
CMOS 8-Bit Microcontroller TMP86FH47UG

The TMP86FH47 is a high-speed, high-performance 8-bit microcomputer built around the TLCS-870/C Series core with built-in 16-Kbyte flash memory and it is pin compatible with its mask ROM version, the TMP86C845/847/H47. Writing programs in the built-in flash memory enables this microcomputer to perform the same operations as the TMP86C847/H47. About TMP86C845, please refer to "Difference between TMP86C845 and TMP86Cx47". The built-in flash memory can be rewritten on board (without removing it from the PCB) by a built-in boot program.

Product No.	Flash Memory	RAM	Package
TMP86FH47UG	16384 × 8 bits	512 × 8 bits	P-LQFP44-1010-0.80A

Feautures

- ♦ 8-bit single chip microcomputer TLCS-870/C series
- Instruction execution time: 0.25 μs (at 16 MHz)
 122 μs (at 32.768 kHz)
- ♦ 132 types and 731 basic instructions
- ♦ 18 interrupt sources (External: 6, Internal: 12)
- ♦ Input/output ports (35 pins)
- ♦ 8-bit timer counter: 2 ch
 - · Timer, PWM, PPG, PDO, Event counter modes
- ♦ Time base timer
- ♦ Watchdog timer
 - Interrupt sources/reset output (Programmable)
- ♦ Serial interface
 - 8-bit SIO: 1 ch
 - 8-bit UART: 1 ch

030619EBP1

- The information contained herein is subject to change without notice.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunctionor failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.
- For a discussion of how the reliability of microcontrollers can be predicted, please refer to Section 1.3 of the chapter entitled Quality and Reliability Assurance/Handling Precautions.

86FH47-1 2003-09-10

- ♦ 10-bit successive approximation type AD converter
 - · Analog input: 8 ch
- ♦ 16-bit timer counter: 1 ch
 - Timer, event counter, pulse width measurment, programmable pulse generator (PPG), external-triggered timer, window modes
- ♦ Key-on wakeup: 4 ch
- ♦ Dual clock operation
 - Single/dual-clock mode
- Nine power saving operating modes
 - STOP mode: Oscillation stops. Battery/capacitor backup.
 - Port output hold/high-impedance.
 - SLOW 1, 2 mode: Low power consumption operation using low-frequency clock (32.768 kHz)
 - IDLE 0 mode: CPU stops, and peripherals operate using high-frequency clock of time-base-timer. Release by INTTBT interrupt.
 - IDLE 1 mode: CPU stops, and peripherals operate using high-frequency clock.
 - Release by interrupts.
 - IDLE 2 mode: CPU stops, and peripherals operate using high and low frequency clock.
 - Release by interrupts.
 - SLEEP 0 mode: CPU stops, and peripherals operate using low-frequency clock of time
 - base-timer. Release by INTTBT interrupt.
 - SLEEP 1 mode: CPU stops, and peripherals operate using low-frequency clock.
 - Release by interrupts.
 - SLEEP 2 mode: CPU stops, and peripherals operate using high and low frequency clock.
 - Release by interrupts.
- ♦ Wide operating voltage: 4.5 to 5.5 V at 16 MHz/32.768 kHz
 - 2.7 to 5.5 V at 8 MHz/32.768 kHz

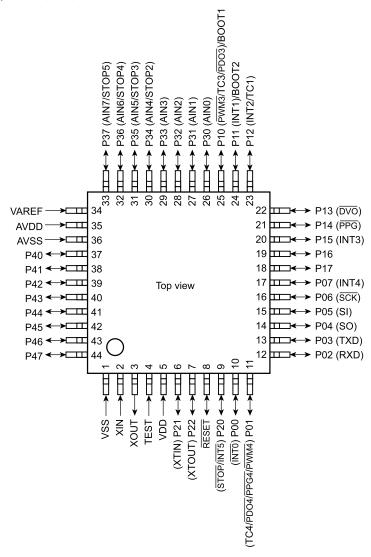
Note: The operating voltage, the operating temperature and the operating current are different between TMP86FH47 and TMP86C845/847/H47.

About details, please refer to electrical characteristics of each products.

86FH47-2 2003-09-10

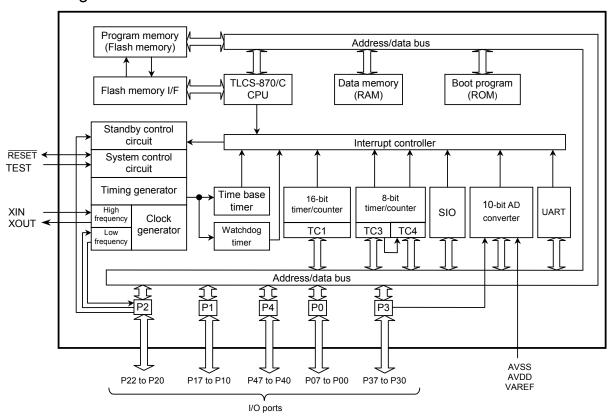
Difference Between TMP86C845 and TMP86Cx47

			TMP86Cx47U		TMP86C845U	
	·	TMP86C847U	TMP86CH47U	TMP86CM47U	110170000430	
ROM (Byte	e)	8 K	16 K	32 K	8 K	
RAM (Byte	;)	512	512	1 K	256	
I/O			35		35	
Package (E	Body size)		QFP44 (10 × 10 mm)		QFP44 (10 × 10 mm)	
Min instruc	tion		0.25 μs (at 16 MHz)		0.5 μs (at 8 MHz)	
Supply volt	tage	2.7 to	5.5 V at 4.2 MHz/32.76 5.5 V at 8.0 MHz/32.76 5.5 V at 16 MHz/32.76	88 kHz	2.7 to 5.5 V at 8.0 MHz/ 32.768 kHz	
16-bit time	r/counter		1 ch		-	
8-bit timer/	counter	2 ch			2 ch	
Time base	timer	1 ch		1 ch		
Watchdog	timer	1 ch		1 ch		
AD conver	ter		8 ch		8 ch	
Serial I/O		Clocked	Clocked synchronous: 1 ch, UART: 1 ch		Clocked synchronous: 1 ch	
Key on wa	keup		4 ch		-	
Warm-up o	counter		6		4	
I/O	Hysteresis input		P0, P1, P2 port		Port2, P00, P05, P06, P07, P10, P11, P12, P15 pin	
Circuitry	CMOS input		P3, P4 port		Port3, Port4, P01, P02, P03, P04, P13, P14, P16, P17 pin	
	RESET	Watchdog timer,	Adress trap, System c	lock reset output	Input only	
Operation 7	Temp.		–40 to 85°C		−40 to 85°C	


are difference points between TMP86C845 and TMP86Cx47.

Please refer to "Input/Output Circutry" of TMP86C847/H47/M47 and TMP86C845 for details.

86FH47-3 2003-09-10


Pin Assignments (Top view)

P-LQFP44-1010-0.80A

86FH47-4 2003-09-10

Block Diagram

Pin Function

The TMP86FH47 has MCU mode and serial PROM mode.

(1) MCU mode

In the MCU mode, the TMP86FH47 is a pin compatible with the TMP86C845/847/H47 (Make sure to fix the TEST pin to low level).

(2) Serial PROM mode

The serial PROM mode is set by fixing TEST pin, P10 and P11 at "high" respectively when $\overline{\text{RESET}}$ pin is fixed "low".

After release of reset, the built-in BOOT ROM program is activated and the built-in flash memory is rewritten by serial I/F (UART).

Pin Name (Serial PROM mode)	Input/ Output	Functions Pin Name (MCU mode)				
BOOT1/RXD	Input/Input	Fix "High" during reset. This pin is used as RXD pin after releasing reset.	P10			
BOOT2/TXD	Input/Output	Fix "High" during reset. This pin is used as TXD pin after releasing reset.	P11			
TEST	Input	Fix to "High".				
RESET	I/O	Reset signal input or an internal error reset out	put.			
VDD, AVDD	Power supply	5 V				
VSS, AVSS, VAREF	Power supply	0 V				
P07 to P00, P17 to P12, P22 to P20, P37 to P30, P47 to P40		Fix to "Low" or "High".				
XIN	Input	Solf oscillation with reconstor (2 MHz, 4 MHz, 9 MHz, 16 MHz)				
XOUT	Output	Self oscillation with resonator (2 MHz, 4 MHz, 8 MHz, 16 MHz)				

86FH47-6 2003-09-10

Operation

This section describes the functions and basic operational blocks of TMP86FH47.

The TMP86FH47 has flash memory in place of the mask ROM which is included in the TMP86C845/847/H47. The configuration and function are the same as the TMP86C847/H47. For TMP86C845, however, some functions have been partially changed or deleted. For the functions of TMP86FH47 in details, see the section of TMP86C845/847/H47.

1. Operating Mode

The TMP86FH47 has MCU mode and serial PROM mode.

1.1 MCU Mode

The MCU mode is set by fixing the TEST pin to the low level.

In the MCU mode, the operation is the same as the TMP86C845/847/H47 (TEST pin cannot be used open because it has no built-in pull-down resistor).

1.1.1 Program memory

The TMP86FH47 has a 16-Kbyte built-in flash memory (addresses C000H to FFFFH in the MCU mode).

When using TMP86FH47 for evaluation of TMP86C845/847/H47, the program is written by the serial PROM mode.

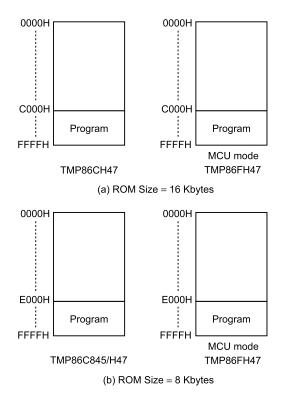


Figure 1.1.1 Program Memory Area

Note: The area that is not in use should be set data to FFH.

86FH47-7 2003-09-10

2. Serial PROM Mode

2.1 Outline

The TMP86FH47 has a 2-Kbyte BOOT ROM for programming to flash memory. This BOOT ROM is a mask ROM that contains a program to write the flash memory on-board. The BOOT ROM is available in a serial PROM mode and it is controlled by TEST pin and RESET pin and 2 I/O pins, and is communicated with UART. There are four operation modes in a serial PROM mode: flash memory writing mode, RAM loader mode, flash memory SUM output mode and product discrimination code output mode. Operating area of serial PROM mode differs from that of MCU mode. The operating area of serial PROM mode shows in Table 2.1.1.

Parameter	Symbol	Min	Max	Unit
Operating voltage	V _{DD}	4.5	5.5	V
High frequency	fc	2, 4,	8, 16	MHz
Temperature	Topr	25	°C	

Table 2.1.1 Operating Area of Serial PROM Mode

2.2 Memory Mapping

The BOOT ROM is mapped in address F800H to FFFFH. The BOOT ROM can't be accessed in MCU mode. The Figure 2.2.1 shows a memory mapping.

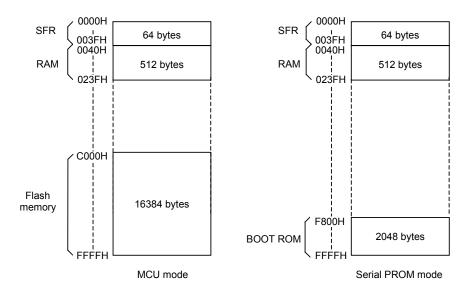


Figure 2.2.1 Memory Address Maps

Electrical Characteristics

Absolute Maximum Ratings (V_{SS} = 0 V)

Parameter	Symbol	Pins	Rating	Unit
Supply voltage	V_{DD}		−0.3 to 5.5	
Input voltage	V _{IN}		-0.3 to V _{DD} + 0.3	V
Output voltage	V _{OUT}		-0.3 to V _{DD} + 0.3	
	I _{OUT1} I _{OH}	P1, P3, P4 ports	-1.8	
Output current (Per 1 pin)	I _{OUT2} I _{OL}	P1, P3 ports	3.2	
	I _{OUT3} I _{OL}	P0, P2, P4 ports	30	mA
Output ourront (Total)	Σl _{OUT1}	P1, P3 ports	60	
Output current (Total)	Σl _{OUT2}	P0, P2, P4 ports	80	
Power dissipation [Topr = 70°C]	PD		250	mW
Soldering temperature (time)	Tsld		260 (10 s)	
Storage temperature	Tstg		-55 to 125	°C
Operating temperature	Tonr		-40 to 70 (MCU mode)	
Operating temperature	Topr		20 to 30 (Serial PROM mode)	

Note: The absolute maximum ratings are rated values which must not be exceeded during operation, even for an instant. Any one of the ratings must not be exceeded. If any absolute maximum rating is exceeded, a device may break down or its performance may be degraded, causing it to catch fire or explode resulting in injury to the user. Thus, when designing products which include this device, ensure that no absolute maximum rating value will ever be exceeded.

Recommended Operating Condition

1) MCU mode ($V_{SS} = 0 \text{ V}$, Topr = -40 to 70°C)

Parameter	Symbol	Pins	С	ondition	Min	Max	Unit
			fc = 16 MHz	NORMAL1, 2 mode	4.5		
			IC = 16 IVITZ	IDLE0, 1, 2 mode	4.5		
Supply voltage	V_{DD}		fc = 8 MHz	NORMAL1, 2 mode		5.5	
			IC = 6 IVITIZ	IDLE0, 1, 2 mode	2.7		
				STOP mode			
	V _{IH1}	Except hysteresis input	V>45V	•	$V_{DD} \times 0.70$		V
Input high level	V _{IH2}	Hysteresis input	VDD ≥ 4.5 V	V _{DD} ≥ 4.5 V		V_{DD}	
	V _{IH3}		V _{DD} < 4.5 V		$V_{DD} \times 0.90$		
	V _{IL1}	Except hysteresis input	V _{DD} ≥ 4.5 V			$V_{DD} \times 0.30$	
Input low level	V _{IL2}	Hysteresis input	VDD ≥ 4.5 V		0	$V_{DD} \times 0.25$	
	V _{IL3}		V _{DD} < 4.5 V			$V_{DD} \times 0.10$	
	fc	XIN, XOUT	$V_{DD} = 4.5 \text{ to } 5.$.5 V	1.0	16.0	MHz
Clock frequency	10	Ally, AOUT	$V_{DD} = 2.7 \text{ to } 5.$.5 V	1.0	8.0	IVII⊐∠
	fs	XTIN, XTOUT			30.0	34.0	kHz

2) Serial PROM mode ($V_{SS} = 0 \text{ V}$, Topr = 20 to 30°C)

Parameter	Symbol	Pins	Condition	Min	Max	Unit
Supply voltage	V_{DD}		fc = 2 MHz, 4 MHz, 8 MHz, 16 MHz	4.5	5.5	
Input high lovel	V _{IH1}	Except hysteresis input	V _{DD} = 4.5 to 5.5 V	$V_{DD} \times 0.70$	V_{DD}	
Input high level	V _{IH2}	Hysteresis input	VDD = 4.3 to 3.3 V	$V_{DD} \times 0.75$	• 00	V
Input low level	V_{IL1}	Except hysteresis input	V _{DD} = 4.5 to 5.5 V	0	$V_{DD} \times 0.30$	
input low level	V_{IL2}	Hysteresis input	VDD = 4.3 to 3.3 V		$V_{DD} \times 0.25$	
Clock frequency	fc	XIN, XOUT	V _{DD} = 4.5 to 5.5 V	2.0, 4.0, 8.0, 1	6	MHz

Note: The recommended operating conditions for a device are operating conditions under which it can be guaranteed that the device will operate as specified. If the device is used under operating conditions other than the recommended operating conditions (Supply voltage, operating temperature range, specified AC/DC values etc.), malfunction may occur. Thus, when designing products which include this device, ensure that the recommended operating conditions for the device are always adhered to.

DC Characteristics $(V_{SS} = 0 \text{ V, Topr} = -40 \text{ to } 70^{\circ}\text{C})$

Parameter	Symbol	Pins	Condi	tion	Min	Тур.	Max	Unit
Hysteresis voltage	V_{HS}	Hysteresis input			-	0.9	-	V
	I _{IN1}	TEST						
Input current	I _{IN2}	Sink open drain, tri-state	$V_{DD} = 5.5 \text{ V}, V_{IN} = 8$	5.5/0 V	-	-	±2	μΑ
	I _{IN3}	RESET, STOP						
Input resistance	R _{IN2}	RESET pull up			100	200	450	kΩ
Output leakage	I _{LO1}	Sink open drain	$V_{DD} = 5.5 \text{ V}, V_{OUT} =$	= 5.5 V	-	-	2	μА
current	I _{LO2}	Tri-state	V _{DD} = 5.5 V, V _{OUT} =	= 5.5/0 V	-	-	±2	μΛ
Output high voltage	V _{OH}	Tri-state	$V_{DD} = 4.5 \text{ V}, I_{OH} = -$	-0.7 mA	4.1	-	-	
Output low voltage	V _{OL}	Except XOUT, P0, P2 and P4 ports	$V_{DD} = 4.5 \text{ V}, I_{OL} = 1$	V _{DD} = 4.5 V, I _{OL} = 1.6 mA		-	0.4	V
Output low current	I _{OL}	High current port (P0, P2, P4 port)	V _{DD} = 4.5 V, V _{OL} = 1.0 V		-	20	-	
Supply current in NORMAL 1, 2 mode			V _{DD} = 5.5 V		-	8.0	12.5	A
Supply current in IDLE1, 2 mode			$V_{IN} = 5.3 \text{ V}/0.2 \text{ V}$ fc = 16 MHz		-	6.0	9.0	mA
Supply current in IDLE0 mode			fs = 32.768 kHz		-	4.5	9.0	
Supply current in				When a program operates on flash memory	-	300	600	
SLOW1 mode	I _{DD}		$V_{DD} = 3.0 \text{ V}$ $V_{IN} = 2.8 \text{ V}/0.2 \text{ V}$	When a program operates on RAM	-	8.0	27	
Supply current in SLEEP1 mode			fs = 32.768 kHz		-	7.0	25	μА
Supply current in SLEEP0 mode					-	6.0	24	
Supply current in STOP mode			$V_{DD} = 5.0 \text{ V}$ $V_{IN} = 5.3 \text{ V}/0.2 \text{ V}$		-	0.5	10	

Note 1: Typical values show those at Topr = 25°C, $\ensuremath{V_{DD}} = 5\ensuremath{\mbox{ V}}.$

Note 2: Input current (I_{IN3}); The current through pull-up resistor is not included.

Note 3: $I_{\mbox{\scriptsize DD}}$ does not include $I_{\mbox{\scriptsize REF}}$ current.

AD Conversion Characteristics

$$(V_{SS} = 0 \text{ V}, 4.5 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Topr} = -40 \text{ to } 70^{\circ}\text{C})$$

Parameter	Symbol	Condition	Min	Тур.	Max	Unit
Analog reference voltage	V_{AREF}		A _{VDD} – 1.0	-	A_{VDD}	
Power supply voltage of analog control circuit	A _{VDD}			V_{DD}		V
Analog reference voltage range (Note 4)	ΔV_{AREF}		3.5	-	-	V
Analog input voltage	V_{AIN}		V _{SS}	-	V _{AREF}	
Power supply current of analog reference voltage	I _{REF}	$V_{DD} = A_{VDD} = V_{AREF} = 5.5 \text{ V}$ $V_{SS} = A_{VSS} = 0.0 \text{ V}$	-	0.6	1.0	mA
Non linearity error		V _{DD} = A _{VDD} = 5.0 V	-	-	±2	
Zero point error		$V_{SS} = A_{VSS} = 0.0 \text{ V}$	-	-	±2	LSB
Full scale error			-	-	±2	LOD
Total error		$V_{AREF} = 5.0 \text{ V}$	-	-	±2	

$$(V_{SS} = 0 \text{ V}, 2.7 \text{ V} \le V_{DD} < 4.5 \text{ V}, \text{Topr} = -40 \text{ to } 70^{\circ}\text{C})$$

Parameter	Symbol	Condition	Min	Тур.	Max	Unit
Analog reference voltage	V_{AREF}		A _{VDD} – 1.0	-	A_{VDD}	
Power supply voltage of analog control circuit	A _{VDD}			V_{DD}		V
Analog reference voltage range (Note 4)	ΔV_{AREF}		2.5	-	-	V
Analog input voltage	V _{AIN}		V _{SS}	-	V _{AREF}	
Power supply current of analog reference voltage	I _{REF}	$V_{DD} = A_{VDD} = V_{AREF} = 4.5V$ $V_{SS} = A_{VSS} = 0.0 V$	-	0.5	0.8	mA
Non linearity error		$V_{DD} = A_{VDD} = 2.7 \text{ V}$	_	-	±2	
Zero point error		$V_{SS} = 0.0 \text{ V}$	-	-	±2	LSB
Full scale error			-	_	±2	LOD
Total error		$V_{AREF} = 2.7 \text{ V}$	-	-	±2	

- Note 1: The total error includes all errors except a quantization error, and is defined as a maximum deviation from the ideal conversion line.
- Note 2: Conversion time is different in recommended value by power supply voltage.

 About conversion time, please refer to "10-Bit AD Converter".
- Note 3: Please use input voltage to AIN input pin in limit of $V_{AREF} V_{SS}$. When voltage of range outside is input, conversion value becomes unsettled and gives affect to other channel conversion value.
- Note 4: Analog reference voltage range: $\Delta V_{AREF} = V_{AREF} V_{SS}$
- Note 5: The A_{VDD} pin should be fixed on the V_{DD} level even though AD converter is not used.

AC Characteristics

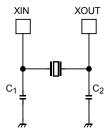
(V $_{SS} = 0$ V, V $_{DD} = 4.5$ to 5.5 V, Topr = -40 to $70^{\circ}C)$

Parameter	Symbol	Condition	Min	Тур.	Max	Unit
		NORMAL1, 2 mode	0.25		4	
Machine cycle time	tov	IDLE1, 2 mode	0.25	_	7	μ\$
Machine cycle time	tcy	SLOW1, 2 mode	117.6		133.3	
		SLEEP1, 2 mode	117.0	_	133.3	
High level clock pulse width	twcH	For external clock operation (XIN		31.25		ns
Low level clock pulse width	twcL	input), fc = 16 MHz	_	31.23	_	115
High level clock pulse width	twcH	For external clock operation (XTIN		15.26		0
Low level clock pulse width	twcL	input), fs = 32.768 kHz	_	15.20	_	μS

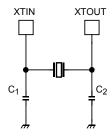
$$(V_{SS} = 0 \text{ V}, V_{DD} = 2.7 \text{ to } 4.5 \text{ V}, \text{Topr} = -40 \text{ to } 70^{\circ}\text{C})$$

Parameter	Symbol	Condition	Min	Тур.	Max	Unit
		NORMAL1, 2 mode	0.5		133.3	
Machine avaletime	40.7	IDLE1, 2 mode	0.5	_		μ\$
Machine cycle time	tcy	SLOW1, 2 mode	117.6			
		SLEEP1, 2 mode	117.0	_		
High level clock pulse width	twcH	For external clock operation (XIN		62.5		ns
Low level clock pulse width	twcL	input), fc = 8 MHz	_	02.5	_	115
High level clock pulse width	twcH	For external clock operation (XTIN		15.26		0
Low level clock pulse width	twcL	input), fs = 32.768 kHz	_	15.20	_	μS

Recommended Oscillating Conditions-1


$$(V_{SS} = 0 \text{ V}, V_{DD} = 4.5 \text{ to } 5.5 \text{ V}, \text{Topr} = -40 \text{ to } 70^{\circ}\text{C})$$

Parameter	Oscillator	Oscillation	Recommened Oscillator		Recommended Constant	
		Frequency			C ₁	C ₂
High-frequency Oscillation	Ceramic Resonator	16 MHz	MURATA	CSA16.00MXZ040	10 pF	10 pF
		8 MHz	MURATA	CSA8.00MTZ	30 pF	30 pF
				CST8.00MTW	30 pF (built-in)	30 pF (built-in)
		4.19 MHz	MURATA	CSA4.19MG	30 pF	30 pF
				CST4.19MGW	30 pF (built-in)	30 pF (built-in)
Low-frequency	Crystal Oscillator	l Oscillator 32.768 kHz	SII	VT-200	6 pF	6 pF
Oscillation	Crystal Oscillator					


Recommended Oscillating Conditions-2

$$(V_{SS} = 0 \text{ V}, V_{DD} = 2.7 \text{ to } 5.5 \text{ V}, \text{Topr} = -40 \text{ to } 70^{\circ}\text{C})$$

Doromotor	Oscillator	Oscillation Frequency	Recommened Oscillator		Recommended Constant	
Parameter					C ₁	C ₂
High-frequency Oscillation	Ceramic Resonator	8 MHz	MURATA	CSA8.00MTZ	30 pF	30 pF
				CST8.00MTW	30 pF (built-in)	30 pF (built-in)
		4.19 MHz	MURATA	CSA4.19MG	30 pF	30 pF
				CST4.19MGW	30 pF (built-in)	30 pF (built-in)

High-frequency oscillation

Low-frequency oscillation

- Note 1: When using the device (Oscillator) in places exposed to high electric fields such as cathoderay tubes, we recommend electrically shielding the package in order to maintain normal operating condition.
- Note 2: To ensure stable oscillation, the resonator position, load capacitance, etc. must be appropriate. Because there factors are greatly affected by board patterns, please be sure to evaluate operation on the board on which the device will actually be mounted.
- Note 3: The product numbers and specifications of the resonators by Murata Manufacturing Co., Ltd. are subject to change. For up-to-date information, please refer to the following URL: http://www.murata.co.jp/search/index.html