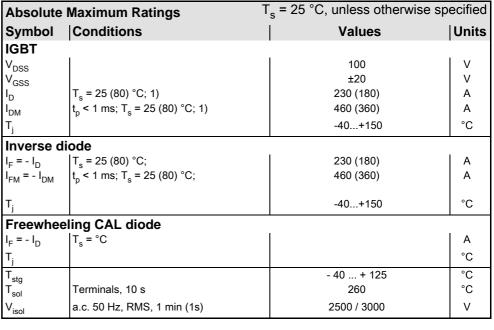

SK 260MB10

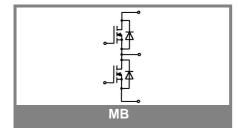
SEMITOP® 3

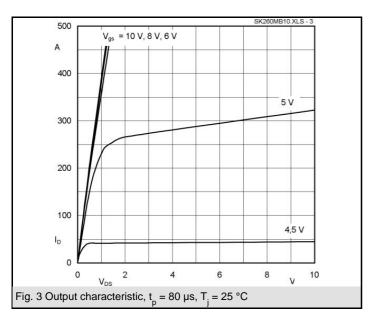
Mosfet Module

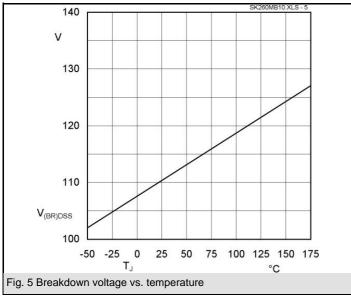
SK 260MB10

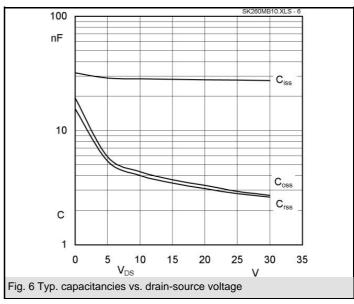

Preliminary Data

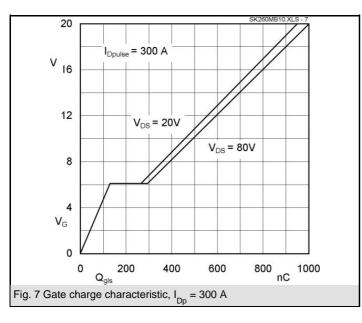
Features

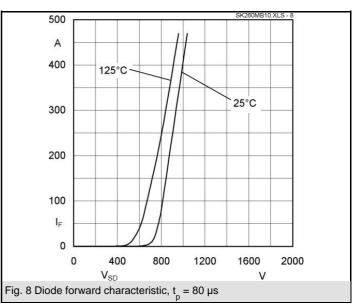

- · Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Trench technology
- Short internal connections and low inductance case

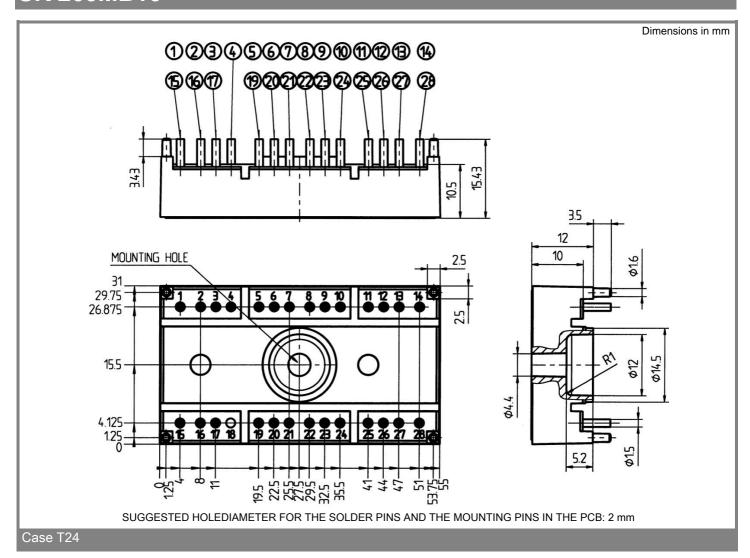

Typical Applications

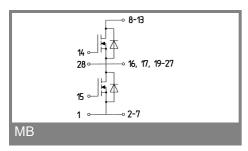

- Low switched mode power supplies
- DC servo drives
- UPS
- Maximum PCB temperature, at pins contact, 85°C




Characteristics T _s = 25 °C, unless otherwise specified					
Symbol	Conditions	min.	typ.	max.	Units
MOSFET					
$V_{(BR)DSS}$	$V_{GS} = 0 \text{ V}, I_{D} = 0.25 \text{ mA}$	$\geq V_{DSS}$			V
V _{GS(th)}	$V_{GS} = V_{DS}$; $I_{D} = 0.25 \text{ mA}$	2,5	3,3		V
DSS	$V_{GS} = 0 \text{ V}; V_{DS} = V_{DSS}; T_j = 25 (125) ^{\circ}\text{C}$			100 (500)	μA
I _{GSS}	$V_{GS} = 20V ; V_{DS} = 0 V$			100 2,5	nA mΩ
R _{DS(on)}	$I_D = 300 \text{ A; } V_{GS} = 10 \text{ V; } T_j = 25 \text{ °C}$		2.5	,	
R _{DS(on)}	$I_D = 300 \text{ A}; V_{GS} = 10 \text{ V}; T_j = 125 ^{\circ}\text{C}$		3,5	4,5	mΩ
C _{CHC}	per MOSFET				pF
C _{iss}	under following conditions:		27,6		nF
C _{oss}	$V_{GS} = 0 \text{ V}; V_{DS} = 25 \text{ V}; f = 1 \text{ MHz}$		2,9		nF
C _{rss}			2,8		nF
L _{DS}			2,2		nΗ
t _{d(on)}	under following conditions:		410		ns
t _r	$V_{DD} = 50 \text{ V}; V_{GS} = 10 \text{ V}; I_{D} = 300 \text{ A}$		450		ns
$t_{d(off)}$	$R_G = 25 \Omega$		1490		ns
t _f			430		ns
R _{th(j-s)}	per MOSFET (per module)			0,45 (0,23)	K/W
Inverse diode					
V_{SD}	$I_F = 300 \text{ A}; V_{GS} = 0 \text{ V}; T_j = 25 ^{\circ}\text{C}$		0,76		V
I _{RRM}	under following conditions:				Α
Q_{rr}	$I_F = 300 \text{ A}; T_{vj} = {}^{\circ}\text{C}; R_G = \Omega$				μC
t _{rr}	$V_R = A$; di/dt = A/ μ s				ns
Free-wheeling diode					
V_{F}	$I_F = A; V_{GS} = V$				V
I _{RRM}	under following conditions:				Α
Q _{rr}	$I_F = A; T_{vj} = {^{\circ}C}$				μC
t _{rr}	$V_r = A$; di/dt = A/ μ s				ns
Mechanical data					
M1	mounting torque			2,5	Nm
w			30		g
Case	SEMITOP® 3		T 24		
L	<u>I</u>	1			1







This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.