3-phase motor driver for CD-ROMs

BA6848FP / BA6853FS

The BA6848FP and BA6853FS are single-chip ICs developed for CD-ROM spindle motor drives. These ICs are 3-phase, full-wave, pseudo-linear drives with FG output, FG composite output, and reverse-rotation pins built-in for high functionality and high performance.

Applications

CD-ROM, CD-R, CD-RW, DVD-ROM, DVD-RAM

Features

- 1) Three-phase, full wave, pseudo-linear drive system.
- 2) Built-in PS pin for power save mode when ON.
- 3) Built-in thermal shutdown and current limiter circuits.
- 4) Built-in Hall bias circuit (for the BA6848FP).
- 5) Built-in FG output and FG composite output.
- 6) Built-in reverse-rotation pin.

● Absolute maximum ratings (Ta = 25°C)

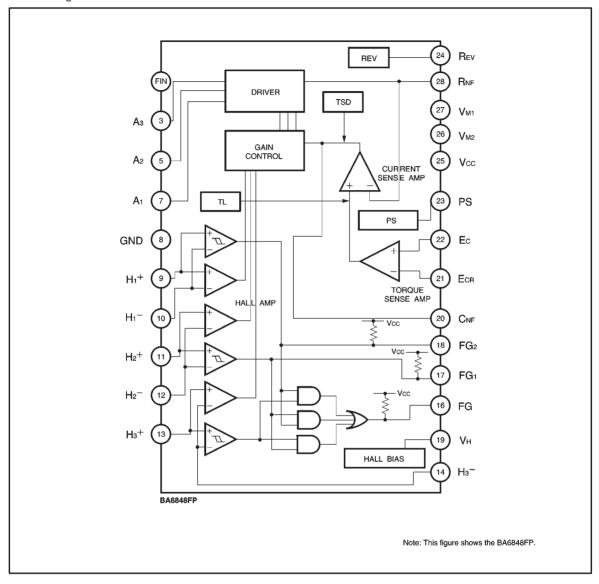
Parameter		Symbol	Limits	Unit	
Applied voltage		Vcc	7	V	
Applied voltage		V _{M1,2}	16	V	
Power dissipation	BA6848FP	Pd	1700* ¹	mW	
	BA6853FS	Fu	1000*2		
Operating temperature		Topr	-20~ + 75	Ĉ	
Storage temperature		Tstg	-55~+150* ⁴	°C	
Output current		Іоит	1300* ³	mW	

^{*1} When mounted on a 90mm

×50mm

×1.6 mm glass epoxy board. Reduced by 13.6mW for each increase in Ta of 1°C over 25°C.

• Recommended operating conditions (Ta = 25°C)


Parameter	Symbol	Limits	Unit
	Vcc	4.25~5.5	٧
Operating power supply voltage	V _{M1}	3.0~15	٧
v	V _{M2}	3.0~15	V

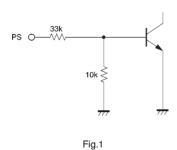
^{*2} Reduced by 8.0mW for each increase in Ta of 1°C over 25°C.

^{*3} Should not exceed Pd and ASO values.

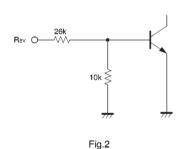
^{*4} Ta should not exceed 150℃.

Block diagram

●Pin descriptions BA6848FP


Pin No.	Pin name	Function
1	N.C.	N.C.
2	N.C.	N.C.
3	Аз	Output
4	N.C.	N.C.
5	A 2	Output
6	N.C.	N.C.
7	A1	Output
8	GND	Ground
9	H1+	Hall signal input
10	H ₁ -	Hall signal input
11	H ₂ +	Hall signal input
12	H ₂ ⁻	Hall signal input
13	H₃ ⁺	Hall signal input
14	H3 ⁻	Hall signal input
15	N.C.	N.C.
16	FG	Three-phase composite FG signal output
17	FG ₂	FG signal output
18	FG₁	FG signal output
19	Vн	Hall bias
20	CNF	For capacitor for phase compensation
21	Ecr	Torque control reference
22	Ec	Torque control
23	PS	Power save
24	Rev	Reverse rotation
25	Vcc	Power supply
26	V _{M2}	Motor power supply
27	V _{M1}	12V power supply
28	RNF	For resistor for output current detection
FIN	FIN	SUB GND

BA6853FS


Pin No.	Pin name	Function
1	GND	SUB GND
2	FG	Three-phase composite FG signal output
3	FG ₂	FG signal output
4	FG ₁	FG signal output
5	Cnf	For capacitor for phase compensation
6	Ecr	Torque control reference
7	Ec	Torque control
8	PS	Power save
9	Rev	Reverse rotation
10	Vcc	Power supply
11	V _{M2}	Motor power supply
12	V _{M1}	12V power supply
13	Rnf	For resistor for output current detection
15	Аз	Output
16	A 2	Output
17	A ₁	Output
18	GND	Ground
19	H ₁ +	Hall signal input
20	H ₁ -	Hall signal input
21	H ₂ +	Hall signal input
22	H ₂ -	Hall signal input
23	Нз+	Hall signal input
24	Нз-	Hall signal input

- ●I / O circuit diagrams
- (1) Power save(PS)

(2) Reverse (REV)

(3) Torque command input

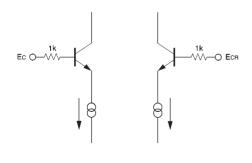


Fig.3

(4) Coil output (A₁, A₂, A₃)

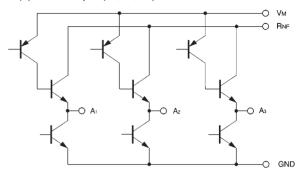
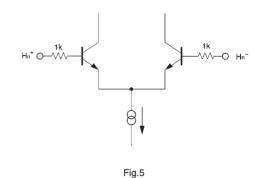



Fig.4

(5) Hall input (H1⁺, H1⁻, H2⁺, H2⁻, H3⁺, and H3⁻)

(6) Hall bias

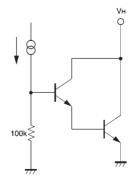
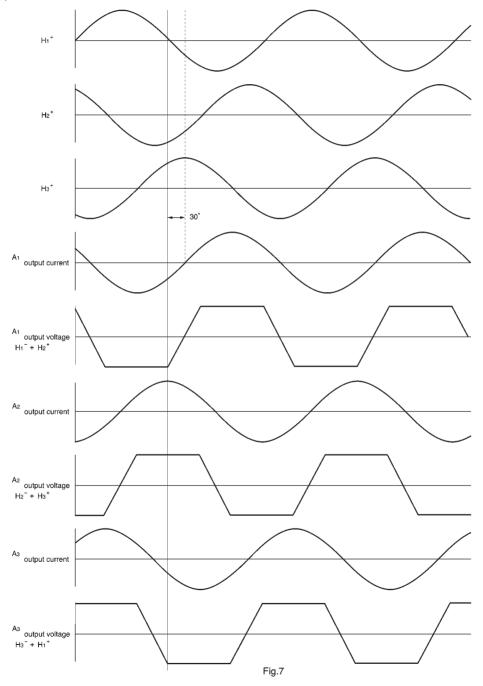


Fig.6 (for BA6848FP only)

Note: Resistances are typical values.

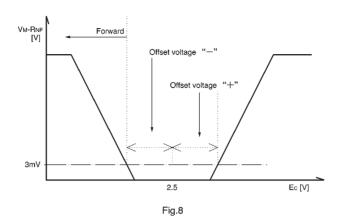
●Electrical characteristics (unless otherwise noted, Ta = 25°C, Vcc = 5V, V_{M1} = 12V, V_{M2} = 12V)


	,					*
Parameter	Symbol	Min.	Тур.	Max.	Unit	Coniditions
⟨Total⟩	⟨Total⟩					
Circuit current 1	lcc1	_	0	0.2	mA	With power save ON
Circuit current 2	lcc2	_	5.2	7.6	mA	With power save OFF
⟨Power save⟩						
ON voltage	V _{PSON}	_	_	1.5	V	_
OFF voltage	VPSOFF	3.5	_	_	V	_
⟨Hall bias⟩						
Hall bias voltage	Vнв	0.5	0.9	1.5	V	I _{HB} =10mA
〈Hall amplifier〉						
Input bias current	Іна	_	0.7	3.0	μΑ	_
Common-phase input voltage	VHAR	1.5	_	4.0	V	_
Minimum input level	Vinh	50	_	_	mV _{P-P}	_
H₃ hysteresis level	V _H ys	10	20	40	mV	_
⟨Torque command⟩						
Input voltage	Ec, Ecr	1.0	_	4.0	V	_
Offset voltage (+)	Ecoff+	-80	-50	-20	mV	Ecr=2.5V
Offset voltage (-)	Ecoff-	20	50	80	mV	Ecr=2.5V
Input bias current	Ecin	_	0.5	2.0	μА	Ec=EcR=2.5V
I / O gain	GEC	0.41	0.51	0.61	A/V	Ec=1.5, 2.0V, 3.0, 3.5V R _{NF} =0.5 Ω
⟨FG⟩						
FG output high level voltage	VFGH	4.5	4.9	5.0	V	I _{FG} =-20 μ A
FG output low level voltage	VFGL	0	0.25	0.4	V	I _{FG} =3mA
⟨Output⟩						
Output high level saturation voltage	Vсн	_	1.0	1.5	V	lo=-600mA
Output low level saturation voltage	VcL	_	0.4	0.8	V	lo=600mA
Vм leakage current	IVML	_	35	70	mA	Ec=5V output open
Output limit current	lτι	560	700	840	mA	R _{NF} =0.5 Ω
⟨Reverse rotation⟩						
ON voltage	Vrson	4.0	_	_	٧	_
OFF voltage	VRSOFF	_	_	1.5	٧	_
						•

ONot designed for radiation resistance.

Circuit operation

(1) Hall input and output


The phase relationship between the Hall input signals and the output current and voltage is shown below in Fig.7. The input three-phase Hall signal is sent to the matrix section for waveform synthesis. This signal is input to the output driver and supplies the drive current to the motor coil.

(2) Torque command

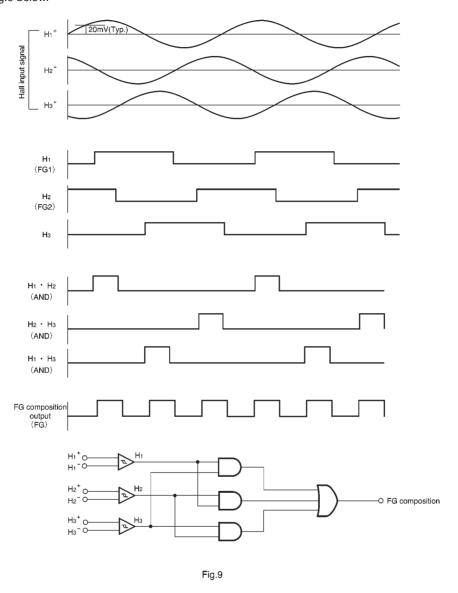
The R_{NF} pin voltage with respect to the torque command

(Ec) is as follows:

Reverse rotation pin voltage
HIGH LOW

Ecr < Ec Forward rotation Reverse rotation
Ecr > Ec Stopped Forward rotation

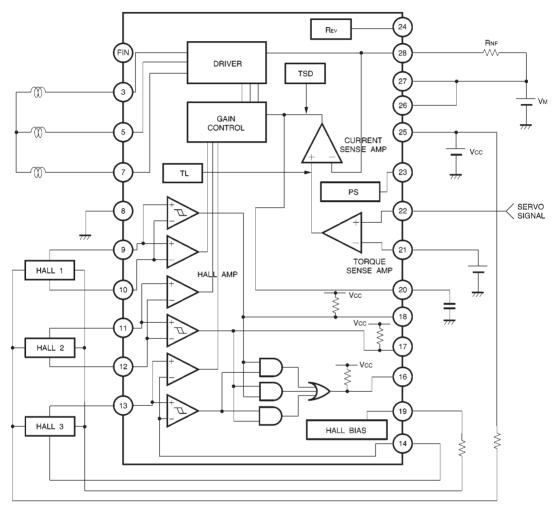
The I / O gain G_{EC} from E_C pin to R_{NF} pin (output current) is determined by the R_{NF} detector resistance.


$$G_{EC} = 0.255 / R_{NF} [A / V]$$

The torque limit current I_{TL} is:

$$I_{TL} = 0.35 / R_{NF} [A]$$

(3) FG signal output waveform


From the Hall input signal, a pulse signal (FG signal) is output proportional to the motor speed of rotation. This timing is shown in Fig.9 below.

(4) Other

For the PS pins, the circuits turn on at 3.5 V or greater, and enter the power save mode at 1.5 V or less. For the Rev pin, it enters the reverse mode at 4.0 V or greater, and enters the normal mode at 1.5 V or less.

Application example

Note: This figure shows the BA6848FP.

Fig.10

Operation notes

(1) Power save

The power save input is an input / output circuit as shown in Fig.1. The power save pins have a thermal derating characteristic of -8mV / °C. The resistance also has a fluctuation of $\pm 30\%$, so be careful of the input voltage range.

(2) Reverse

The reverse input is an input / output circuit as shown in Fig.2. The reverse pins have a thermal derating characteristic of -7mV / °C. The resistance also has a fluctuation of $\pm 30\%$, so be careful of the input voltage range.

(3) Hall input

The Hall input is an input circuit as shown in Fig.5. The Hall elements can be connected in series or in parallel.

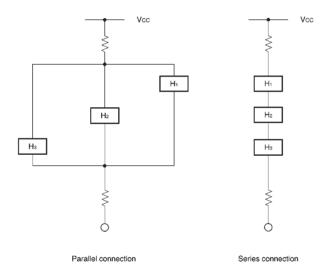


Fig.11

(4) Thermal shutdown (TSD)

When the junction temperature reaches $175^{\circ}C$ (Typ.), the A_1 to A_3 coil outputs become open. There is an approximate $15^{\circ}C$ (Typ.) temperature hysteresis.

•Electrical characteristic curves

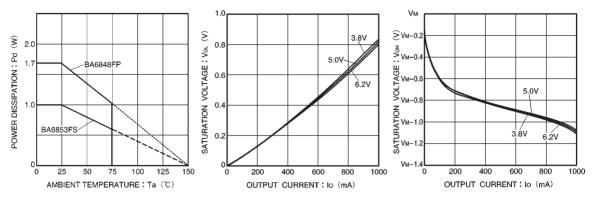
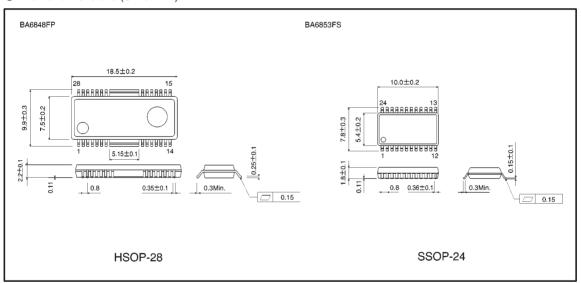



Fig.12 Package thermal derating characteristics

Fig.13 Low level output saturation voltage vs. Fig.14 High level output saturation voltage vs. output current

output current

External dimensions (Units: mm)

