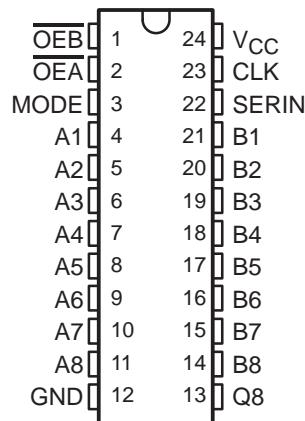


SN54AS856, SN74AS856 8-BIT UNIVERSAL TRANSCEIVER PORT CONTROLLERS

SDAS032A – DECEMBER 1983 – REVISED MARCH 1985

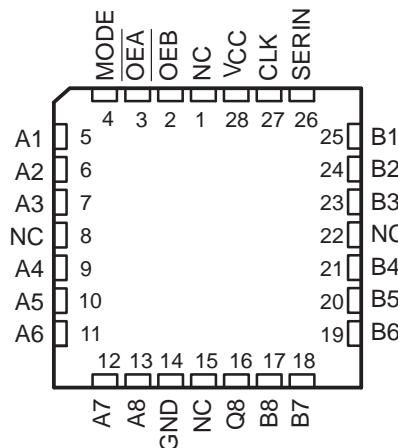
- **Package Options Include Plastic Small Outline Packages, Both Plastic and Ceramic Chip Carriers, and Standard Plastic and Ceramic 300-mil DIPs**
- **Buffered 3-State Outputs Drive Bus Lines Directly**
- **Cascadable to n-Bits**
- **Eight Selectable Transceiver/Port Functions:**
 - B to A
 - Register to A and/or B
 - Off-Line Shifts (A and B Ports in High-Impedance State)
 - Shifted to A and/or B
- **Particularly Suitable for Use in Diagnostics Analysis Circuitry**
- **Serial Register Provides:**
 - Parallel Storage of Either A or B input Data
 - Serial Transmission of Data from Either A or B Port
 - Readback Mode B to A
- **Dependable Texas Instruments Quality and Reliability**

description


The 'AS856 features two 8-bit I/O ports (A1-A8 and B1-B8), an 8-bit parallel-load, serial-in, parallel-out shift register, and control logic. With these features, this device is capable of performing eight selectable transceiver or port functions, depending on the state of the three control lines OEA, OEB, and MODE. These functions include: transferring data from port A to port B or vice versa (i.e., the transceiver function), serial shifting data to either or both ports, and performing off-line shifts (with A and B ports active as transceivers in a high-impedance state).

Synchronous parallel loading of the internal register can be accomplished from either port on the positive transition of the clock while serially shifting data in via the SERIN input. The 'AS856 is ideally suited for applications needing signature-analysis circuitry to enhance system verification and/or fault analysis. All serial data is shifted right. All outputs are buffer-type outputs designed specifically to drive bus lines directly and all are 3-state except for Q8, which is a totem-pole output.

The SN54AS856 is characterized for operation over the full military temperature range of -55°C to 125°C . The SN74AS856 is characterized for operation from 0°C to 70°C .


SN54AS856 . . . JT PACKAGE
SN74AS856 . . . DW OR NT PACKAGE

(TOP VIEW)

SN54AS856 . . . FK PACKAGE
SN74AS856 . . . FN PACKAGE

(TOP VIEW)

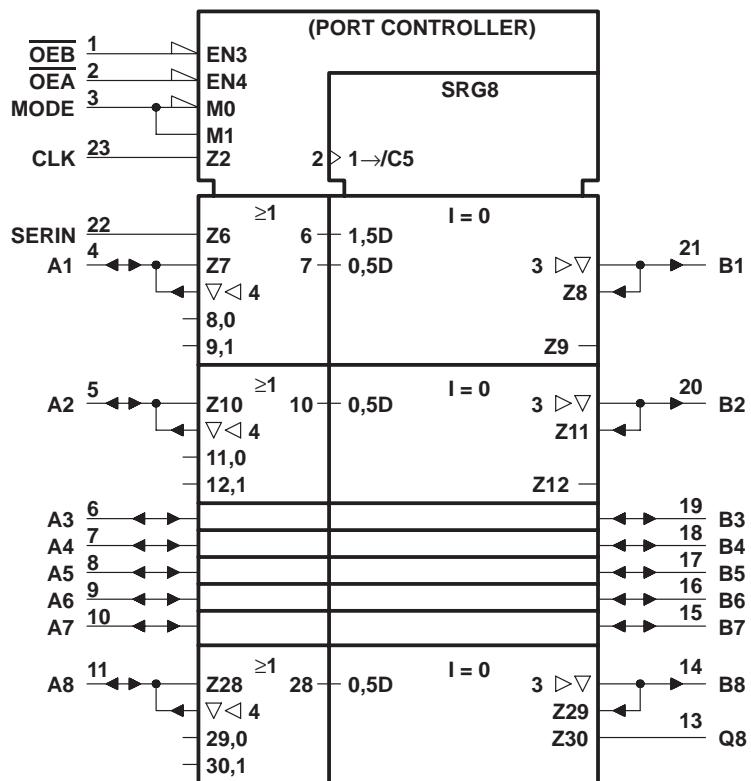
NC – No internal connection

SN54AS856, SN74AS856

8-BIT UNIVERSAL TRANSCIEVER PORT CONTROLLERS

SDAS032A - DECEMBER 1983 - REVISED MARCH 1985

FUNCTION TABLE

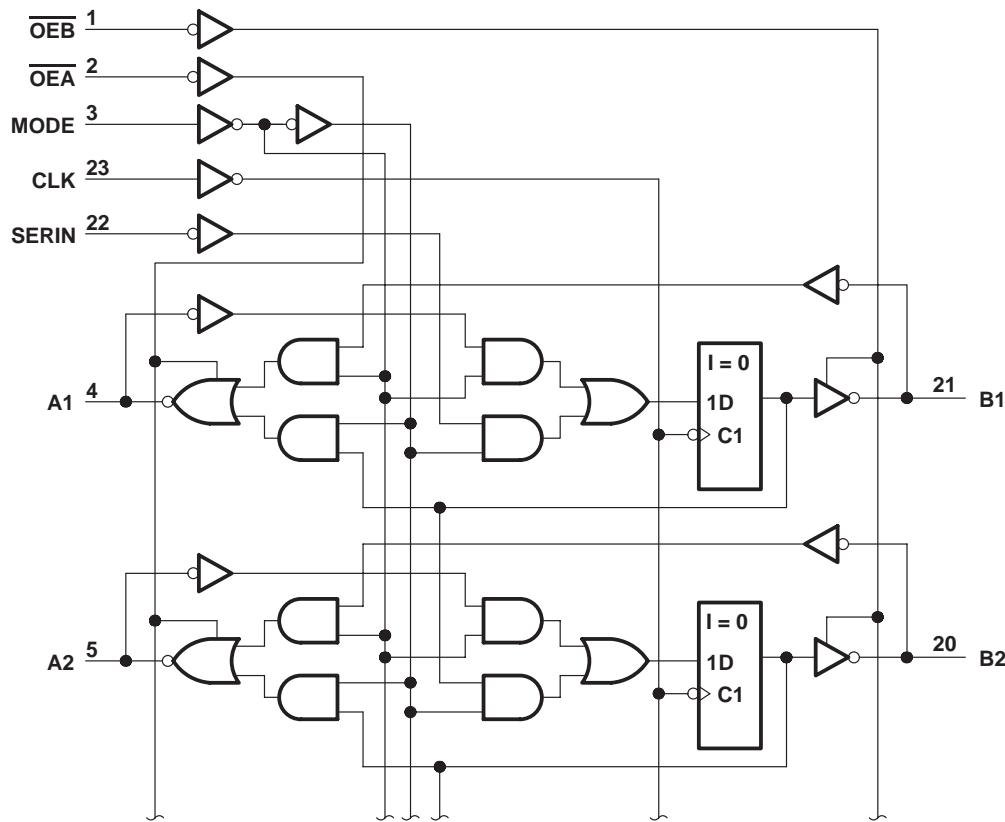

MODE MODE	\overline{OEA}	\overline{OEB}	CLOCK	SERIN	A1	Q1	B1	A2	Q2	B2	A3	Q3	B3	A4	Q4	B4	A5	Q5	B5	A6	Q6	B6	A7	Q7	B7	A8	Q8	B8	FUNCTION		
L	L	L	Hor L	X	Q1	Q1	H	Q2	Q2	Q2	Q3	Q3	Q3	Q4	Q4	Q4	Q5	Q5	Q5	Q6	Q6	Q6	Q7	Q7	Q7	Q8	Q8	Q8	Feedback		
L	L	L	↑	X	Q1	Q1	H	Q2	Q2	Q2	Q3	Q3	Q3	Q4	Q4	Q4	Q5	Q5	Q5	Q6	Q6	Q6	Q7	Q7	Q7	Q8	Q8	Q8			
L	L	H	Hor L	X	B1	Q1	H	B2	Q2	Z	B3	Q3	Z	B4	Q4	Z	B5	Q5	Z	B6	Q6	Z	B7	Q7	Z	B8	Q8	Z	B to A		
L	L	H	↑	X	B1	B1	L	B2	B2	Z	B3	B3	Z	B4	B4	Z	B5	B5	Z	B6	B6	Z	B7	B7	Z	B8	B8	Z	A to Q		
L	H	L	Hor L	X	Z	Q1	L	Z	Q2	Q2	Z	Q3	Q3	Z	Q4	Q4	Z	Q5	Q5	Z	Q6	Q6	Z	Z	Q7	Q7	Z	Q8	Q8	Z	A to Q
L	H	L	↑	X	Z	A1	L	Z	A2	A2	Z	A3	A3	Z	A4	A4	Z	A5	A5	Z	A6	A6	Z	Z	A7	A7	Z	A8	A8	Z	Q to B
L	H	H	Hor L	X	Z	Q1	L	Z	Q2	Z	Z	Q3	Z	Z	Q4	Z	Z	Q5	Z	Z	Q6	Z	Z	Z	Q7	Z	Z	Q8	Z		
L	H	H	↑	X	Z	A1	L	Z	A2	Z	Z	A3	Z	Z	A4	Z	Z	A5	Z	Z	A6	Z	Z	Z	A7	Z	Z	A8	Z	A to Q	
H	L	L	Hor L	X	Q1	Q _n	L	Q2	Q _n	Q2	Q3	Q _n	Q3	Q4	Q _n	Q4	Q5	Q _n	Q5	Q6	Q _n	Q6	Q7	Q7	Q _n	Q7	Q8	Q8	Shift		
H	L	L	↑	H	H	H	L	Q1	Q1	Q1	Q2	Q2	Q2	Q3	Q3	Q3	Q4	Q4	Q4	Q5	Q5	Q5	Q6	Q6	Q6	Q7	Q7	Q7	To		
H	L	L	↑	L	L	L	L	Q1	Q1	Q1	Q2	Q2	Q2	Q3	Q3	Q3	Q4	Q4	Q4	Q5	Q5	Q5	Q6	Q6	Q6	Q7	Q7	Q7	A and B		
H	L	H	Hor L	X	Q1	Q _n	L	Q2	Q _n	Z	Q3	Q _n	Z	Q4	Q _n	Z	Q5	Q _n	Z	Q6	Q _n	Z	Q7	Q _n	Z	Q8	Q _n	Z	Shift		
H	L	H	↑	H	H	H	L	Q1	Q1	Z	Q2	Q2	Z	Q3	Q3	Z	Q4	Q4	Z	Q5	Q5	Z	Q6	Q6	Z	Q7	Q7	Z	To		
H	L	H	↑	L	L	L	L	Q1	Q1	Z	Q2	Q2	Z	Q3	Q3	Z	Q4	Q4	Z	Q5	Q5	Z	Q6	Q6	Z	Q7	Q7	Z	A		
H	H	L	Hor L	X	Z	Q _n	L	Z	Q _n	Q2	Z	Q _n	Q3	Z	Q _n	Q4	Z	Q _n	Q5	Z	Q _n	Q6	Z	Z	Q _n	Q7	Z	Q _n	Q8	Shift	
H	H	L	↑	H	Z	H	L	Z	Q1	Q1	Z	Q2	Q2	Z	Q3	Q3	Z	Q4	Q4	Z	Q5	Q5	Z	Z	Q6	Q6	Z	Q7	Q7	To	
H	H	L	↑	L	Z	L	L	Z	Q1	Q1	Z	Q2	Q2	Z	Q3	Q3	Z	Q4	Q4	Z	Q5	Q5	Z	Z	Q6	Q6	Z	Q7	Q7	B	
H	H	H	Hor L	X	Z	Q _n	L	Z	Q _n	Z	Z	Z	Q _n	Z	Z	Q _n	Z	Shift													
H	H	H	↑	H	Z	H	L	Z	Q1	Z	Z	Q2	Z	Z	Q3	Z	Z	Q4	Z	Z	Q5	Z	Z	Z	Q6	Z	Z	Q7	Z		
H	H	H	↑	L	Z	L	L	Z	Q1	Z	Z	Q2	Z	Z	Q3	Z	Z	Q4	Z	Z	Q5	Z	Z	Z	Q6	Z	Z	Q7	Z	Shift	

n = level of Q_n ($n = 1, 2 \dots 8$) established on most recent ↑ transition of CLK. Q1 through Q8 are the shift register outputs; only Q8 is available externally. The double inversions that take place as the data travels from port to port are ignored in this table.

SN54AS856, SN74AS856
8-BIT UNIVERSAL TRANSCEIVER PORT CONTROLLERS

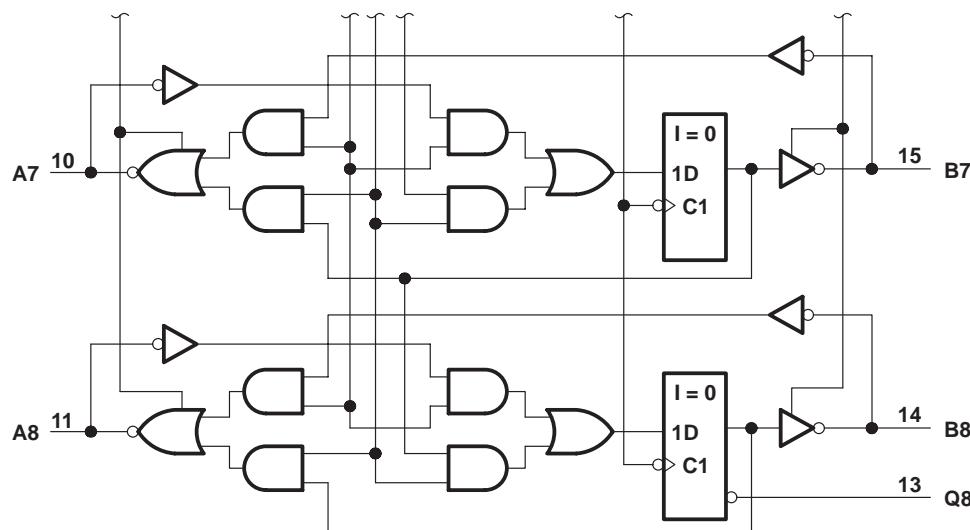
SDAS032A – DECEMBER 1983 – REVISED MARCH 1985

logic symbol†


Pin numbers shown are for DW, JT, and NT packages.

† This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

SN54AS856, SN74AS856 8-BIT UNIVERSAL TRANSCEIVER PORT CONTROLLERS


SDAS032A – DECEMBER 1983 – REVISED MARCH 1985

logic diagram (positive logic)

Four Identical Channels Not Shown
Inputs/Outputs Not Shown:

- (6) A3 (19) B3
- (7) A4 (18) B4
- (8) A5 (17) B5
- (9) A6 (16) B6

Pin numbers shown are for DW, JT, and NT packages.

**TEXAS
INSTRUMENTS**

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

SN54AS856, SN74AS856 8-BIT UNIVERSAL TRANSCEIVER PORT CONTROLLERS

SDAS032A – DECEMBER 1983 – REVISED MARCH 1985

absolute maximum ratings over free-air temperature range

recommended operating conditions

		SN54AS856			SN74AS856			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
V _{CC}	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
V _{IH}	High-level input voltage	2			2			V
V _{IL}	Low-level input voltage			0.8			0.8	V
I _{OH}	High-level output current	A1-A8, B1-B8			-12		-15	mA
		Q8			-2		-2	
I _{OL}	Low-level output current	A1-A8, B1-B8			32		48	mA
		Q8			20		20	
f _{clock}	Clock frequency	0	45	0	50		MHz	
t _w	Duration of clock pulse	11			10			ns
t _{su}	Setup time before CLK↑	A1-A8, B1-B8 SERIN			5.5		5.5	ns
		OEB, OEA, MODE			5.5		5.5	
t _h	Hold-time, data after CLK↑	A1-A8, B1-B8 SERIN			0		0	ns
		OEB, OEA, MODE			0		0	
T _A	Operating free-air temperature	-55	125	0	70		°C	

SN54AS856, SN74AS856 8-BIT UNIVERSAL TRANSCEIVER PORT CONTROLLERS

SDAS032A – DECEMBER 1983 – REVISED MARCH 1985

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS	SN54AS856			SN74AS856			UNIT
			MIN	TYPT [†]	MAX	MIN	TYPT [†]	MAX	
V _{IK}		V _{CC} = 4.5 V, I _I = -18 mA			-1.2			-1.2	V
V _{OH}	A1-A8	V _{CC} = 4.5 V, I _{OH} = -12 mA	2	3.2					V
	B1-B8	V _{CC} = 4.5 V, I _{OH} = -15 mA				2	3.3		
	All outputs	V _{CC} = 4.5 V to 5.5 V, I _{OH} = -2 mA	V _{CC} -2			V _{CC} -2			
V _{OL}	All outputs except Q8	V _{CC} = 4.5 V, I _{OL} = 32 mA	0.25	0.5					V
		V _{CC} = 4.5 V, I _{OL} = 48 mA				0.35	0.5		
	Q8	V _{CC} = 4.5 V, I _{OL} = 20 mA			0.5			0.5	
I _I	OEB, OEA, MODE				0.2			0.2	mA
	CLK and SERIN	V _{CC} = 5.5 V, V _I = 7 V			0.1			0.1	
	A1-A8, B1-B8	V _{CC} = 5.5 V, V _I = 5.5 V			0.2			0.2	
I _{IH}	OEB, OEA, MODE				40			40	μA
	CLK and SERIN	V _{CC} = 5.5 V, V _I = 2.7 V			20			20	
	A1-A8, B1-B8 [‡]				70			70	
I _{IL}	OEB, OEA, MODE				-1			-1	mA
	CLK and SERIN	V _{CC} = 5.5 V, V _I = 0.4 V			-0.5			-0.5	
	A1-A8, B1-B8 [‡]				-0.5			-0.5	
I _O [§]	Except Q8	V _{CC} = 5.5 V, V _O = 2.25 V	-30	-112	-30	-112			mA
	Q8		-20	-112	-20	-112			
I _{CC}		V _{CC} = 5.5 V	118	200		118	200		mA

[†] All typical values are at V_{CC} = 5 V, T_A = 25°C.

[‡] For I/O ports, the parameters I_{IH} and I_{IL} include the output currents I_{OZH} and I_{OZL}, respectively.

[§] The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, I_{OS}.

SN54AS856, SN74AS856
8-BIT UNIVERSAL TRANSCEIVER PORT CONTROLLERS

SDAS032A – DECEMBER 1983 – REVISED MARCH 1985

switching characteristics (see Note 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$, $C_L = 50 \text{ pF}$, $R1 = 500 \Omega$, $R2 = 500 \Omega$, $T_A = \text{MIN to MAX}$				UNIT	
			SN54AS856		SN74AS856			
			MIN	MAX	MIN	MAX		
f_{max}			45	50			MHz	
t_{PLH}	Any B port	Any A port	2	8	2	7	ns	
t_{PHL}			2	10.5	2	9.5		
t_{PLH}	$\uparrow\text{MODE}$	Any A or B port	2	8.5	2	7.5	ns	
t_{PHL}			5	20	5	19		
t_{PLH}	$\downarrow\text{MODE } \uparrow$	Any A or B port	2	8.5	2	7.5	ns	
t_{PHL}			2	9.5	2	8		
t_{PLH}	CLK	Any A or B port	3	12	3	9	ns	
t_{PHL}			3	12	3	11		
t_{PLH}	CLK	Q8	2	9	2	7.5	ns	
t_{PHL}			2	10	2	9		
t_{PHZ}	OEA or OEB	Any A or B port	2	9	2	7	ns	
t_{PLZ}			2	12	2	9.5		
t_{PZH}			2	8	2	7	ns	
t_{PZL}			2	11	2	10		

[†] The positive transition of the MODE control will cause low-level data at the A output bus or stored in Q to be invalid for 12 ns.

NOTE 1: Load circuit and voltage waveforms are shown in Section 1.

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
SN74AS856DW	OBsolete	SOIC	DW	24		TBD	Call TI	Call TI
SN74AS856NT	OBsolete	PDIP	NT	24		TBD	Call TI	Call TI
SN74AS856NT	OBsolete	PDIP	NT	24		TBD	Call TI	Call TI

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBsolete: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check <http://www.ti.com/productcontent> for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

Copyright © 2006, Texas Instruments Incorporated