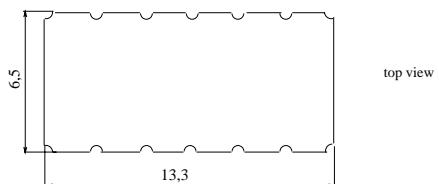
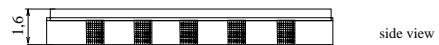
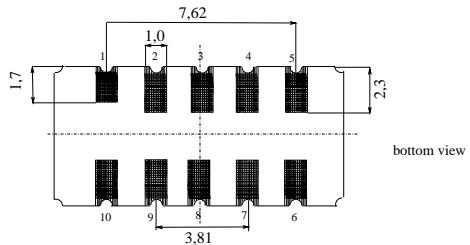


SAW Components

Data Sheet B3891

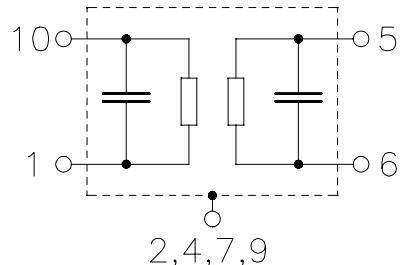
Data Sheet

Data Sheet
Features

- Low-loss IF filter for GSM/EDGE base station, receive path
- Usable passband 250 kHz
- Balanced or unbalanced operation possible
- Temperature stable
- Ceramic SMD package

Terminals


- Gold plated

Ceramic package DCC12A

Dim. in mm, approx. weight 0,4 g

Pin configuration

10, 1	Input
5, 6	Output
3, 8	Ground
2, 4, 7, 9	Case ground

Type	Ordering code	Marking and Package according to	Packing according to
B3891	B39710-B3891-H510	C61157-A7-A94	F61074-V8163-Z000

Electrostatic Sensitive Device (ESD)
Maximum ratings

Operable temperature range	T	-40 / +85	°C	
Storage temperature range	T_{stg}	-40 / +85	°C	
DC voltage	V_{DC}	0	V	
Source power	P_s	10	dBm	

SAW Components**B3891****Low-Loss Filter****71,0 MHz****Data Sheet****Characteristics**

Operating temperature range:

 $T = 0 \dots 70^\circ\text{C}$

Terminating source impedance:

 $Z_S = 200 \Omega$ balanced and matching network

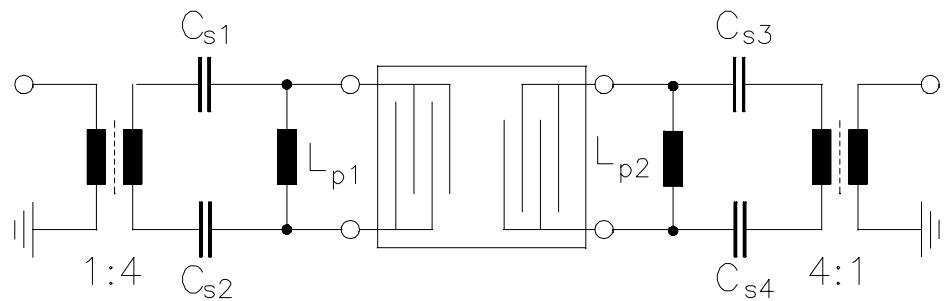
Terminating load impedance:

 $Z_L = 200 \Omega$ balanced and matching network

		min.	typ.	max.	
Nominal frequency	f_N	—	71,0	—	MHz
Minimum insertion attenuation (including matching network)	α_{\min}	—	6,5	8,0	dB
Passband width	$B_{1,0\text{dB}}$	250	290	—	kHz
Amplitude ripple	$\Delta\alpha$	—	0,6	$\pm 1,0$	dB
Absolute group delay (at f_N)	τ_N	1,9	2,1	2,3	μs
Group delay ripple (p-p)	$\Delta\tau$	—	0,5	1,5	μs
Relative attenuation (relative to α_{\min})	α_{rel}				
$f_N \pm 300 \text{ kHz} \dots f_N \pm 500 \text{ kHz}$		14	18	—	dB
$f_N \pm 500 \text{ kHz} \dots f_N \pm 700 \text{ kHz}$		30	35	—	dB
$f_N \pm 700 \text{ kHz} \dots f_N \pm 3 \text{ MHz}$		39	45	—	dB
@ $f_N \pm 800 \text{ kHz}$		41	45	—	dB
$f_N \pm 3 \text{ MHz} \dots f_N \pm 35 \text{ MHz}$		43	60	—	dB
IM3 level	$IM3$				
$f_1 = f_N - 0,8 \text{ MHz}$, input power -14 dBm					
$f_2 = f_N - 1,6 \text{ MHz}$, input power -14 dBm					
@ f_N		—	—	-95	dBm
$f_1 = f_N + 0,8 \text{ MHz}$, input power -14 dBm					
$f_2 = f_N + 1,6 \text{ MHz}$, input power -14 dBm					
@ f_N		—	—	-95	dBm
Temperature coefficient of frequency ¹⁾	TC_f	—	-0,036	—	ppm/K ²
Turnover temperature	T_0	—	25	—	°C

¹⁾ Temperature dependance of f_c : $f_c(T_A) = f_c(T_0)(1 + TC_f(T_A - T_0)^2)$

SAW Components
B3891
Low-Loss Filter
71,0 MHz
Data Sheet
Characteristics (extended temperature range)

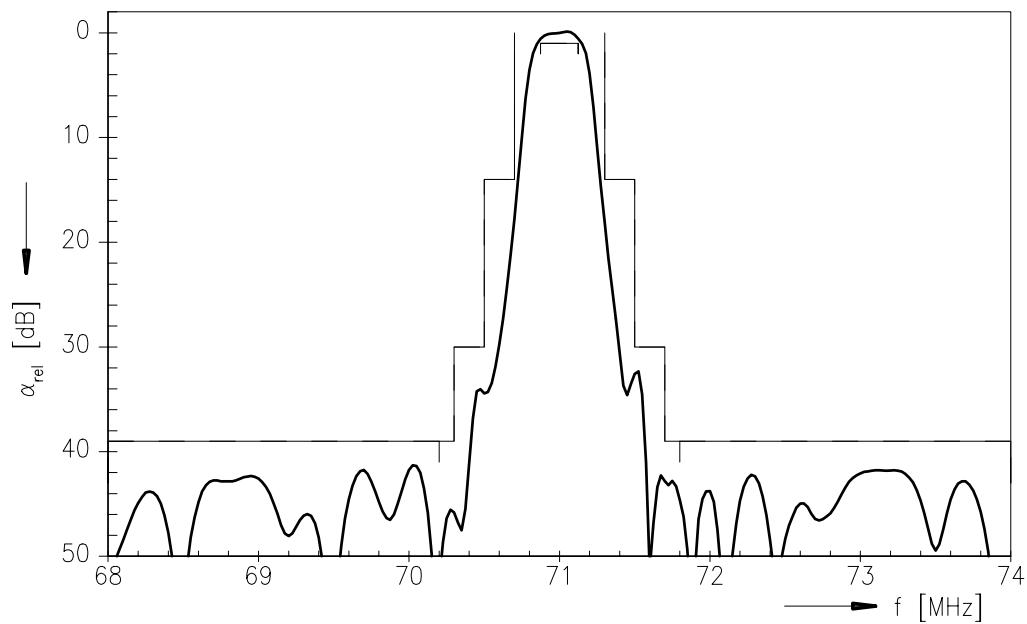
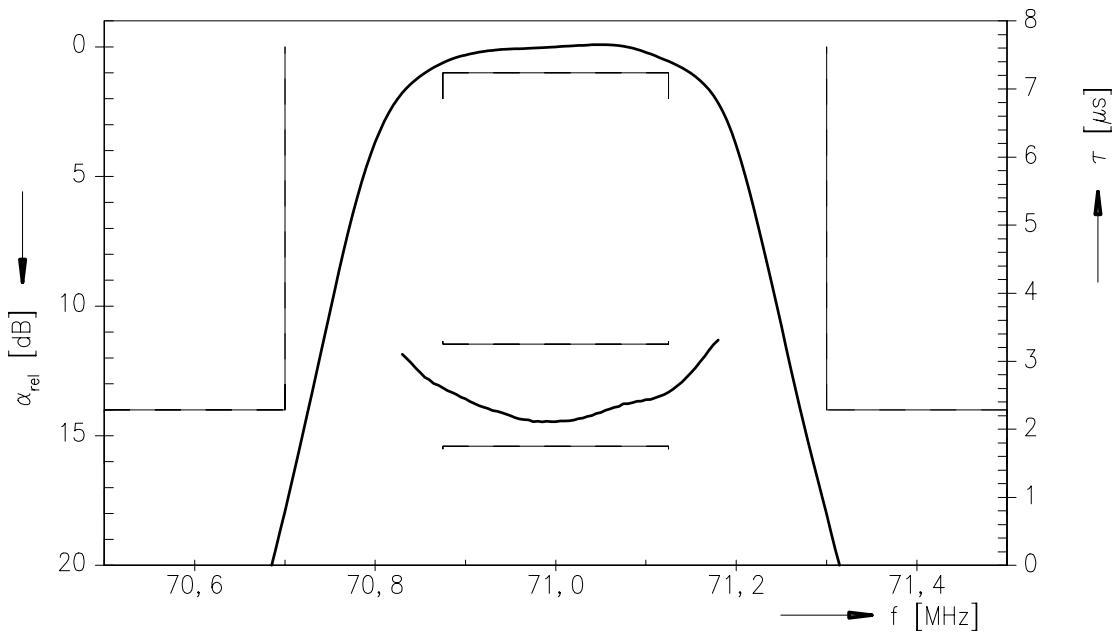

Operating temperature range:	$T = -40 \dots +85^\circ\text{C}$
Terminating source impedance:	$Z_S = 200 \Omega$ balanced and matching network
Terminating load impedance:	$Z_L = 200 \Omega$ balanced and matching network

		min.	typ.	max.	
Nominal frequency	f_N	—	71,0	—	MHz
Minimum insertion attenuation (including matching network)	α_{\min}	—	6,5	8,5	dB
Passband width	$B_{1,0\text{dB}}$	250	290	—	kHz
$\alpha_{\text{rel}} \leq 1 \text{ dB}$					
Amplitude ripple (p-p)	$\Delta\alpha$	—	0,6	$\pm 1,5$	dB
$f_N \pm 125 \text{ kHz}$					
Absolute group delay (at f_N)	τ_N	1,9	2,1	2,3	μs
Group delay ripple (p-p)	$\Delta\tau$	—	0,5	1,5	μs
$f_N \pm 125 \text{ kHz}$					
Relative attenuation (relative to α_{\min})	α_{rel}				
$f_N \pm 300 \text{ kHz} \dots f_N \pm 500 \text{ kHz}$		12	18	—	dB
$f_N \pm 500 \text{ kHz} \dots f_N \pm 700 \text{ kHz}$		30	35	—	dB
$f_N \pm 700 \text{ kHz} \dots f_N \pm 3 \text{ MHz}$		39	45	—	dB
@ $f_N \pm 800 \text{ kHz}$		41	45	—	dB
$f_N \pm 3 \text{ MHz} \dots f_N \pm 35 \text{ MHz}$		43	60	—	dB
IM3 level	$IM3$				
$f_1 = f_N - 0,8 \text{ MHz}$, input power -14 dBm					
$f_2 = f_N - 1,6 \text{ MHz}$, input power -14 dBm					
$\text{@ } f_N$		—	—	-95	dBm
$f_1 = f_N + 0,8 \text{ MHz}$, input power -14 dBm					
$f_2 = f_N + 1,6 \text{ MHz}$, input power -14 dBm					
$\text{@ } f_N$		—	—	-95	dBm
Temperature coefficient of frequency ¹⁾	TC_f	—	-0,036	—	ppm/K ²
Turnover temperature	T_0	—	25	—	°C

¹⁾ Temperature dependance of f_c : $f_c(T_A) = f_c(T_0)(1 + TC_f(T_A - T_0)^2)$

Matching network to 200 Ω

Transformers are only required for measurement in a 50 Ω environment



$$C_{s1} = C_{s2} = 12 \text{ pF}$$

$$C_{s3} = C_{s4} = 18 \text{ pF}$$

$$L_{p1} = 220 \text{ nH}$$

$$L_{p2} = 180 \text{ nH}$$

Element values depend upon board layout

Data Sheet
Normalized frequency response

Normalized frequency response (pass band)

SAW Components

B3891

Low-Loss Filter

71,0 MHz

Data Sheet

Published by EPCOS AG

Surface Acoustic Wave Components Division, SAW MC IS

P.O. Box 80 17 09, 81617 Munich, GERMANY

© EPCOS AG 2005. Reproduction, publication and dissemination of this brochure and the information contained therein without EPCOS' prior express consent is prohibited.

Purchase orders are subject to the General Conditions for the Supply of Products and Services of the Electrical and Electronics Industry recommended by the ZVEI (German Electrical and Electronic Manufacturers' Association), unless otherwise agreed.

This brochure replaces the previous edition.

For questions on technology, prices and delivery please contact the Sales Offices of EPCOS AG or the international Representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our Sales Offices.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

EPCOS:

[B39710B3891H510](#)