \leq$ 2.5 ns, $t_f \leq$ 2.5 ns.

Control

- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLz and tpHz are the same as tdis.
- F. tpzl and tpzH are the same as ten.
- G. tpLH and tpHL are the same as tpd.

Figure 4. Load Circuit and Voltage Waveforms

PRODUCT PREVIEW

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 2000, Texas Instruments Incorporated