

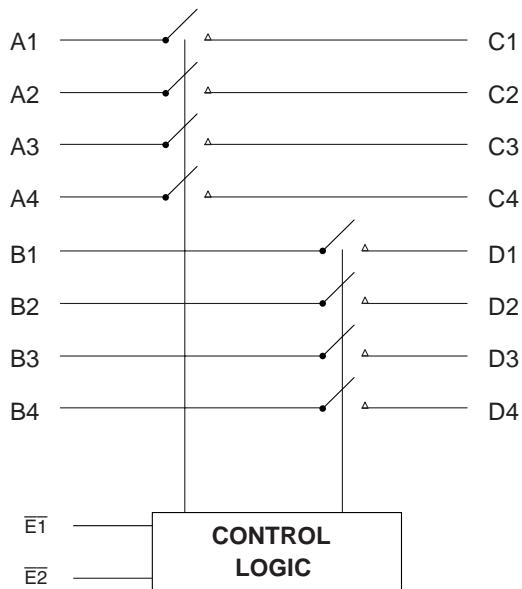
FEATURES

- Low on-resistance: $r_{DS(on)} = 5\Omega$
- Wide bandwidth: 1.3GHz (-3dB point)
- Crosstalk:
-100dB @ 50KHz, -70dB @ 5MHz,
-50dB @ 30MHz
- Off-isolation:
-90dB @ 50KHz, -60dB @ 5MHz,
-55dB @ 30MHz,
- Single 5V supply
- Bidirectional signal flow
- TTL compatible control inputs
- Ultra-low quiescent current: 3 μ A
- Switch turn on time of 6.5ns

APPLICATIONS

- High-speed video signal switching/routing
- HDTV-quality video signal routing
- Audio signal switching/routing
- Data acquisition
- ATE systems
- Telecomm routing
- Token Ring transceivers
- High-speed networking

GENERAL DESCRIPTION


The QS4A105Q is a high-performance CMOS Two-Channel 4PST switch with 3-state outputs. The low on-resistance of the QS4A105Q allows inputs to be connected to outputs with low insertion loss and high bandwidth.

The QS4A105Q with 1.3GHz bandwidth, makes it ideal for high-performance video signal switching, audio signal switching, and telecomm routing applications. Low power dissipation makes this device ideal for battery operated and remote instrumentation applications.

The QS4A105Q is offered in the QSOP package which has several advantages over conventional packages such as PDIP and SOIC including:

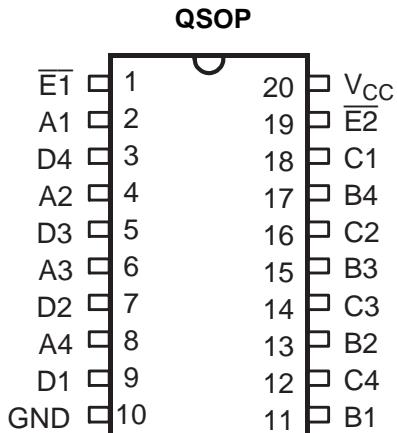

- Reduced signal delays due to denser component packaging on circuit boards
- Reduced system noise due to less pin inductance

Figure 1. Functional Block Diagram

Figure 2. Pin Configuration

(All Pins Top View)

Table 1. Pin Definitions

Name	I/O	Description
\bar{E}_1, \bar{E}_2	I	Enable
A_N, B_N	I/O	Port A, Port B
C_N, D_N	I/O	Port C, Port D

Table 2. Function Table

\bar{E}_1	\bar{E}_2	A_N, C_N I/Os	B_N, D_N I/Os
H	H	Disconnected	Disconnected
L	H	$A_N = C_N$	Disconnected
H	L	Disconnected	$B_N = D_N$
L	L	$A_N = C_N$	$B_N = D_N$

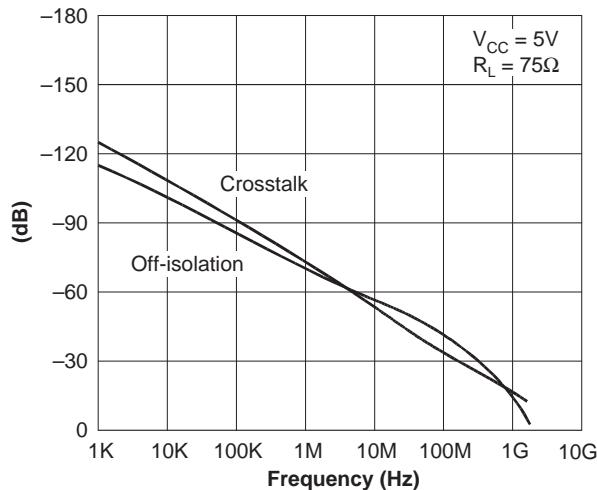
Table 3. Absolute Maximum Ratings

Supply Voltage to Ground	-0.5V to +7.0V
DC Switch Voltage V_S	0V to +7.0V
Analog Input Voltage	0V to +7.0V
DC Input Voltage V_{IN}	0V to +7.0V
AC Input Voltage (for a pulse width ≤ 20 ns)	-3.0V
DC Output Current Max. Sink Current/Pin	120mA
Maximum Power Dissipation	0.7 watts
T_{STG} Storage Temperature	-65° to +150°C

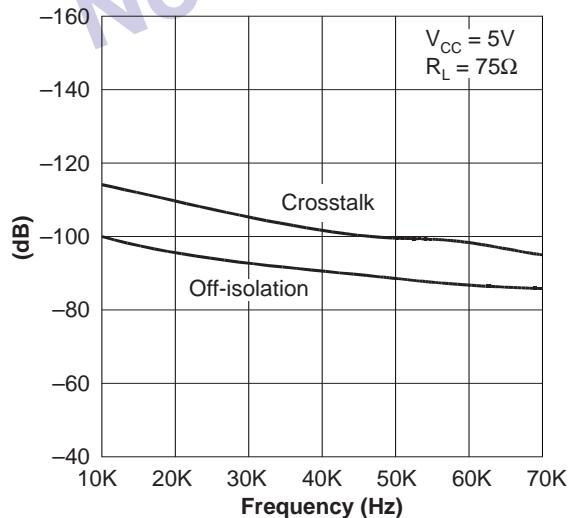
Note: ABSOLUTE MAXIMUM RATINGS are those conditions beyond which damage to the device may occur. Exposure to these conditions or beyond those indicated may adversely affect device reliability. Functional operation under absolute maximum rating conditions is not implied.

Table 4. Power Supply Characteristics

Symbol	Parameter	Test Conditions	Max	Unit
I_{CC}	Supply Current	$V_{CC} = \text{Max.}, V_{IN} = \text{GND or } V_{CC}$	3	μA


Table 5. Electrical Characteristics Over Operating RangeCommercial: $T_A = 0^\circ\text{C}$ to 70°C , $V_{CC} = 5.0\text{V} \pm 5\%$

Symbol	Parameter	Test Conditions	Min	Typ ⁽¹⁾	Max	Unit
Analog Switch						
V_{IN}	Analog Signal Range ⁽²⁾		0	—	$V_{CC} - 1$	V
$r_{DS(on)}$	Drain-source On-resistance ^(2,3)	$V_{CC} = \text{Min.}$, $V_{IN} = 0.0\text{V}$, $I_{ON} = 30\text{mA}$	—	5	7	Ω
		$V_{CC} = \text{Min.}$, $V_{IN} = 1.5\text{V}$, $I_{ON} = 30\text{mA}$	—	5.5	8	Ω
$\Delta r_{DS(on)}$	$r_{DS(on)}$ Matching Between Channels ^(2,3,4)	$V_{CC} = \text{Min.}$, $V_{IN} = 0.0\text{V}$, $I_{ON} = 30\text{mA}$	—	1	4	Ω
		$V_{CC} = \text{Min.}$, $V_{IN} = 1.5\text{V}$, $I_{ON} = 15\text{mA}$	—	1	—	Ω
$I_{C(OFF)}$	Channel Off Leakage Current	$A_N, B_N = V_{CC}$ or 0V , $C_N, D_N = 0\text{V}$ or V_{CC} , $\bar{E} = V_{CC}$	—	1	—	nA
$I_{C(ON)}$	Channel On Leakage Current	$A_N = B_N = C_N = D_N = 0\text{V}$, Each Channel is Turned On Sequentially	—	1	—	nA
Digital Control						
V_{IH}	Input HIGH Voltage	Guaranteed Logic HIGH for Control Pins	2.0	—	—	V
V_{IL}	Input LOW Voltage	Guaranteed Logic LOW for Control Pins	—	—	0.8	V
Dynamic Characteristics						
$t_{ON(\bar{E})}$	Enable Turn-on Time \bar{E} to A_N, B_N, C_N or D_N	$R_L = 1\text{K}\Omega$, $C_L = 100\text{pF}$ (See Figure 9)	0.5	—	6.5	ns
$t_{OFF(\bar{E})}$	Enable Turn-off Time \bar{E} to A_N, B_N, C_N or D_N	$R_L = 1\text{K}\Omega$, $C_L = 100\text{pF}$ (See Figure 9)	0.5	—	6.0	ns
t_{PD}	Group Delay ^(2,5)	$R_L = 1\text{K}\Omega$, $C_L = 100\text{pF}$	—	—	250	ps
f_{3dB}	—3 dB Bandwidth	$V_{IN} = 0$ to 1V , 1V p-p, $R_L = 75\Omega$	—	1.3	—	GHz
	Off Isolation	$V_{IN} = 0$ to 1V , 1V p-p, $R_L = 75\Omega$, $f = 5.5\text{MHz}$	—	-60	—	dB
X_{TALK}	Crosstalk	$V_{IN} = 1\text{V}$ p-p, $R_L = 75\Omega$, $f = 5.5\text{MHz}$	—	-70	—	dB
$C_{(OFF)}$	MUX Off Capacitance	$\bar{E} = V_{CC}$, $V_{IN} = V_{OUT} = 0\text{V}$	—	5	—	pF
$C_{(ON)}$	MUX On Capacitance	$\bar{E} = \text{GND}$, $V_{IN} = V_{OUT} = 0\text{V}$	—	10	—	pF
Q_{CI}	Charge Injection	$C_L = 1000\text{pF}$	—	1.5	—	pC


Notes:

1. Typical values indicate $V_{CC} = 5.0\text{V}$ and $T_A = 25^\circ\text{C}$.
2. Guaranteed by design, not subject to production test.
3. Measured by voltage drop between A and C or B and D pins at indicated current through the switch. On-resistance is determined by the lower of the voltages on the two (A,C or B,D) pins.
4. $\Delta r_{DS(on)}$ compares on-resistance at the specified V_{IN} Values.
5. The bus switch contributes no group delay other than the RC delay of the on-resistance of the switch and load capacitance. Group delay of the bus switch, when used in a system, is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

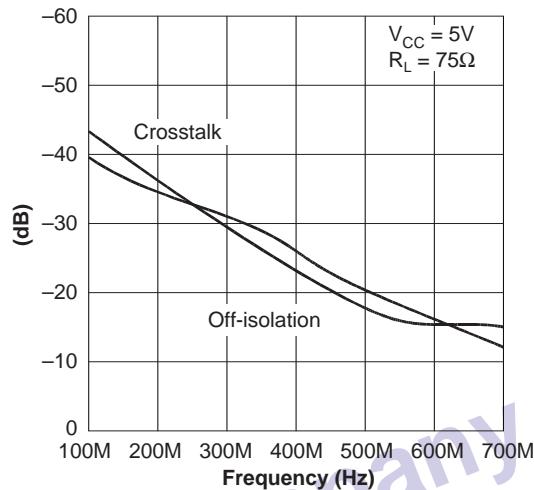

TYPICAL CHARACTERISTICS

Figure 5. Off-isolation and Crosstalk vs. Frequency

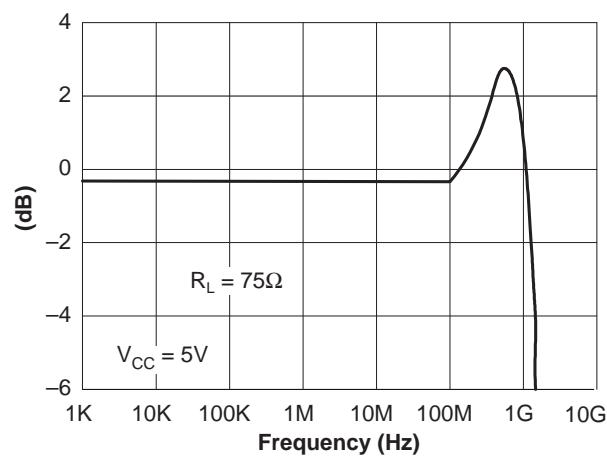

Note: 1. Crosstalk = $20 \log |V_o/V_s|$
 2. Off-isolation = $20 \log |V_o/V_s|$

Figure 5. OFF Isolation and Crosstalk vs. Frequency

Note: 1. Crosstalk = $20 \log |V_o/V_s|$
 2. Off-isolation = $20 \log |V_o/V_s|$

Figure 4. Off-isolation and Crosstalk vs. Frequency

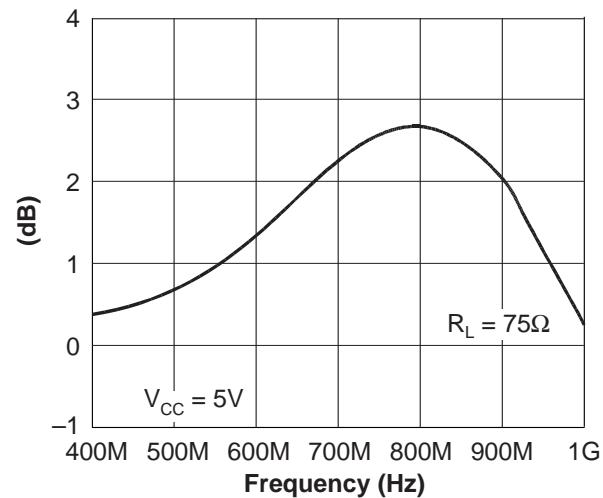

Note: 1. Crosstalk = $20 \log |V_o/V_s|$
 2. Off-isolation = $20 \log |V_o/V_s|$

Figure 6. Insertion Loss vs. Frequency

Note: 1. Insertion Loss = $20 \log |V_o/V_s|$

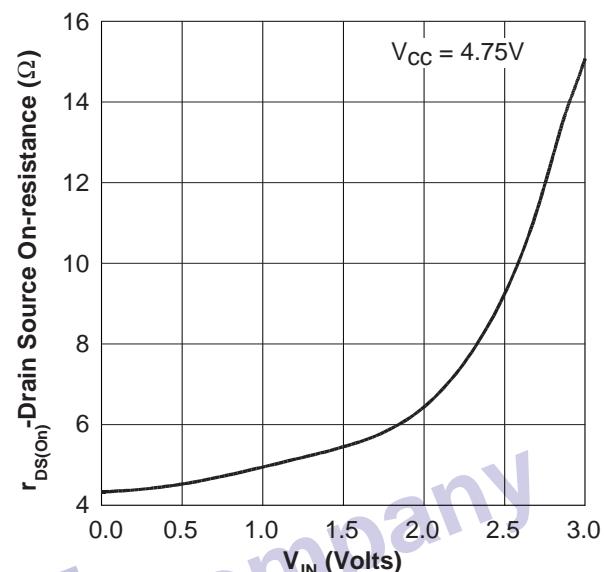

TYPICAL CHARACTERISTICS (continued)

Figure 7. Insertion Loss vs. Frequency

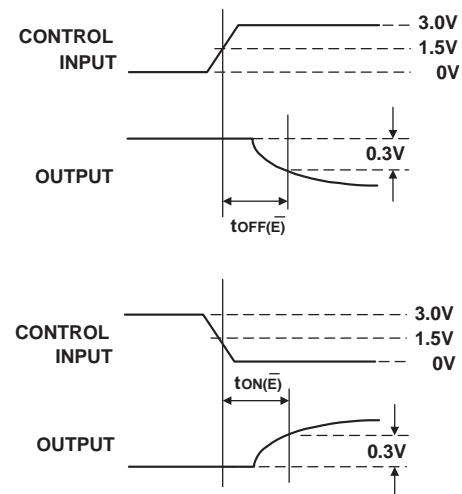
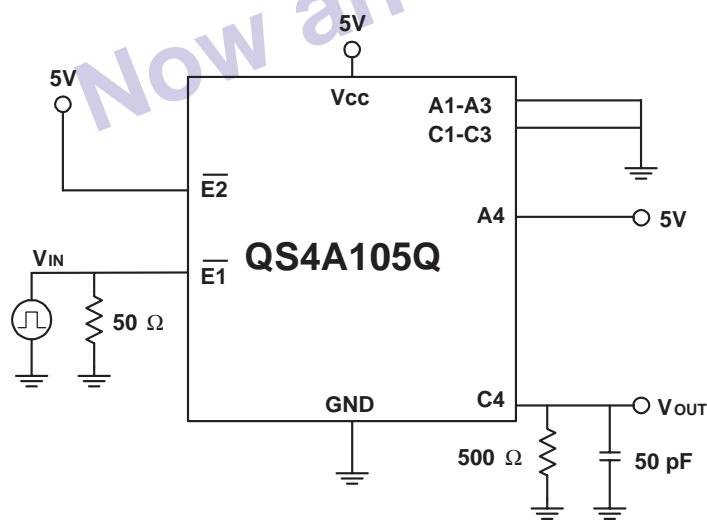


Note: 1. Insertion Loss = $20 \log |V_O/V_S|$

Figure 8. On-resistance vs. V_{IN}

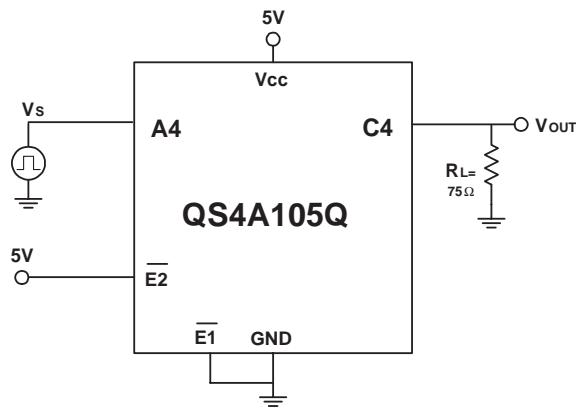

TEST CIRCUITS

Figure 9. Switching Time

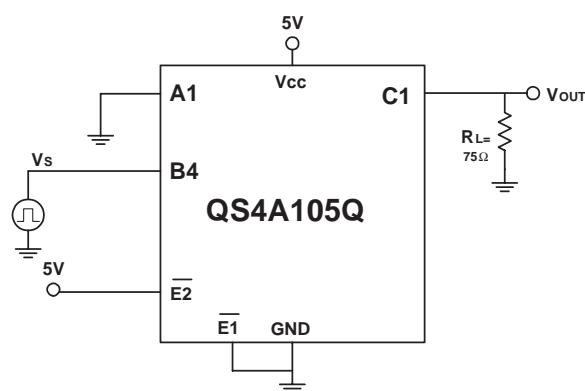

TEST CIRCUITS (continued)

Figure 10. Insertion Loss

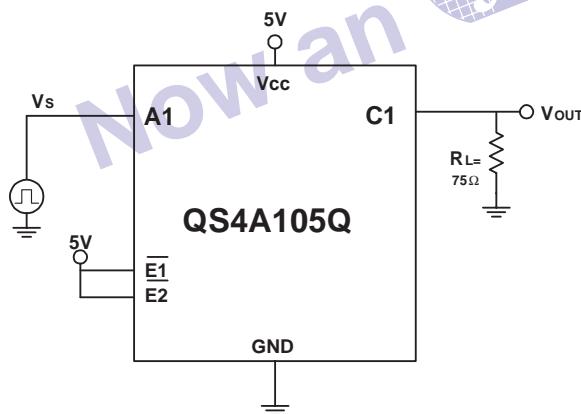

Note: 1. Insertion Loss = $20 \log |V_o/V_s|$
 2. All unused pins are grounded.

Figure 11. Crosstalk

Note: 1. Crosstalk = $20 \log |V_o/V_s|$
 2. All unused pins are grounded.

Figure 12. Off-isolation

Note: 1. Off-isolation = $20 \log |V_o/V_s|$
 2. All unused pins are grounded.