

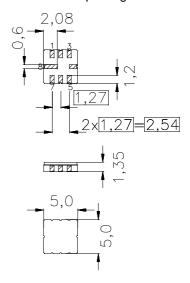
Data Sheet B4847

B4847

Low-Loss Filter for Mobile Communication

360,00 MHz

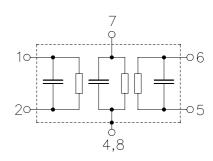
Data Sheet


Features

- Low-loss IF filter for mobile telephone
- Channel selection in GSM, PCN systems
- Ceramic SMD package
- Very small size
- High close in selectivity

Terminals

Gold-plated Ni


SMD ceramic package QCC8C

Dimensions in mm, approx. weight 0,10 g

Pin configuration

- 1 Input or input ground
- Input or balanced inputOutput or output ground
- 6 Output or balanced output
- 7 External coil
- 4,8 Case ground
- 3 To be grounded

Туре	Ordering code	Marking and Package according to	Packing according to		
B4847	B39361-B4847-U310	C61157-A7-A56	F61074-V8070-Z000		

Electrostatic Sensitive Device (ESD)

Maximum ratings

Operable temperature range	T	- 30 / +80	°C
Storage temperature range	$T_{\rm stg}$	- 35 / +85	°C
DC voltage	$V_{\rm DC}$	3	V
Source power	P_{s}	10	dBm

B4847

Low-Loss Filter for Mobile Communication

360,00 MHz

Data Sheet

Characteristics

Ambient temperature: $T = -20^{\circ} \text{C to } +75^{\circ} \text{C}$ Terminating source impedance: $Z_{\text{S}} = 340 \ \Omega \parallel -1,9 \ \text{pF}$ Terminating load impedance: $Z_{\text{L}} = 340 \ \Omega \parallel -1,9 \ \text{pF}$

		min.	typ.	max.	
Nominal frequency	f _N	_	360,00	_	MHz
(center frequency between 3 dB points)					
Minimum insertion attenuation	α_{min}				
(including loss in matching elements)		_	4,3	5,0	dB
Amplitude ripple (p-p)	Δα				
f _N -67,7kHz f _N +67,7 kHz		_	0,6	2,0	dB
f _N -80,0kHz f _N +80,0 kHz		_	0,9	3,0	dB
Passband width					
$\alpha_{rel} \leq~3.0~dB$	$B_{3,0dB}$	_	315	_	kHz
Group delay ripple (p-p)					
f_N -67,7 kHz f_N +67,7 kHz		_	0,5	1,8	μs
Relative attenuation (relative to α_{min})	α_{rel}				
$f_N \pm 400 \text{ kHz} \dots f_N \pm 600 \text{ kHz}$		25	32	_	dB
$f_N \pm 600 \text{ kHz} \dots f_N \pm 800 \text{ kHz}$		38	48	_	dB
$f_N \pm 800 \text{ kHz} \dots f_N \pm 1,6 \text{ MHz}$		42	48	_	dB
$f_N \pm 1,6 \text{ MHz} \dots f_N \pm 5,0 \text{ MHz}$		* 52	54	_	dB
$f_N \pm 5.0 \text{ MHz } \dots f_N \pm 30.0 \text{ MHz}$		55	62	<u> </u>	dB
Impedance within the pass band					
Input: $Z_{IN} = R_{IN} \parallel C_{IN}$		_	340 1,9	_	Ω pF
Output: $Z_{OUT} = R_{OUT} C_{OUT}$			340 1,9	_	Ω pF
Temperature coefficient of frequency 1)	TC _f	_	- 0,036	_	ppm/K ²
Turnover temperature		_	28	_	°C

¹⁾ Temperature dependence of f_c : $f_c(T) = f_c(T_0)(1 + TC_f(T - T_0)^2)$

 $^{^*)~}$ In the frequency range from 362,5 MHz to 364,0 MHz there exists one spurious response. The minimum attenuation α_{rel} of this spurious response is more than 48 dB.

B4847

Low-Loss Filter for Mobile Communication

360,00 MHz

Data Sheet

Characteristics

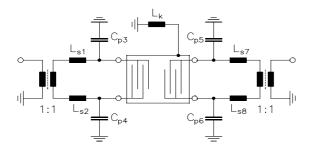
Ambient temperature: $T = -30^{\circ} \text{C to } +80^{\circ} \text{C}$ Terminating source impedance: $Z_{\text{S}} = 340 \ \Omega \parallel -1,9 \ \text{pF}$ Terminating load impedance: $Z_{\text{L}} = 340 \ \Omega \parallel -1,9 \ \text{pF}$

		min.	typ.	max.	
Nominal frequency	f_{N}	_	360,00	_	MHz
(center frequency between 3 dB points)					
Minimum insertion attenuation					
(including loss in matching elements)	$lpha_{min}$	_	4,3	5,0	dB
Amplitude ripple (p-p)	Δα				
f _N -67,7kHz f _N +67,7 kHz		_	0,6	3,0	dB
f _N -80,0kHz f _N +80,0 kHz			0,9	4,5	dB
Passband width					
$\alpha_{\text{rel}} \leq ~3.0~\text{dB}$	$B_{3,0dB}$	_	315	_	kHz
Group delay ripple (p-p)					
f_N -67,7 kHz f_N +67,7 kHz			0,5	1,8	μs
Relative attenuation (relative to α_{min})	α_{rel}				
$f_N \pm 400 \text{ kHz} \dots f_N \pm 600 \text{ kHz}$		25	32	_	dB
$f_N \pm 600 \text{ kHz} \dots f_N \pm 800 \text{ kHz}$		38	48	_	dB
$f_N \pm 800 \text{ kHz} \dots f_N \pm 1,6 \text{ MHz}$		42	48	_	dB
$f_N \pm 1,6 \text{ MHz} \dots f_N \pm 5,0 \text{ MHz}$		* 52	54	_	dB
$f_N \pm 5.0 \text{ MHz} \dots f_N \pm 30.0 \text{ MHz}$		55	62	_	dB
Impedance within the pass band					
Input: $Z_{\text{IN}} = R_{\text{IN}} \parallel C_{\text{IN}}$		_	340 1,9	_	Ω pF
Output: $Z_{OUT} = R_{OUT} C_{OUT}$		_	340 1,9	_	Ω pF
Temperature coefficient of frequency 1)	TC _f		- 0,036	_	ppm/K ²
Turnover temperature			28	-	°C

¹⁾ Temperature dependence of f_c : $f_c(T) = f_c(T_0)(1 + TC_f(T - T_0)^2)$

 $^{^*)~}$ In the frequency range from 362,5 MHz to 364,0 MHz there exists one spurious response. The minimum attenuation α_{rel} of this spurious response is more than 48 dB.

B4847

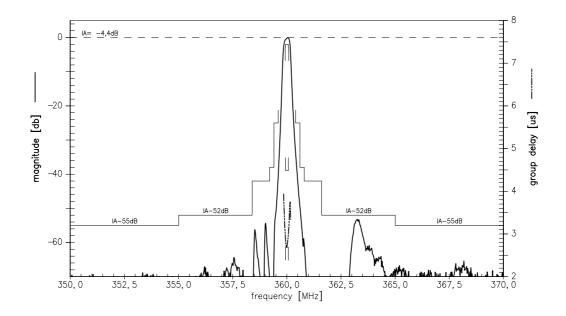

Low-Loss Filter for Mobile Communication

360,00 MHz

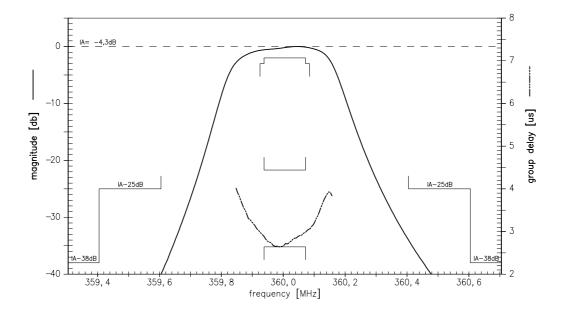
Data Sheet

Test matching network to 50 Ω (element values depend on PCB layout):

$$\begin{array}{l} L_{s1} = L_{s2} = 18 nH \\ C_{p3} = C_{p4} = 1,2 pF \\ C_{p5} = C_{p6} = 1,2 pF \\ L_{s7} = L_{s8} = 18 nH \\ L_{k} = 68 nH \end{array}$$


Low-Loss Filter for Mobile Communication

360,00 MHz


Data Sheet

Transfer function:

Transfer function (pass band):

Low-Loss Filter for Mobile Communication

360,00 MHz

Data Sheet

Published by EPCOS AG Surface Acoustic Wave Components Division, OFW E MF P.O. Box 80 17 09, D-81617 München

© EPCOS AG 1999. All Rights Reserved.

As far as patents or other rights of third parties are concerned, liability is only assumed for components per se, not for applications, processes and circuits implemented within components or assemblies.

The information describes the type of component and shall not be considered as assured characteristics.

Terms of delivery and rights to change design reserved.

For questions on technology, prices and delivery please contact the sales offices of EPCOS AG or the international representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our sales offices.