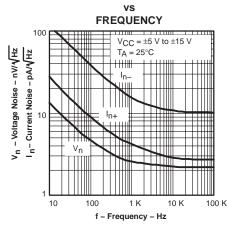


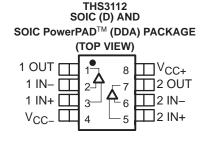
SLOS385 - SEPTEMBER 2001

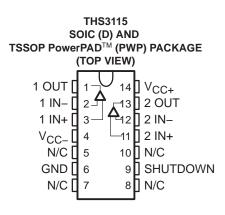
LOW-NOISE, HIGH-SPEED CURRENT FEEDBACK AMPLIFIERS

FEATURES

- Low Noise
 - 2.9 pA/√Hz Noninverting Current Noise
 - 10.8 pA/√Hz Inverting Current Noise
 - 2.2 nV/√Hz Voltage Noise
- Wide Supply Voltage Range ±5 V to ±15 V
- Wide Output Swing
 - 25 V_{PP} Output Voltage, R_L = 100 Ω, ±15-V Supply
- High Output Current, 150 mA (Min)
- High Speed
 - 110 MHz (-3 dB, G=1, ±15 V)
 - 1550 V/ μ s Slew Rate (G = 2, \pm 15 V)
- Low Distortion, G = 2
 - 78 dBc (1 MHz, 2 V_{PP}, 100-Ω load)
- Low Power Shutdown (THS3115)
 - 300-µA Shutdown Quiescent Current Per Channel
- Thermal Shutdown and Short Circuit Protection
- Standard SOIC, SOIC PowerPAD™, and TSSOP PowerPAD™ Package
- Evaluation Module Available


APPLICATIONS


- Communication Equipment
- Video Distribution
- Motor Drivers
- Piezo Drivers


DESCRIPTION

The THS3112/5 are low-noise, high-speed current feedback amplifiers, ideal for any application requiring high output current. The low noninverting current noise of 2.9 pA/ $\sqrt{\text{Hz}}$ and the low inverting current noise of 10.8 pA/ $\sqrt{\text{Hz}}$ increase signal to noise ratios for enhanced signal resolution. The THS3112/5 can operate from $\pm 5\text{-V}$ to $\pm 15\text{-V}$ supply voltages, while drawing as little as 4.5 mA of supply current per channel. It offers low -78-dBc total harmonic distortion driving 2 V_{PP} into a 100- Ω load. The THS3115 features a low power shutdown mode, consuming only 300- μ A shutdown quiescent current per channel. The THS3112/5 is packaged in a standard SOIC, SOIC PowerPADTM, and TSSOP PowerPAD packages.

VOLTAGE NOISE AND CURRENT NOISE

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PowerPAD is a trademark of Texas Instruments.

AVAILABLE OPTIONS

	PACKAGED DEVICE					
TA	SOIC-8 (D)	SOIC-8 PowerPAD SOIC-14 (DDA) (D)		TSSOP-14 (PWP)	EVALUATION MODULES	
0°C to 70°C	THS3112CD	THS3112CDDA	THS3115CD	THS3115CPWP	THS3112EVM	
-40°C to 85°C	THS3112ID	THS3112IDDA	THS3115ID	THS3115IPWP	THS3115EVM	

absolute maximum ratings over operating free-air temperature (unless otherwise noted)†

Supply voltage, V _{CC+} to V _{CC-}	33 V
Input voltage	± V _{CC}
Output current (see Note 1)	
Differential input voltage	± 4 V
Maximum junction temperature	
Total power dissipation at (or below) 25°C free-air temperature	See Dissipation Ratings Table
Operating free-air temperature, T _A : Commercial	0°C to 70°C
Industrial	–40°C to 85°C
Storage temperature, T _{stq} : Commercial	–65°C to 125°C
Industrial	
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	300°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: The THS3112 and THS3115 may incorporate a PowerPAD™ on the underside of the chip. This acts as a heatsink and must be connected to a thermally dissipating plane for proper power dissipation. Failure to do so may result in exceeding the maximum junction temperature which could permanently damage the device. See TI Technical Brief SLMA002 for more information about utilizing the PowerPAD™ thermally enhanced package.

DISSIPATION RATING TABLE

PACKAGE	AL^{θ}	T _A = 25°C POWER RATING
D-8	95°C/W [‡]	1.32 W
DDA	67°C/W	1.87 W
D-14	66.6°C/W [‡]	1.88 W
PWP	37.5°C/W	3.3 W

[‡] This data was taken using the JEDEC proposed high-K test PCB. For the JEDEC low-K test PCB, the θ_{JA} is168°C/W for the D-8 package and 122.3°C/W for the D-14 package.

recommended operating conditions

		MIN	NOM	MAX	UNIT
Overally and V	Dual supply	±5		±15	
Supply voltage, V _{CC+} to V _{CC-}	Single supply	10		30	V
0 1 1 1 1 1	C-suffix	0		70	20
Operating free-air temperature, T _A	I-suffix	-40		85	°C
Object description of a few days and affect to the OND of	High level (device shutdown)	2			
Shutdown pin input levels, relative to the GND pin	Low level (device active)			0.8	V

electrical characteristics over recommended operating free-air temperature range, T_A = 25°C, V_{CC} = ± 15 V, R_F = 750 Ω , R_L = 100 Ω (unless otherwise noted)

dynamic performance

	PARAMETER		TEST CONDITION	ONS	MIN TYP	MAX	UNIT
		D. 400.0	$R_F = 1 k\Omega$,	V _{CC} = ±5 V	95		
	Concil pigned benduidth (2 dD)	R _L = 100 Ω	G = 1	V _{CC} = ±15 V	110		
DW	Small-signal bandwidth (–3 dB)	D. 400.0	$R_F = 750 \Omega$,	V _{CC} = ±5 V	103		N41.1-
BW		$R_L = 100 \Omega$	G = 2	V _{CC} = ±15 V	110		MHz
	Donahuidth (O.4 dD)		$R_F = 750 \Omega$,	V _{CC} = ±5 V	25		
	Bandwidth (0.1 dB)		G = 2	V _{CC} = ±15 V	48		
			V _O = 10 V _{PP}	V _{CC} = ±15 V	1550		
SR	Slew rate (see Note 2), G=8	G = 2 $R_F = 680 \Omega$	V 5.V	V _{CC} = ±5 V	820		V/μs
		117 - 000 32	$V_O = 5 V_{PP}$	$V_{CC} = \pm 15 \text{ V}$	1300		
	Cattling time to 0.49/		$V_O = 2 V_{PP}$	$V_{CC} = \pm 5 \text{ V}$	50	·	20
t _S	Settling time to 0.1%	G = -1	$V_O = 5 V_{PP}$	$V_{CC} = \pm 15 \text{ V}$	63		ns

NOTE 2: Slew rate is defined from the 25% to the 75% output levels.

noise/distortion performance

	PARAMETER			TEST CONDITIO	NS	MIN T	P MAX	UNIT		
				$R_F = 680 \Omega$,	V _{O(PP)} = 2 V	-	78			
THD	Total harmonic distortion		$V_{CC} = \pm 15 \text{ V},$	f = 1 MHz	V _{O(PP)} = 8 V	_	75	dBc		
טחו	Total Harmonic distortion	THE distortion					V _{O(PP)} = 2 V	-	76	ubc
			$V_{CC} = \pm 5 \text{ V},$	$V_{CC} = \pm 5 \text{ V}, f = 1 \text{ MHz}$		-	74			
Vn	Input voltage noise		$V_{CC} = \pm 5 \text{ V}, \pm$	±15 V	f = 10 kHz	2	.2	nV/√Hz		
	Land compatible	Noninverting Input		45.77	f 40 HH-	2	.9	pA/√Hz		
In	Input current noise	Inverting Input	$V_{CC} = \pm 5 \text{ V}, \pm$	±15 V	f = 10 kHz	10	.8	pA/√HZ		
	Onestalla		G = 2,	f = 1 MHz,	$V_{CC} = \pm 5 \text{ V}$	-	67	JD.		
	Crosstalk		$V_O = 2 Vpp$		$V_{CC} = \pm 15 \text{ V}$	-	67	dBc		
	Differential main arms		G = 2,	Ri = 150 O	$V_{CC} = \pm 5 \text{ V}$	0.01	%			
	Sinoronial gain one.		40 IRE modul	_	$V_{CC} = \pm 15 \text{ V}$	0.01	%			
			±100 IRE Ramp		$V_{CC} = \pm 5 \text{ V}$	0.01	1°			
	Differential phase error		NTSC and PAL		V _{CC} = ±15 V	0.01	1°			

electrical characteristics over recommended operating free-air temperature range, T_A = 25°C, V_{CC} = ± 15 V, R_F = 750 Ω , R_L = 100 Ω (unless otherwise noted) (continued)

dc performance

	PARAMETER	TEST CON	DITIONS	MIN	TYP	MAX	UNIT
	land to effect and to en		T _A = 25°C		3	8	
	Input offset voltage Channel offset voltage matching Offset drift Input bias current + Input bias current Input offset current Input offset voltage matching VCC = ± 5 V, VCC = ± 15 V T VCC = ± 5 V, VCC = ± 15 V T T T	T _A = full range			13		
٧IO	Channel offert valte as a setable a	$V_{CC} = \pm 5 \text{ V},$	T _A = 25°C		1	3	mV
	Channel offset voltage matching	100 = 10 1	T _A = full range			4	
	Offset drift		T _A = full range		10		μV/°C
	lanut biog gurrant		T _A = 25°C			23	
	- Input bias current		T _A = full range			30	
	Voc = +5 V	T _A = 25°C		0.33	2		
^I IB	+ Input bias current	$V_{CC} = \pm 15 \text{ V}$	T _A = full range			3	μΑ
	land to the standard		T _A = 25°C		4	22	
	input offset current		T _A = full range			30	
ZOL	Open loop transimpedance	$V_{CC} = \pm 5 \text{ V},$ $V_{CC} = \pm 15 \text{ V}$	R _L = 1 kΩ,		1		$M\Omega$

input characteristics

	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
.,	land account and a collane range	$V_{CC} = \pm 5 V$		±2.5	±2.7		V
VICR	Input common-mode voltage range	$V_{CC} = \pm 15 \text{ V}$	T _A = full range	±12.5	±12.7		V
		$V_{CC} = \pm 5 \text{ V},$	T _A = 25°C	56	62		
CMRR	Common-mode rejection ratio	$V_{I} = -2.5 \text{ V to } 2.5 \text{ V}$	T _A = full range	54			dB
CIVIKK	Common-mode rejection ratio	$V_{CC} = \pm 15 \text{ V},$ $V_{I} = -12.5 \text{ V to } 12.5 \text{ V}$	T _A = 25°C	63	67		uБ
		$V_I = -12.5 \text{ V to } 12.5 \text{ V}$	T _A = full range	60			
Г.	lament manifestamen	+ Input			1.5		ΜΩ
R _l	Input resistance	- Input			15		Ω
Ci	Input capacitance				2		pF

output characteristics

PARAMETER		Т	TEST CONDITIONS			TYP	MAX	UNIT
			$R_L = 1 k\Omega$,	T _A = 25°C		3.9		
		$G = 4, V_I = 1 V, V_{CC} = \pm 5 V$	D 400 0	T _A = 25°C	3.6	3.8		
		VCC = ±3 V	$R_L = 100 \Omega$,	T _A = full range	3.4			.,
VO	Output voltage swing		$R_L = 1 \text{ k}\Omega$	T _A = 25°C		13.5		V
		$G = 4$, $V_I = 3.4 V$, $V_{CC} = \pm 15 V$	D 400 0	T _A = 25°C	12.2	13.3		
		VCC = ±13 V	$R_L = 100 \Omega$	T _A = full range	12			
		$G = 4$, $V_I = 0.9 V$, $V_{CC} = \pm 5 V$	R _L = 25 Ω,	T 0500	100	130		
l _O	Output current drive	$G = 4$, $V_I = 1.7 V$, $V_{CC} = \pm 15 V$	R _L = 25 Ω,	T _A = 25°C	175	270		mA
ro	Output resistance	open loop				14		Ω

electrical characteristics over recommended operating free-air temperature range, T_A = 25°C, V_{CC} = ± 15 V, R_F = 750 Ω , R_L = 100 Ω , GND = 0 V (unless otherwise noted) (continued)

power supply

	PARAMETER	TEST CO	NDITIONS	MIN	TYP	MAX	UNIT
		V 15 V	T _A = 25°C		4.4	5.5	
l.	Ovices and average (non-parallélan)	$V_{CC} = \pm 5 V$	T _A = full range			6	4
Icc	Quiescent current (per amplifier)	.45.4	T _A = 25°C		4.9	6.5	mA
		$V_{CC} = \pm 15 \text{ V}$	T _A = full range			7.5	
			T _A = 25°C	53	60		
D0DD		$V_{CC} = \pm 5 \text{ V}$	T _A = full range	50			15
PSRR	Power supply rejection ratio	.45.1	T _A = 25°C	68	74		dB
		$V_{CC} = \pm 15 \text{ V}$	T _A = full range	66			

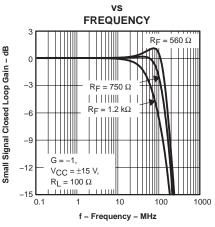
shutdown characteristics (THS3115 only)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
ICC(SHDN)	Shutdown quiescent current (per channel)	V _{GND} = 0 V, V _{CC} = ±5 V, ±15 V		0.3	0.45	mA
tDIS	Disable time (see Note 3)	V _{CC} = ±15 V		200		ns
tEN	Enable time (see Note 3)	V _{CC} = ±15 V		300		ns
IL(SHDN)	Shutdown pin input bias current for power up	$V_{CC} = \pm 5 \text{ V}, \pm 15 \text{ V}, V_{(SHDN)} = 0 \text{ V}$		18	25	μΑ
I _{IH} (SHDN)	Shutdown pin input bias current for power down	$V_{CC} = \pm 5 \text{ V}, \pm 15 \text{ V}, V_{(SHDN)} = 3.3 \text{ V}$		110	130	μΑ

NOTE 3: Disable/enable time is defined as the time from when the shutdown signal is applied to the SHDN pin to when the supply current has reached half of its final value.

TYPICAL CHARACTERISTICS Table of Graphs

			FIGURE
	Small signal closed loop gain	vs Frequency	1 – 11, 13, 14
	Gain and phase	vs Frequency	12
	Small signal closed loop noninverting gain	vs Frequency	15, 16
	Small signal closed loop inverting gain	vs Frequency	17, 18
	Small and large signal output	vs Frequency	19, 20
		vs Frequency	21, 22
	Harmonic distortion	vs Peak-to-peak output voltage	23, 24
V _n , I _n	Voltage noise and current noise	vs Frequency	25
CMRR	Common-mode rejection ratio	vs Frequency	26
PSRR	Power supply rejection ratio	vs Frequency	27
	Crosstalk	vs Frequency	28
Z _O	Output impedance	vs Frequency	29
SR	Slew rate	vs Output voltage step	30
.,		vs Free-air temperature	31
V _{IO}	Input offset voltage	vs Common-mode input voltage	32
ΙΒ	Input bias current	vs Free-air temperature	33
VO	Output voltage	vs Output current	34, 35
	Output voltage headroom	vs Output current	36
ICC	Supply current (per channel)	vs Supply voltage	37
	Shutdown response		38



Small Signal Closed Loop Gain - dB

TYPICAL CHARACTERISTICS

SMALL SIGNAL CLOSED LOOP GAIN **FREQUENCY** $R_F = 560 \Omega$ $R_F = 750 \Omega$ $R_F = 1.2 \text{ k}\Omega$ -6 -9 G = -1. $V_{CC} = \pm 5 \text{ V},$ $R_L = 100 \Omega$ -12 -15 L 0.1

SMALL SIGNAL CLOSED LOOP GAIN

SMALL SIGNAL CLOSED LOOP GAIN

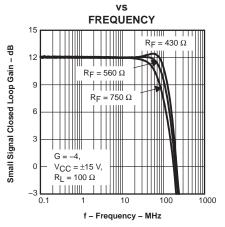
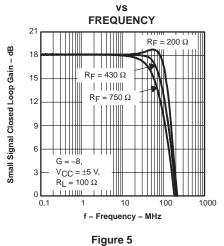


Figure 1


Figure 2

Figure 3



f - Frequency - MHz

1000

SMALL SIGNAL CLOSED LOOP GAIN

SMALL SIGNAL CLOSED LOOP GAIN

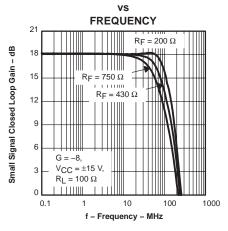


Figure 4

SMALL SIGNAL CLOSED LOOP GAIN

vs **FREQUENCY**

 $R_F = 750 \Omega$

 $R_F = 1 k\Omega$

 $R_F = 1.1 \text{ k}\Omega$

G = 1,

 $V_{CC} = \pm 5 \text{ V},$

 $R_L = 100 \Omega$

SMALL SIGNAL CLOSED LOOP GAIN

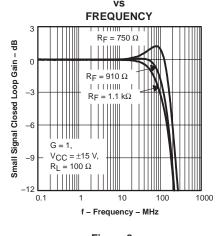


Figure 6

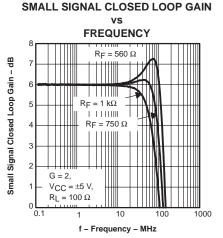


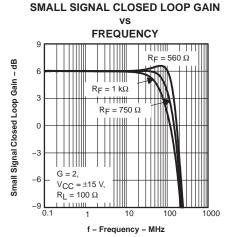
Figure 7

f - Frequency - MHz

1000

Figure 8

Figure 9


Small Signal Closed Loop Gain – dB

-5

-6

TYPICAL CHARACTERISTICS

SMALL SIGNAL CLOSED LOOP GAIN

FREQUENCY $R_F = 430 \Omega$ 12 Small Signal Closed Loop Gain $R_F = 560 \Omega$ $R_F = 750 \Omega$ $R_F = 1 k\Omega$ G = 4,

 $V_{CC} = \pm 15 \text{ V},$

 $R_L = 100 \Omega$

_3 l

0.1

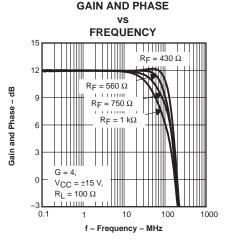
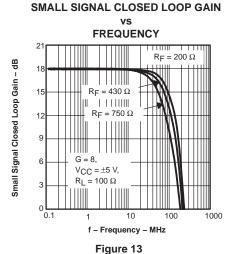
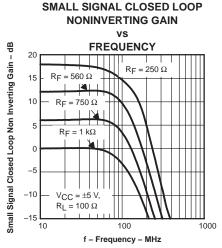


Figure 10

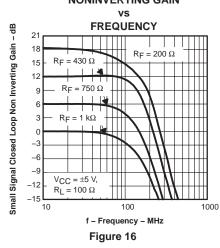

f - Frequency - MHz

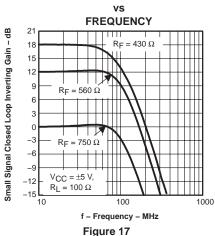

SMALL SIGNAL CLOSED LOOP GAIN

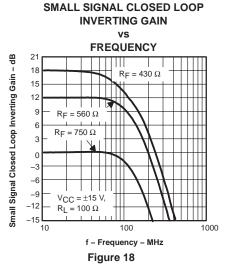

Figure 11

100

Figure 12





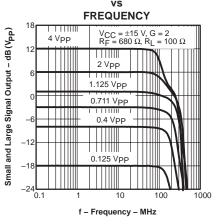

SMALL SIGNAL CLOSED LOOP NONINVERTING GAIN

SMALL SIGNAL CLOSED LOOP INVERTING GAIN

Figure 15

INSTRUMENTS www.ti.com

Small and Large Signal Output – $dB\left(V_{pp}
ight)$


-24 0.1

TYPICAL CHARACTERISTICS

FREQUENCY $V_{CC} = \pm 5 \text{ V}, G = 2$ $R_F = 680 \Omega, R_L = 100 \Omega$ 4 Vpp 2 Vpp 1.125 Vpp 0.711 V_{PP} 0.4 Vpp -12

SMALL AND LARGE SIGNAL OUTPUT

SMALL AND LARGE SIGNAL OUTPUT

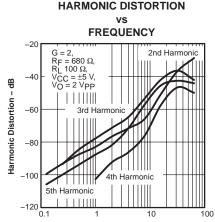
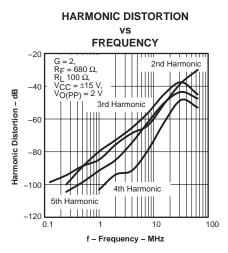


Figure 19

10 f - Frequency - MHz


100

1000

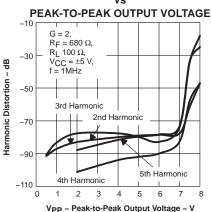
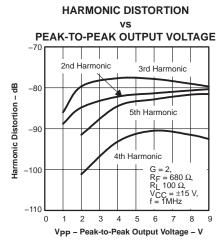
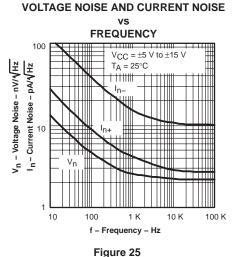

0.125 V_{PP}

Figure 20

Figure 21

HARMONIC DISTORTION

f - Frequency - MHz

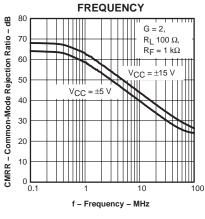

Figure 22

Figure 23

Figure 24

COMMON-MODE REJECTION RATIO

POWER SUPPLY REJECTION RATIO

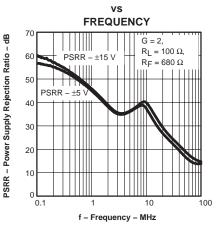
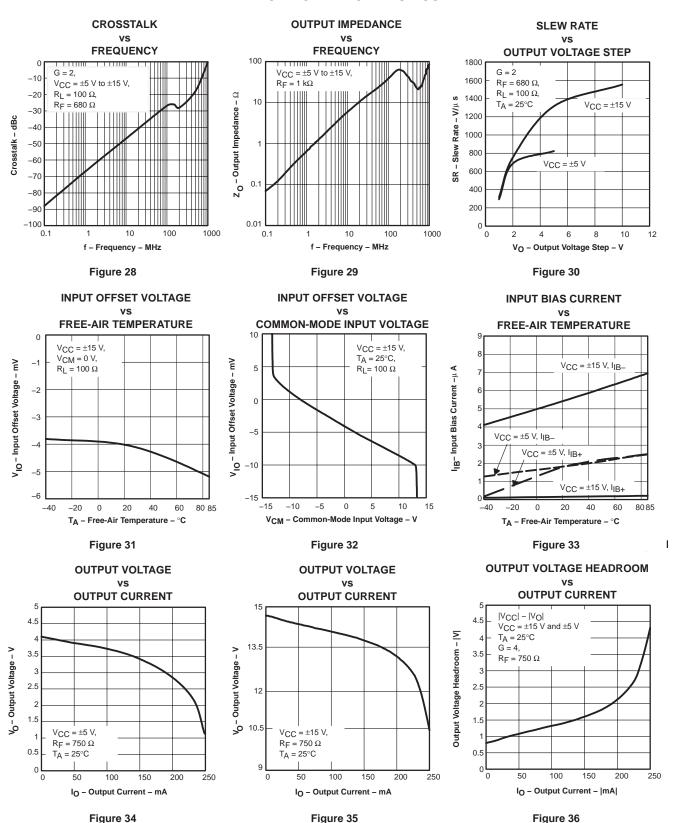



Figure 26

Figure 27

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

SUPPLY CURRENT (PER CHANNEL)

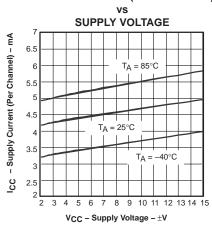


Figure 37

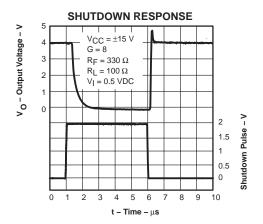


Figure 38

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
THS3112CD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
THS3112CDDA	ACTIVE	SO Power PAD	DDA	8	75	Green (RoHS & no Sb/Br)	Call TI	Level-1-260C-UNLIM
THS3112CDDAG3	ACTIVE	SO Power PAD	DDA	8	75	Green (RoHS & no Sb/Br)	Call TI	Level-1-260C-UNLIM
THS3112CDDAR	ACTIVE	SO Power PAD	DDA	8	2500	Green (RoHS & no Sb/Br)	Call TI	Level-1-260C-UNLIM
THS3112CDDARG3	ACTIVE	SO Power PAD	DDA	8	2500	Green (RoHS & no Sb/Br)	Call TI	Level-1-260C-UNLIM
THS3112CDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
THS3112CDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
THS3112CDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
THS3112ID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
THS3112IDDA	ACTIVE	SO Power PAD	DDA	8	75	Green (RoHS & no Sb/Br)	Call TI	Level-1-260C-UNLIM
THS3112IDDAR	ACTIVE	SO Power PAD	DDA	8	2500	Green (RoHS & no Sb/Br)	Call TI	Level-1-260C-UNLIM
THS3112IDDARG3	ACTIVE	SO Power PAD	DDA	8	2500	Green (RoHS & no Sb/Br)	Call TI	Level-1-260C-UNLIM
THS3112IDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
THS3112IDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
THS3115CD	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
THS3115CDR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
THS3115CDRG4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
THS3115CPWP	ACTIVE	HTSSOP	PWP	14	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
THS3115CPWPG4	ACTIVE	HTSSOP	PWP	14	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
THS3115CPWPR	ACTIVE	HTSSOP	PWP	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
THS3115ID	ACTIVE	SOIC	D	14	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
THS3115IDR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

PACKAGE OPTION ADDENDUM

16-Dec-2005

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
THS3115IDRG4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
THS3115IPWP	ACTIVE	HTSSOP	PWP	14	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
THS3115IPWPG4	ACTIVE	HTSSOP	PWP	14	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
THS3115IPWPR	ACTIVE	HTSSOP	PWP	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
THS3115IPWPRG4	ACTIVE	HTSSOP	PWP	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

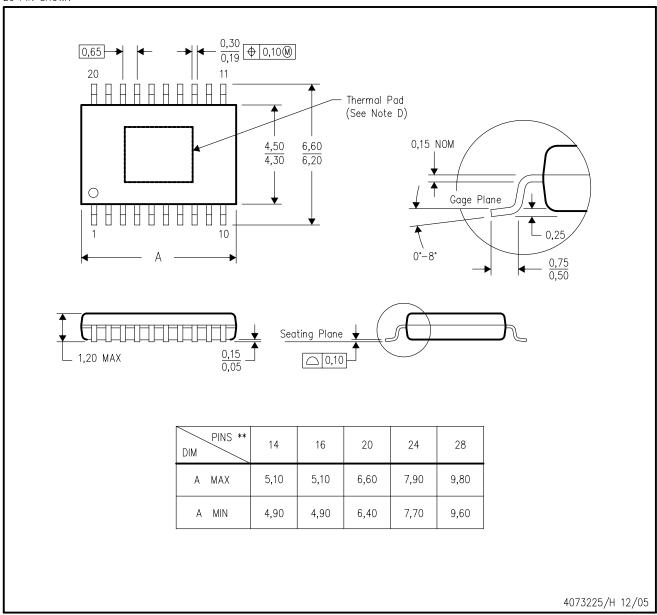
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

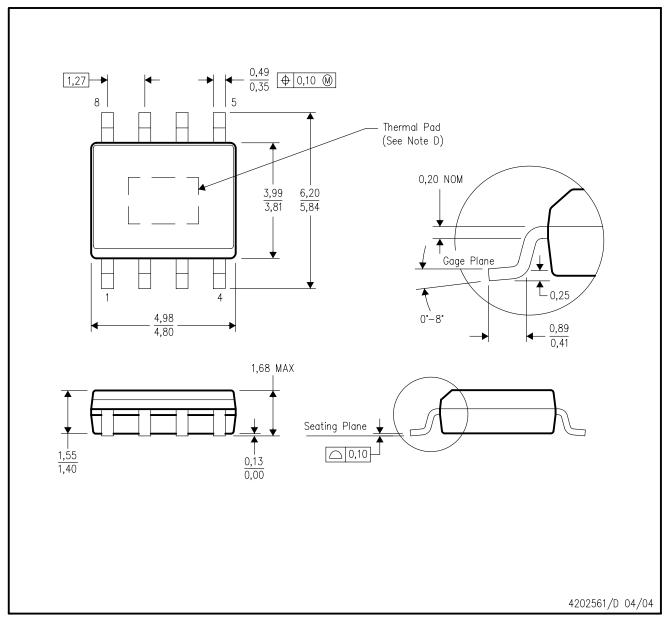
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PWP (R-PDSO-G**)

PowerPAD™ PLASTIC SMALL-OUTLINE PACKAGE

20 PIN SHOWN

NOTES:


- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusions. Mold flash and protrusion shall not exceed 0.15 per side.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 for information regarding recommended board layout. This document is available at www.ti.com www.ti.com.
- E. Falls within JEDEC MO-153

PowerPAD is a trademark of Texas Instruments.

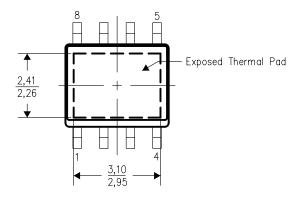
DDA (R-PDSO-G8)

PowerPAD™ PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 for information regarding recommended board layout. This document is available at www.ti.com https://www.ti.com.

PowerPAD is a trademark of Texas Instruments.

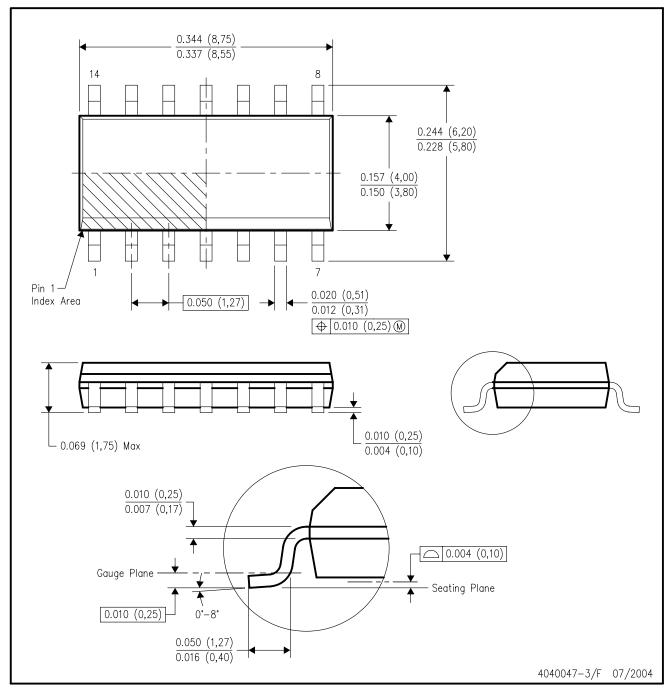


THERMAL INFORMATION

This PowerPAD™ package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. When the thermal pad is soldered directly to the printed circuit board (PCB), the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to a ground or power plane (whichever is applicable), or alternatively, a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For additional information on the PowerPAD package and how to take advantage of its heat dissipating abilities, refer to Technical Brief, PowerPAD Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 and Application Brief, PowerPAD Made Easy, Texas Instruments Literature No. SLMA004. Both documents are available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

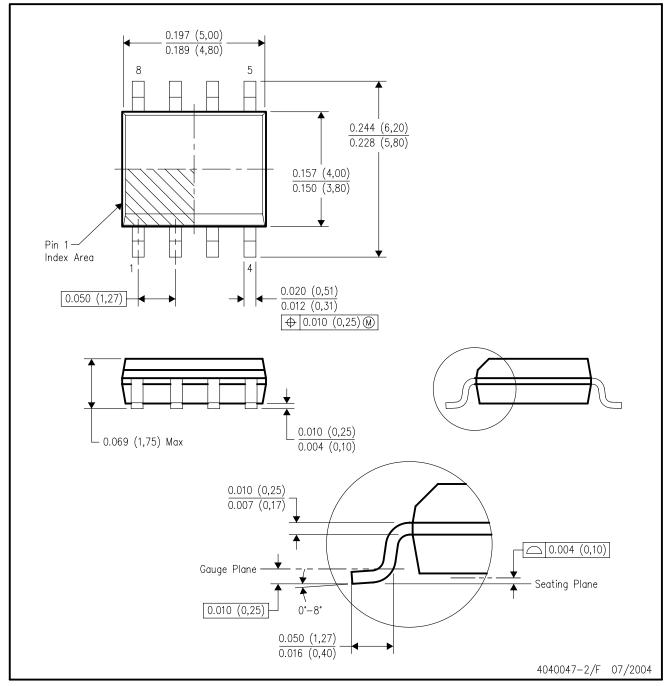

Top View

NOTE: All linear dimensions are in millimeters

Exposed Thermal Pad Dimensions

D (R-PDSO-G14)

PLASTIC SMALL-OUTLINE PACKAGE


NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-012 variation AB.

D (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-012 variation AA.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2006, Texas Instruments Incorporated