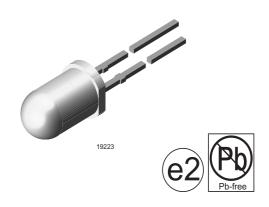


High Brightness LED, \varnothing 5 mm Untinted Non-Diffused

Description


The TLC.58.. series is a clear, non diffused 5 mm LED for high end applications where supreme luminous intensity and a very small emission angle is required. These lamps with clear untinted plastic case utilize

These lamps with clear untinted plastic case utilize the highly developed ultrabright AllnGaP and GaP technologies.

The very small viewing angle of these devices provide a very high luminous intensity.

Features

- · Untinted non diffused lens
- Utilizing ultrabright AllnGaP, OMA technology
- · Very high luminous intensity
- · Very small emission angle
- High operating temperature:
 T_j (chip junction temperature)
 up to 125 °C for AllnGaP devices
- Luminous intensity and color categorized for each packing unit
- ESD-withstand voltage: 2 kV acc. to MIL STD 883
 D, Method 3015.7 for AllnGaP, 1 kV for InGaN
- · Lead-free device

Applications

Interior and exterior lighting
Outdoor LED panels, displays
Instrumentation and front panel indicators
Central high mounted stop lights (CHMSL) for motor vehicles

Replaces incandescent lamps Traffic signals and signs Light guide design

Parts Table

Part	Color, Luminous Intensity	Angle of Half Intensity (±φ)	Technology
TLCS5810	Red, I _V > 30000 mcd (typ.)	4 °	AllnGaP on Si

Absolute Maximum Ratings

T_{amb} = 25 °C, unless otherwise specified **TLCS581.**

Parameter	Test condition	Part	Symbol	Value	Unit
Reverse voltage			V_{R}	5	V
DC Forward current	T _{amb} ≤ 85°C	TLCS5810	I _F	50	mA
Surge forward current	t _p ≤ 10 μs	TLCS5800	I _{FSM}	1	Α
Power dissipation	T _{amb} ≤ 85°C	TLCS5810	P_V	135	mW
Junction temperature		TLCS5810	Tj	125	°C
Operating temperature range			T _{amb}	- 40 to + 100	°C

Document Number 84629 www.vishay.com

TLCS581.

Vishay Semiconductors

Parameter	Test condition	Part	Symbol	Value	Unit
Storage temperature range			T _{stg}	- 40 to + 100	°C
Soldering temperature	$t \le 5$ s, 2 mm from body		T _{sd}	260	°C
Thermal resistance junction/ ambient			R _{thJA}	300	K/W

Optical and Electrical Characteristics

T_{amb} = 25 °C, unless otherwise specified

Red

TLCS581.

Parameter	Test condition	Part	Symbol	Min	Тур.	Max	Unit
Luminous intensity 1)	I _F = 50 mA	TLCS5810	I _V	10000	30000		
Dominant wavelength	I _F = 50 mA		λ_{d}	620	625	630	nm
Peak wavelength	I _F = 50 mA		λ_{p}		632		nm
Spectral bandwidth at 50 % I _{rel max}	I _F = 50 mA		Δλ		18		nm
Angle of half intensity	I _F = 50 mA		φ		± 4		deg
Forward voltage	I _F = 50 mA		V _F		2.1	2.7	V
Reverse voltage	I _R = 10 μA		V _R	5			V
Temperature coefficient of V _F	I _F = 50 mA		TC _{VF}		- 3.5		mV/K
Temperature coefficient of λ_d	I _F = 50 mA		TCλ _d		0.05		nm/K

 $^{^{1)}}$ in one Packing Unit $I_{Vmax}/I_{Vmin} \leq 2.0$

Vishay Semiconductors

Typical Characteristics (Tamb = 25 °C unless otherwise specified)

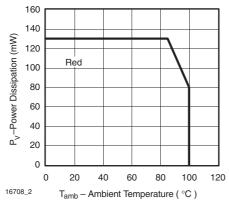


Figure 1. Power Dissipation vs. Ambient Temperature

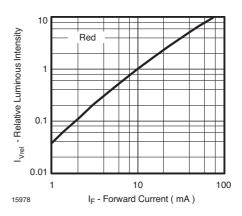


Figure 4. Relative Luminous Flux vs. Forward Current

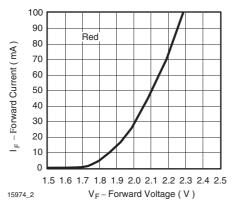


Figure 2. Forward Current vs. Forward Voltage

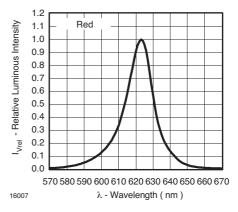
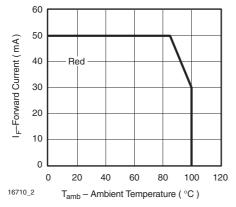
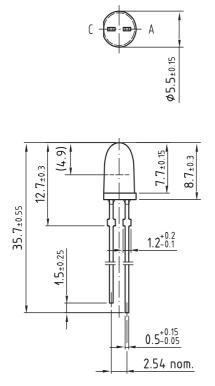
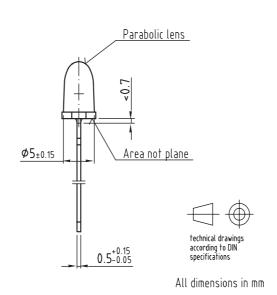


Figure 5. Relative Intensity vs. Wavelength


Figure 3. Forward Current vs. Ambient Temperature

Vishay Semiconductors

VISHAY

Package Dimensions in mm

Drawing-No.: 6.544-5310.01-4

Issue: 2; 04.07.03

95 11476

Vishay Semiconductors

Ozone Depleting Substances Policy Statement

It is the policy of Vishay Semiconductor GmbH to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

> We reserve the right to make changes to improve technical design and may do so without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423

Document Number 84629 www.vishay.com Rev. 1.0, 08-Oct-04