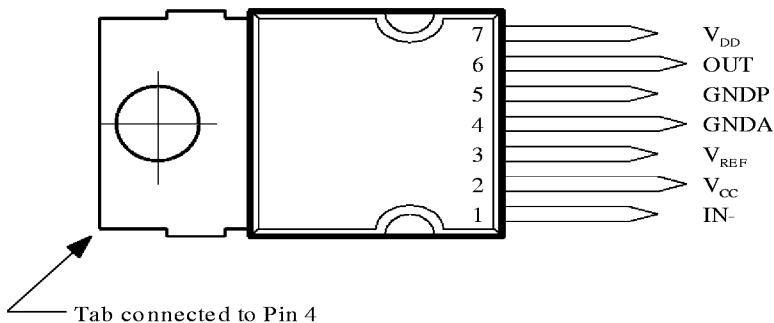


DC COUPLING HIGH VOLTAGE VIDEO AMPLIFIER

PRODUCT PREVIEW

- BANDWIDTH : 40MHz TYPICAL
- RISE AND FALL TIME : 9ns TYPICAL
- SUPPLY VOLTAGE : 110V
- FLASH-OVER PROTECTION
- POWER DISSIPATION : 3.0W
- ESD PROTECTED


HEPTAWATT
(Plastic Package)

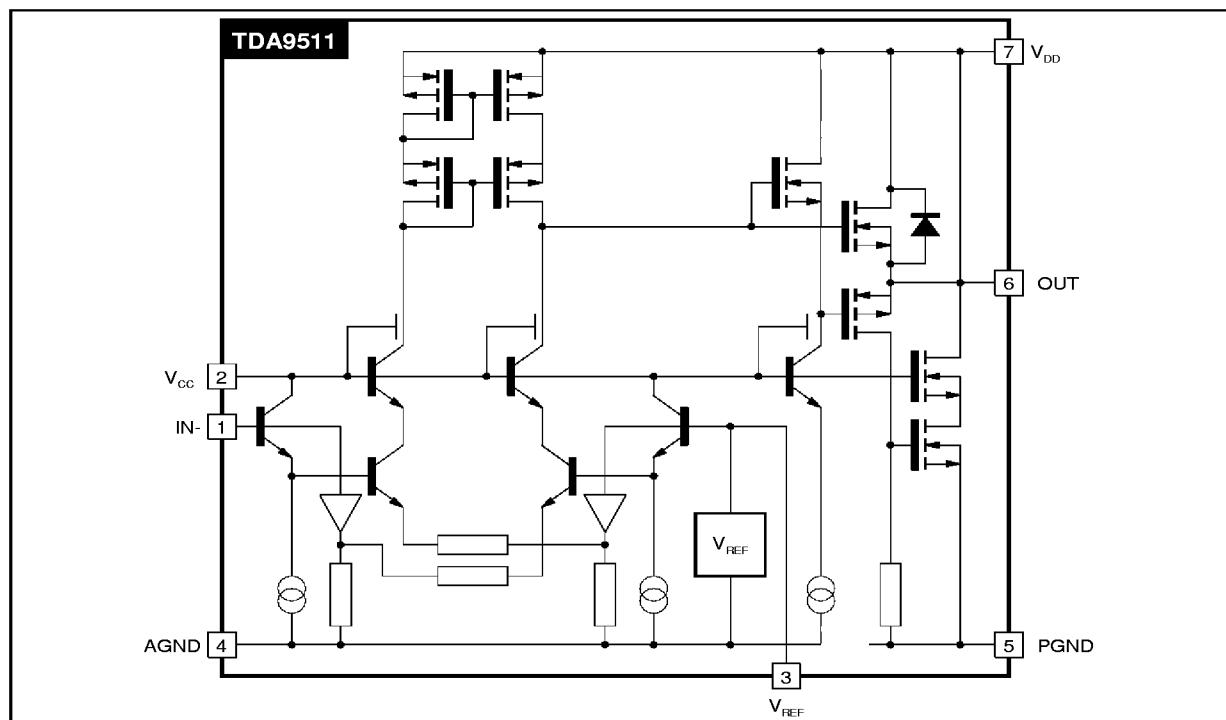
ORDER CODE : TDA9511

DESCRIPTION

The TDA9511 includes a video amplifier designed with a high voltage bipolar/CMOS/DMOS technology (BCD). It drives in DC coupling one cathode of a monitor and is protected against flashovers. It is available in Heptawatt package.

PIN CONNECTIONS

9511-01.EPS


PIN CONFIGURATION

Pin N	Symbol	Function
1	IN-	Input of the amplifier
2	V _{CC}	Low Voltage Power Supply (12V Typ.)
3	V _{REF}	Internal Voltage Reference (3.3V)
4	GND	Analog Ground
5	GNDP	Power Ground
6	OUT	Output driving the cathode
7	V _{DD}	High Voltage Power Supply (110V Max.)

9511-01.TBL

TDA9511

BLOCK DIAGRAM

951-02-EP8

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{DD}	Supply High Voltage (Pin 7)	120	V
V_{CC}	Supply Low Voltage (Pin 2)	20	V
I_{OD} I_{OG}	Output Current to V_{DD} (Pin 6) Output Current to Ground (Pin 6) (see Note 1)	protected 80	mA
I_j	Input Current (Pin 1)	50	mA
T_j	Junction Temperature	150	$^{\circ}\text{C}$
T_{oper}	Operating Ambient Temperature	0, +70	$^{\circ}\text{C}$
T_{stg}	Storage Temperature	-20, +150	$^{\circ}\text{C}$

951-02-TBL

Note 1 : Pulsed current $t \leq 50\mu\text{s}$

THERMAL DATA

Symbol	Parameter	Value	Unit
$R_{th(j-c)}$	Junction-Case Thermal Resistance	Max.	$^{\circ}\text{C/W}$
$R_{th(j-a)}$	Junction-Ambient Thermal Resistance	Typ.	$^{\circ}\text{C/W}$

951-03-TBL

ELECTRICAL CHARACTERISTICS ($V_{CC} = 12V$, $V_{DD} = 110V$, $T_{amb} = 25^\circ C$, unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
V_{DD}	High Supply Voltage (Pin 7)		20		110	V
V_{CC}	Low Supply Voltage (Pin 2)		10	12	15	V
I_{DD}	DC Current of High Voltage Supply (without feedback current)	$V_{OUT} = 60V$		7		mA
I_{CC}	Low Voltage Supply Internal DC Current			15		mA
V_{REF}	Internal Reference (Pin 3)			3.3		V
dV_{REF}/dV_{CC}	Drift of Reference Voltage versus V_{CC}			0.12		%/V
dV_{REF}/dT	Drift of Reference Voltage versus Temperature			TBD		mV/°C
V_{SATH}	High Output Saturation Voltage (Pin 6)	$I_O = -60mA$		$V_{DD} - 15$		V
V_{SATL}	Low Output Saturation Voltage (Pin 6)	$I_O = 60mA$		17		V
BW	Bandwidth at -3dB	Measured on CRT cathodes. $C_{LOAD} = 10pF$, $R_{protect} = 220\Omega$, $V_{OUT} = 60V$, $\Delta V_{OUT} = 20V_{PP}$, Feedback gain = 20		40		MHz
t_R , t_F	Rise and Fall Time	Measured between 10% & 90% of output pulse, $C_{LOAD} = 10pF$, $R_{protect} = 220\Omega$, $V_{OUT} = 60V$, $\Delta V_{OUT} = 40V_{PP}$		9		ns
G_O	Open Loop Gain	$V_{OUT} = 60V$		65		dB
	Open Loop Gain Temperature Coefficient			TBD		dB/°C
I_{IB}	Input Bias Current (Pin 1)	$V_{OUT} = 60V$		TBD		μA
	Input Bias Temperature Coefficient			TBD		nA/°C
R_{IN}	Input Resistance	See Note 2	TBD	200		kΩ

Note 2 : Characterized and not tested.

9511/04/TBL

TYPICAL APPLICATION

- A differential amplifier, the gain of which is fixed by external feedback resistors ;
- An integrated voltage reference designed with a bandgap ;
- A protection diode against CRT arc discharges.

PC board lay-out

The best performances of the high voltage video amplifier will be obtained only with a carefully designed PC board. Output to input capacitances are of particular importance.

Power dissipation

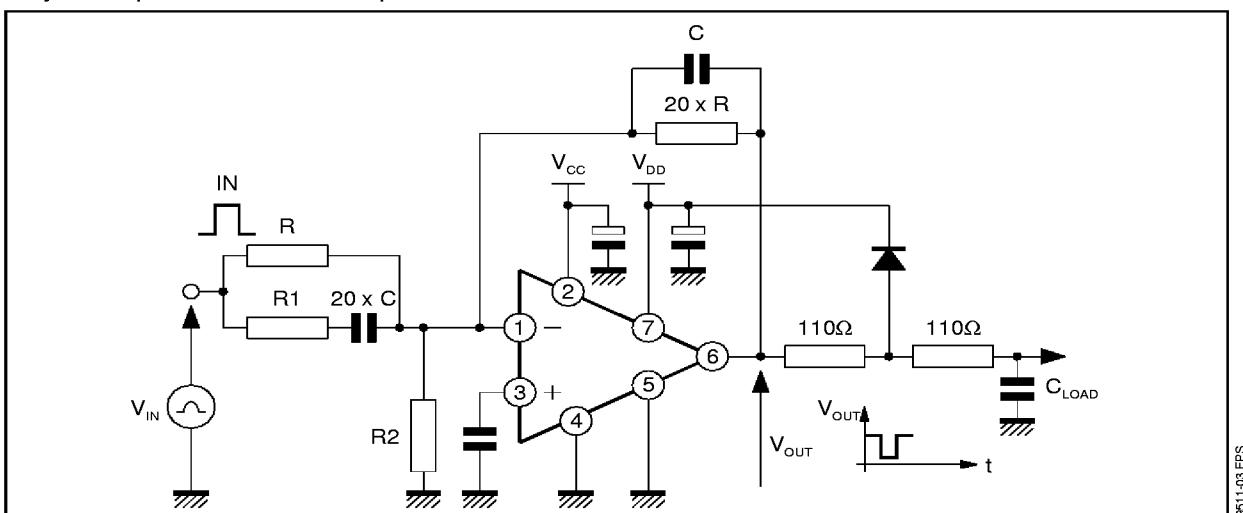
The power dissipation consists of a static part and a dynamic part. The static dissipation varies with

the output voltage and the feedback resistor. The dynamic power dissipation increases with the pixel frequency.

For a signal frequency of 40MHz and 40V_{PP} output signal, the typical power dissipation is about 3.0W, for V_{DD} = 110V.

In first approximation, the dynamic dissipation is :

$$P_D = V_{DD} * C_{LOAD} * \Delta V_{OUT} * f$$

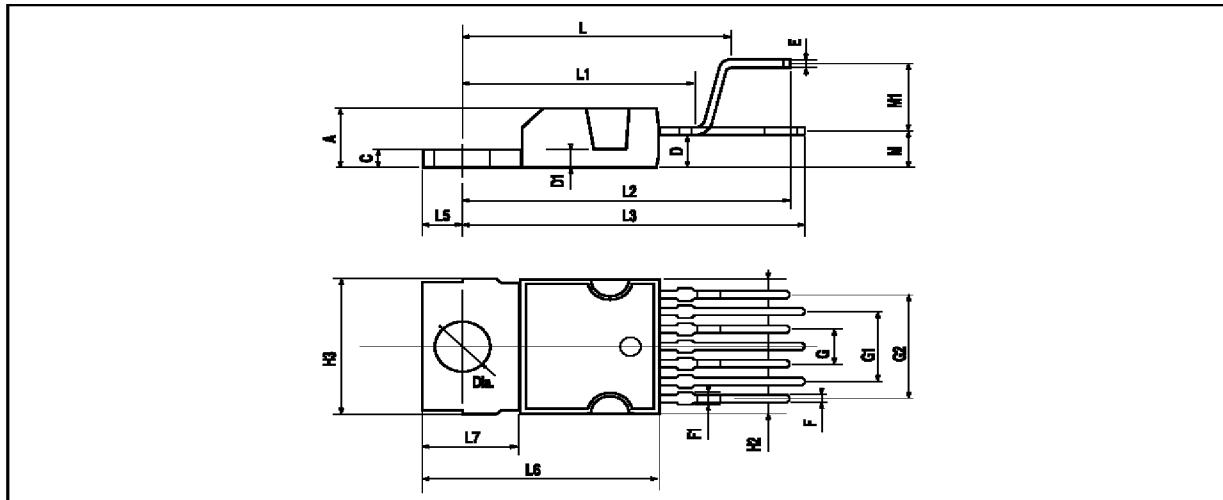

and the total dissipation is :

$$P = V_{DD} * C_{LOAD} * \Delta V_{OUT} * f + V_{DD} * I_{DD}$$

$$+ V_{CC} * I_{CC} - (V_{DD} - V_{OUT}) \frac{V_{OUT}}{REFEEDBACK}$$

with f = pixel frequency

$$P = 110V \times 10pF \times 40V \times 40MHz + 110V \times 7mA + 12 \times 20mA - 60^2V/20k\Omega = 2.95W$$



R1 and R2 are in the range of some hundreds ohms.

R is in the range of $1\text{k}\Omega$.

C must be lower than 1pF taking into account all the parasitic capacitors.

PACKAGE MECHANICAL DATA : 7 PINS - PLASTIC HEPTAWATT

PM-HEPTW-EPS

Dimensions	Millimeters			Inches		
	Min.	Typ.	Max.	Min.	Typ.	Max.
A			4.8			0.189
C			1.37			0.054
D	2.4		2.8	0.094		0.110
D1	1.2		1.35	0.047		0.053
E	0.35		0.55	0.014		0.022
F	0.6		0.8	0.024		0.031
F1			0.9			0.035
G	2.41	2.54	2.67	0.095	0.100	0.105
G1	4.91	5.08	5.21	0.193	0.200	0.205
G2	7.49	7.62	7.8	0.295	0.300	0.307
H2			10.4			0.409
H3	10.05		10.4	0.396		0.409
L		16.97			0.668	
L1		14.92			0.587	
L2		21.54			0.848	
L3		22.62			0.891	
L5	2.6		3	0.102		0.118
L6	15.1		15.8	0.594		0.622
L7	6		6.6	0.236		0.260
M		2.8			0.110	
M1		5.08			0.200	
Dia.	3.65		3.85	0.144		0.152

HEPTV-TBL

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No licence is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1997 SGS-THOMSON Microelectronics - All Rights Reserved

Purchase of I²C Components of SGS-THOMSON Microelectronics, conveys a license under the Philips I²C Patent. Rights to use these components in a I²C system, is granted provided that the system conforms to the I²C Standard Specifications as defined by Philips.

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco
The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

