74LVT573

3.3 V octal D-type transparent latch; 3-state Rev. 8 — 22 November 2011

Product data sheet

General description 1.

The 74LVT573 is a high-performance BiCMOS product designed for V_{CC} operation at 3.3 V. This device is an octal transparent latch coupled to eight 3-state output buffers. The two sections of the device are controlled independently by Latch Enable (LE) and Output Enable (OE) control gates. The 74LVT573 has a broadside pinout configuration to facilitate PC board layout and allow easy interface with microprocessors.

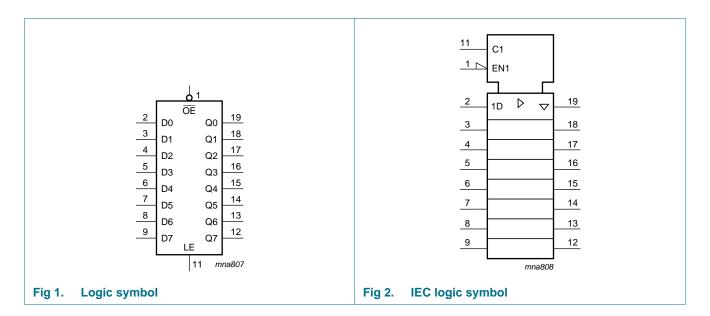
The data on the Dn inputs are transferred to the latch outputs when the Latch Enable (LE) input is High. The latch remains transparent to the data inputs while LE is High, and stores the data that is present one setup time before the High-to-Low enable transition.

The 3-state output buffers are designed to drive heavily loaded 3-state buses, MOS memories, or MOS microprocessors. The active-Low Output Enable (OE) controls all eight 3-state buffers independent of the latch operation.

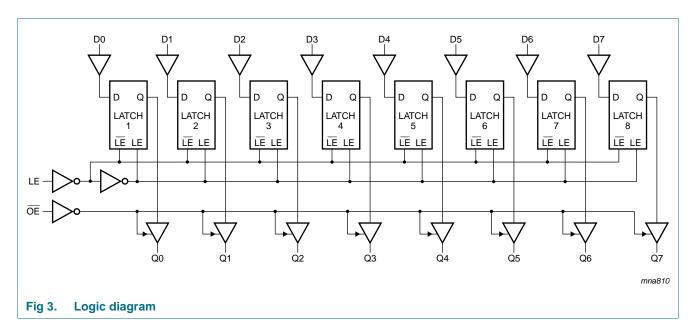
When OE is Low, the latched or transparent data appears at the outputs. When OE is High, the outputs are in the High-impedance "OFF" state, which means they will neither drive nor load the bus.

2. Features and benefits

- Inputs and outputs arranged for easy interfacing to microprocessors
- 3-state outputs for bus interfacing
- Common output enable control
- TTL input and output switching levels
- Input and output interface capability to systems at 5 V supply
- Bus hold data inputs eliminate need for external pull-up resistors to hold unused inputs
- Live insertion and extraction permitted
- No bus current loading when output is tied to 5 V bus
- Power-up reset
- Power-up 3-state
- Latch-up protection
 - ◆ JESD78 class II exceeds 500 mA
- ESD protection:
 - ◆ HBM JESD22-A114E exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V
- Specified from -40 °C to +85 °C

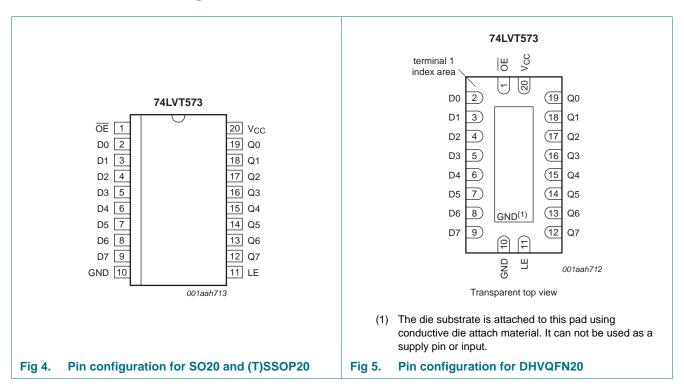

3.3 V octal D-type transparent latch; 3-state

3. Ordering information


Table 1. Ordering information

Type number	Package	Package										
	Temperature range	Name	Description	Version								
74LVT573D	–40 °C to +85 °C	SO20	plastic small outline package; 20 leads; body width 7.5 mm	SOT163-1								
74LVT573DB	–40 °C to +85 °C	SSOP20	plastic shrink small outline package; 20 leads; body width 5.3 mm	SOT339-1								
74LVT573PW	–40 °C to +85 °C	TSSOP20	plastic thin shrink small outline package; 20 leads; body width 4.4 mm	SOT360-1								
74LVT573BQ	–40 °C to +85 °C	DHVQFN20	plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 20 terminals; body $2.5\times4.5\times0.85$ mm	SOT764-1								

4. Functional diagram



3.3 V octal D-type transparent latch; 3-state

5. Pinning information

5.1 Pinning

3.3 V octal D-type transparent latch; 3-state

5.2 Pin description

Table 2. Pin description

Symbol	Pin	Description
ŌĒ	1	output enable input (active LOW)
D0 to D7	2, 3, 4, 5, 6, 7, 8, 9	data input
GND	10	ground (0 V)
LE	11	latch enable (active HIGH)
Q0 to Q7	19, 18, 17, 16, 15, 14, 13, 12	data output
V _{CC}	20	supply voltage

6. Functional description

6.1 Function table

Table 3. Function table [1]

Operating mode	Control OE	Control LE	Input Dn	Internal register	Output Qn
Load and read register	L	Н	L	L	L
enable			Н	Н	Н
Latch and read register	L	\downarrow	I	L	L
			h	Н	Н
Hold	L	L	X	NC	NC
Disable outputs	Н	L	X	NC	Z
		Н	Dn	Dn	Z

^[1] H = HIGH voltage level;

7. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		-0.5	+4.6	V
V_{I}	input voltage		<u>[1]</u> –0.5	+7.0	V
V_{O}	output voltage	output in OFF-state or HIGH-state	<u>[1]</u> –0.5	+7.0	V
I_{IK}	input clamping current	V _I < 0 V	-	-50	mA
I_{OK}	output clamping current	V _O < 0 V	-	-50	mA
I _O	output current	output in LOW-state	-	128	mA
		output in HIGH-state	-	-64	mA

74LVT573

All information provided in this document is subject to legal disclaimers.

© Nexperia B.V. 2017. All rights reserved

L = LOW voltage level;

 $[\]downarrow$ = HIGH-to-LOW latch enable transition;

h = HIGH voltage level one setup time prior to the LOW-to-HIGH clock transition;

I = LOW voltage level one setup time prior to the LOW-to-HIGH clock transition;

Z = high-impedance OFF-state;

NC = no change;

X = don't care.

3.3 V octal D-type transparent latch; 3-state

Table 4. Limiting values ...continued

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
T_{stg}	storage temperature		-65	+150	°C
Tj	junction temperature		[2] _	150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}$	[3] _	500	mW

^[1] The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings are observed.

8. Recommended operating conditions

Table 5. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{CC}	supply voltage		2.7	-	3.6	V
VI	input voltage		0	-	5.5	V
V _{IH}	HIGH-level input voltage		2.0	-	-	V
V _{IL}	LOW-level input voltage		-	-	0.8	V
I _{OH}	HIGH-level output current		-	-	-32	mA
I _{OL}	LOW-level output current		-	-	32	mA
		current duty cycle ≤ 50 %; $f_i \geq 1~kHz$	-	-	64	mA
T _{amb}	ambient temperature	in free air	-40	-	+85	°C
$\Delta t/\Delta V$	input transition rise and fall rate	outputs enabled	-	-	10	ns/V

9. Static characteristics

Table 6. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	T _{amb} =	–40 °C to +	85 °C	Unit
			Min	Typ[1]	Max	
V_{IK}	input clamping voltage	$V_{CC} = 2.7 \text{ V}; I_{IK} = -18 \text{ mA}$	-1.2	-0.9	-	V
V_{OH}	HIGH-level output voltage	$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V};$ $I_{OH} = -100 \mu\text{A}$	V _{CC} – 0.2	V _{CC} – 0.1	-	V
		$V_{CC} = 2.7 \text{ V}; I_{OH} = -8 \text{ mA}$	2.4	2.5	-	V
		$V_{CC} = 3.0 \text{ V}; I_{OH} = -32 \text{ mA}$	2.0	2.2	-	V
V _{OL}	LOW-level output voltage	V_{CC} = 2.7 V; I_{OL} = 100 μA	-	0.1	0.2	V
		$V_{CC} = 2.7 \text{ V}; I_{OL} = 24 \text{ mA}$	-	0.3	0.5	V
		$V_{CC} = 3.0 \text{ V } I_{OL} = 16 \text{ mA}$	-	0.25	0.4	V
		$V_{CC} = 3.0 \text{ V } I_{OL} = 32 \text{ mA}$	-	0.3	0.5	V
		$V_{CC} = 3.0 \text{ V } I_{OL} = 64 \text{ mA}$	-	0.4	0.55	V
$V_{OL(pu)}$	power-up LOW-level output voltage	V_{CC} = 3.6 V; I_O = 1 mA; V_I = GND or V_{CC}	[2] -	0.13	0.55	V
74LVT573			© Nexperia B	.V. 2017. All r	ights reserved	

^[2] The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability.

^[3] For SO20 packages: above 70 °C derate linearly with 8 mW/K.
For SSOP20 and TSSOP20 packages: above 60 °C derate linearly with 5.5 mW/K.
For DHVQFN20 packages: above 60 °C derate linearly with 4.5 mW/K.

3.3 V octal D-type transparent latch; 3-state

Table 6. Static characteristics ... continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		T _{amb} =	–40 °C to +	-85 °C	Unit
				Min	Typ[1]	Max	1
l _l	input leakage current	all input pins;					
		$V_{CC} = 0 \text{ V or } 3.6 \text{ V; } V_{I} = 5.5 \text{ V}$		-	1	10	μΑ
		control pins;					
		$V_{CC} = 3.6 \text{ V}; V_{CC} \text{ or GND}$		-	±0.1	±1	μΑ
		data pins					
		$V_{CC} = 3.6 \text{ V}; V_I = V_{CC}$	[3]	-	0.1	1	μΑ
		$V_{CC} = 3.6 \text{ V}; V_{I} = 0 \text{ V}$		-5	-1	-	μΑ
OFF	power-off leakage current	$V_{CC} = 0 \text{ V}$; $V_I \text{ or } V_O = 0 \text{ V to } 4.5 \text{ V}$		-	1	±100	μΑ
I _{BHL}	bus hold LOW current	Dn input; $V_{CC} = 3 \text{ V}$; $V_I = 0.8 \text{ V}$	[4]	75	150	-	μΑ
I _{внн}	bus hold HIGH current	Dn input; $V_{CC} = 3 \text{ V}$; $V_I = 2.0 \text{ V}$		-	-150	-75	μΑ
I _{внно}	bus hold HIGH overdrive current	Dn input; $V_{CC} = 3.6$; $V_I = 0 \text{ V to } 3.6 \text{ V}$	[4]	-	-	500	μΑ
Івньо	bus hold LOW overdrive current	Dn input; $V_{CC} = 3.6$; $V_I = 0 \text{ V to } 3.6 \text{ V}$		-500	-	-	μА
I _{LO}	output leakage current	Qn output HIGH when $V_O = 5.5 \text{ V}$ and $V_{CC} = 3.0 \text{ V}$		-	60	125	μА
I _{O(pu/pd)}	power-up/power-down output current	$V_{CC} \le 1.2 \text{ V}; V_O = \underline{0.5} \text{ V to } V_{CC};$ $V_I = \text{GND or } V_{CC}; \overline{OE} = \text{don't care}$	<u>[5]</u>	-	1	±100	μА
loz	OFF-state output current	V_{CC} = 3.6 V; V_I = V_{IH} or V_{IL}					
		output HIGH: V _O = 3.0 V		-	1	5	μΑ
		output LOW: $V_0 = 0.5 \text{ V}$		-5	-1	-	μΑ
I _{CC}	supply current	V_{CC} = 3.6 V; V_I = GND or V_{CC} ; I_O = 0 A					
		outputs HIGH		-	0.13	0.19	mΑ
		outputs LOW		-	3	12	mΑ
		outputs disabled	[6]	-	0.13	0.19	mA
Δl _{CC}	additional supply current	per input pin; V_{CC} = 3 V to 3.6 V; one input at V_{CC} – 0.6 V and other inputs at V_{CC} or GND	[7]	-	0.1	0.2	mA
Cı	input capacitance	V _I = 0 V or 3.0 V		-	4	-	pF
Со	output capacitance	outputs disabled; $V_O = 0 \text{ V or } 3.0 \text{ V}$		-	8	-	pF

^[1] Typical values are measured at V_{CC} = 3.3 V and T_{amb} = 25 °C.

^[2] For valid test results, data must not be loaded into the flip-flops (or latches) after applying power.

^[3] Unused pins at V_{CC} or GND.

^[4] This is the bus hold overdrive current required to force the input to the opposite logic state.

^[5] This parameter is valid for any V_{CC} between 0 V and 1.2 V with a transition time of up to 10 ms. From V_{CC} = 1.2 V to V_{CC} = 3.3 V \pm 0.3 V a transition time of 100 μ s is permitted. This parameter is valid for T_{amb} = 25 °C only.

^[6] I_{CC} is measured with outputs pulled to V_{CC} or GND.

^[7] This is the increase in supply current for each input at the specified voltage level other than V_{CC} or GND.

3.3 V octal D-type transparent latch; 3-state

10. Dynamic characteristics

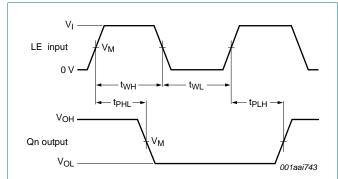
Table 7. Dynamic characteristics

Voltages are referenced to ground (GND = 0 V); for test circuit see Figure 11.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Symbol	Parameter	Conditions		T _{amb} =	–40 °C to	+85 °C	Unit
Propagation delay Vcc = 3.0 V to 3.6 V 1.6 3.5 5.6 ns					Min	Typ[1]	Max	
Vac = 2.7 V	t _{PLH}		LE to Qn; see Figure 6					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		propagation delay	V_{CC} = 3.0 V to 3.6 V		1.6	3.5	5.6	ns
			$V_{CC} = 2.7 \text{ V}$		-	-	6.3	ns
Name			Dn to Qn; see Figure 7					
Heat High to LOW propagation delay Pro			$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		1.0	2.5	4.2	ns
$ \begin{array}{c} \label{eq:higher_propagation} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$			V _{CC} = 2.7 V		-	-	4.7	ns
$V_{CC} = 3.0 \ V \ V_{CS} = 2.7 \ V \\ V_{CC} = 3.0 \ V \ V_{CS} = 3.$	t _{PHL}		LE to Qn; see Figure 6					
$ \frac{\text{Dn to Qn; see Figure 7}}{\text{V}_{\text{CC}} = 3.0 \ \text{V to } 3.6 \ \text{V}} \qquad 1.0 \qquad 2.7 \qquad 4.3 \text{ns} } \\ \frac{\text{V}_{\text{CC}} = 3.0 \ \text{V to } 3.6 \ \text{V}}{\text{V}_{\text{CC}} = 2.7 \ \text{V}} \qquad - \qquad - \qquad 5.2 \text{ns} } \\ \frac{\text{DF - state to HIGH propagation delay}}{\text{V}_{\text{CC}} = 3.0 \ \text{V to } 3.6 \ \text{V}} \qquad 1.0 \qquad 2.8 \qquad 5.1 \text{ns} } \\ \frac{\text{V}_{\text{CC}} = 3.0 \ \text{V to } 3.6 \ \text{V}}{\text{V}_{\text{CC}} = 2.7 \ \text{V}} \qquad - \qquad - \qquad 6.2 \text{ns} } \\ \frac{\text{DF - state to LOW propagation delay}}{\text{V}_{\text{CC}} = 2.7 \ \text{V}} \qquad - \qquad - \qquad 6.6 \text{ns} } \\ \frac{\text{DE to Qn; see Figure 9}}{\text{V}_{\text{CC}} = 3.0 \ \text{V to } 3.6 \ \text{V}} \qquad - \qquad - \qquad 6.6 \text{ns} } \\ \frac{\text{DE to Qn; see Figure 9}}{\text{V}_{\text{CC}} = 2.7 \ \text{V}} \qquad - \qquad - \qquad - \qquad 6.6 \text{ns} } \\ \frac{\text{DE to Qn; see Figure 8}}{\text{V}_{\text{CC}} = 3.0 \ \text{V to } 3.6 \ \text{V}} \qquad 2.0 3.7 5.7 \text{ns} } \\ \frac{\text{DE to Qn; see Figure 9}}{\text{V}_{\text{CC}} = 3.0 \ \text{V to } 3.6 \ \text{V}} \qquad - \qquad - \qquad - \qquad 6.7 \text{ns} } \\ \frac{\text{DE to Qn; see Figure 9}}{\text{V}_{\text{CC}} = 2.7 \ \text{V}} \qquad - \qquad - \qquad - \qquad 5.1 \text{ns} } \\ \frac{\text{DE to Qn; see Figure 9}}{\text{V}_{\text{CC}} = 3.0 \ \text{V to } 3.6 \ \text{V}} \qquad 1.5 3.0 4.6 \text{ns} } \\ \frac{\text{DE to Qn; see Figure 9}}{\text{V}_{\text{CC}} = 3.0 \ \text{V to } 3.6 \ \text{V}} \qquad - \qquad - \qquad - \qquad 5.1 \text{ns} } \\ \frac{\text{DI to LE; see Figure 10}}{\text{V}_{\text{CC}} = 2.7 \ \text{V}} \qquad - \qquad$		propagation delay	$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		2.5	4.3	6.5	ns
$ \begin{array}{c} V_{CC} = 3.0 \ V \ to \ 3.6 \ V \\ V_{CC} = 2.7 \ V \\ V_{CC} = 3.0 \ V \ to \ 3.6 \ V \\ V_{CC} = 3.0 \ V \ to \ 3.6 \ V \\ V_{CC} = 2.7 \ V $			$V_{CC} = 2.7 \text{ V}$		-	-	7.2	ns
			Dn to Qn; see Figure 7					
			$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		1.0	2.7	4.3	ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$V_{CC} = 2.7 \text{ V}$		-	-	5.2	ns
$V_{CC} = 2.7 \text{ V} \qquad 0.6.2 \text{ ns}$ $V_{CC} = 2.7 \text{ V} \qquad 0.6.2 \text{ ns}$ $V_{CC} = 2.7 \text{ V} \qquad 0.6.2 \text{ ns}$ $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V} \qquad . 1.3 \qquad 3.3 \qquad 5.5 \text{ ns}$ $V_{CC} = 2.7 \text{ V} \qquad 0.6.6 \text{ ns}$ $V_{CC} = 2.7 \text{ V} \qquad 0.6.6 \text{ ns}$ $V_{CC} = 2.7 \text{ V} \qquad 0.6.6 \text{ ns}$ $V_{CC} = 2.7 \text{ V} \qquad 0.6.6 \text{ ns}$ $V_{CC} = 2.7 \text{ V} \qquad 0.6.7 \text{ ns}$ $V_{CC} = 2.7 \text{ V} \qquad 0.6.7 \text{ ns}$ $V_{CC} = 2.7 \text{ V} \qquad 0.6.7 \text{ ns}$ $V_{CC} = 2.7 \text{ V} \qquad 0.6.7 \text{ ns}$ $V_{CC} = 2.7 \text{ V} \qquad 0.6.7 \text{ ns}$ $V_{CC} = 2.7 \text{ V} \qquad 0.6.7 \text{ ns}$ $V_{CC} = 2.7 \text{ V} \qquad 0.6.7 \text{ ns}$ $V_{CC} = 2.7 \text{ V} \qquad 0.6.7 \text{ ns}$ $V_{CC} = 2.7 \text{ V} \qquad 0.6.7 \text{ ns}$ $V_{CC} = 2.7 \text{ V} \qquad 0.6.7 \text{ ns}$ $V_{CC} = 2.7 \text{ V} \qquad 0.6.7 \text{ ns}$ $V_{CC} = 2.7 \text{ V} \qquad 0.6.7 \text{ ns}$ $V_{CC} = 2.7 \text{ V} \qquad 0.6.7 \text{ ns}$ $V_{CC} = 2.7 \text{ V} \qquad 0.6.6 \text{ ns}$ $V_{CC} = 2.7 \text{ V} \qquad 0.6.7 \text{ ns}$ $V_{CC} = 2.7 \text{ V} \qquad .$	t _{PZH}		OE to Qn; see Figure 8					
$ \begin{array}{c} \text{TPZL} \\ \text{PrDagation delay} \\ \end{array} \begin{array}{c} \overline{\text{OE}} \text{ to Qn; see } \underline{\text{Figure 9}} \\ \hline V_{\text{CC}} = 3.0 \text{V to } 3.6 \text{V} \\ \hline V_{\text{CC}} = 2.7 \text{V} \\ \end{array} \begin{array}{c} - & - & 6.6 \text{ns} \\ \hline V_{\text{CC}} = 2.7 \text{V} \\ \hline \end{array} \begin{array}{c} - & - & 6.6 \text{ns} \\ \hline \end{array} \\ \hline \begin{array}{c} \overline{\text{OE}} \text{ to Qn; see } \underline{\text{Figure 8}} \\ \hline V_{\text{CC}} = 2.7 \text{V} \\ \hline \end{array} \begin{array}{c} - & - & 6.7 \text{ns} \\ \hline V_{\text{CC}} = 2.7 \text{V} \\ \hline \end{array} \begin{array}{c} - & - & 6.7 \text{ns} \\ \hline V_{\text{CC}} = 2.7 \text{V} \\ \hline \end{array} \begin{array}{c} - & - & 6.7 \text{ns} \\ \hline \end{array} \\ \hline \begin{array}{c} \overline{\text{V}_{\text{CC}}} = 2.7 \text{V} \\ \hline \end{array} \begin{array}{c} - & - & 6.7 \text{ns} \\ \hline \end{array} \\ \hline \begin{array}{c} \overline{\text{V}_{\text{CC}}} = 2.7 \text{V} \\ \hline \end{array} \begin{array}{c} - & - & 6.7 \text{ns} \\ \hline \end{array} \\ \hline \begin{array}{c} V_{\text{CC}} = 3.0 \text{V to } 3.6 \text{V} \\ \hline V_{\text{CC}} = 2.7 \text{V} \\ \hline \end{array} \begin{array}{c} - & - & 5.1 \text{ns} \\ \hline \end{array} \\ \hline \begin{array}{c} V_{\text{CC}} = 2.7 \text{V} \\ \hline \end{array} \begin{array}{c} - & - & 5.1 \text{ns} \\ \hline \end{array} \\ \hline \begin{array}{c} V_{\text{CC}} = 3.0 \text{V to } 3.6 \text{V} \\ \hline \end{array} \begin{array}{c} 0.6 \text{C} \\ \hline \end{array} \begin{array}{c} - & - & \text{ns} \\ \hline \end{array} \\ \hline \begin{array}{c} V_{\text{CC}} = 3.0 \text{V to } 3.6 \text{V} \\ \hline \end{array} \begin{array}{c} 0.6 \text{C} \\ \hline \end{array} \begin{array}{c} - & - & \text{ns} \\ \hline \end{array} \\ \hline \begin{array}{c} V_{\text{CC}} = 2.7 \text{V} \\ \hline \end{array} \begin{array}{c} 0.6 \text{C} \\ \hline \end{array} \begin{array}{c} - & - & \text{ns} \\ \hline \end{array} \\ \hline \begin{array}{c} V_{\text{CC}} = 2.7 \text{V} \\ \hline \end{array} \begin{array}{c} 0.6 \text{C} \\ \hline \end{array} \begin{array}{c} - & - & \text{ns} \\ \hline \end{array} \\ \hline \begin{array}{c} V_{\text{CC}} = 2.7 \text{V} \\ \hline \end{array} \begin{array}{c} 0.6 \text{C} \\ \hline \end{array} \begin{array}{c} - & - & \text{ns} \\ \hline \end{array} \\ \hline \begin{array}{c} V_{\text{CC}} = 2.7 \text{V} \\ \hline \end{array} \begin{array}{c} 0.6 \text{C} \\ \hline \end{array} \begin{array}{c} - & - & \text{ns} \\ \hline \end{array} \\ \hline \begin{array}{c} V_{\text{CC}} = 2.7 \text{V} \\ \hline \end{array} \begin{array}{c} 0.6 \text{C} \\ \hline \end{array} \begin{array}{c} - & - & \text{ns} \\ \hline \end{array} \\ \hline \begin{array}{c} V_{\text{CC}} = 2.7 \text{V} \\ \hline \end{array} \begin{array}{c} 0.6 \text{C} \\ \hline \end{array} \begin{array}{c} - & - & \text{ns} \\ \hline \end{array} \begin{array}{c} 0.6 \text{C} \\ \hline \end{array} \begin{array}{c} - & - & \text{ns} \\ \hline \end{array} \\ \hline \begin{array}{c} V_{\text{CC}} = 2.7 \text{V} \\ \hline \end{array} \begin{array}{c} V_{\text{CC}} = 2.7 \text{V} \\ \hline \end{array} \begin{array}{c} 0.6 \text{C} \\ \hline \end{array} \begin{array}{c} - & - & \text{ns} \\ \hline \end{array} \begin{array}{c} 0.6 \text{C} \\ \hline \end{array} \begin{array}{c} - & - & \text{ns} \\ \hline \end{array} \\ \begin{array}{c} V_{\text{CC}} = 2.7 \text{V} \\ \hline \end{array} \begin{array}{c} - \text{C} \\ \hline \end{array} \begin{array}{c} 0.6 \text{C} \\ \hline \end{array} \begin{array}{c} - $		propagation delay	$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		1.0	2.8	5.1	ns
$ \begin{array}{c} \text{propagation delay} \\ Propagation $			$V_{CC} = 2.7 \text{ V}$		-	-	6.2	ns
$V_{CC} = 2.7 \text{ V} \qquad \qquad - \qquad - \qquad - \qquad 6.6 \text{ns}$ $V_{CC} = 2.7 \text{ V} \qquad \qquad - \qquad - \qquad - \qquad 6.6 \text{ns}$ $V_{CC} = 2.7 \text{ V} \qquad \qquad - \qquad - \qquad - \qquad 6.6 \text{ns}$ $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V} \qquad \qquad 2.0 3.7 5.7 \text{ns}$ $V_{CC} = 2.7 \text{ V} \qquad \qquad - \qquad - \qquad - \qquad 6.7 \text{ns}$ $V_{CC} = 2.7 \text{ V} \qquad \qquad - \qquad - \qquad - \qquad 6.7 \text{ns}$ $V_{CC} = 2.7 \text{ V} \qquad \qquad - \qquad - \qquad - \qquad 6.7 \text{ns}$ $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V} \qquad \qquad 1.5 3.0 \qquad 4.6 \text{ns}$ $V_{CC} = 2.7 \text{ V} \qquad \qquad - \qquad - \qquad 5.1 \text{ns}$ $V_{CC} = 2.7 \text{ V} \qquad \qquad - \qquad - \qquad - \qquad 5.1 \text{ns}$ $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V} \qquad \qquad 0.7 - \qquad - \text{ns}$ $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V} \qquad \qquad 0.6 - \qquad - \text{ns}$ $V_{CC} = 2.7 \text{ V} \qquad \qquad 0.6 - \qquad - \text{ns}$ $V_{CC} = 2.7 \text{ V} \qquad \qquad 0.6 - \qquad - \text{ns}$ $V_{CC} = 2.7 \text{ V} \qquad \qquad 1.6 - \qquad - \text{ns}$ $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V} \qquad \qquad 1.6 - \qquad - \text{ns}$ $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V} \qquad \qquad 1.8 - \qquad - \text{ns}$ $V_{CC} = 2.7 \text{ V} \qquad \qquad 1.8 - \qquad - \text{ns}$ $V_{CC} = 2.7 \text{ V} \qquad \qquad 1.8 - \qquad - \text{ns}$ $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V} \qquad \qquad 1.8 - \qquad - \text{ns}$ $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V} \qquad \qquad 3.3 - - \text{ns}$	t_{PZL}		OE to Qn; see Figure 9					
$ \begin{array}{c} \text{Tr}_{\text{PHZ}} \\ \text{Tr}_{\text{PHZ}} \\ \text{Propagation delay} \end{array} \begin{array}{c} \overline{\text{OE}} \text{ to Qn; see } \underline{\text{Figure 8}} \\ \hline\\ V_{\text{CC}} = 3.0 \text{ V to } 3.6 \text{ V} \\ \hline\\ V_{\text{CC}} = 2.7 \text{ V} \\ \hline\\ \end{array} \begin{array}{c} $		propagation delay	$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		1.3	3.3	5.5	ns
$ \begin{array}{c} \text{Propagation delay} \\ \text{Propagation delay} \\ \end{array} \begin{array}{c} V_{\text{CC}} = 3.0 \ \text{V to } 3.6 \ \text{V} \\ V_{\text{CC}} = 2.7 \ \text{V} \\ \end{array} \begin{array}{c} \text{-} \\ \text{-} \\ \text{-} \\ \text{-} \\ \text{-} \\ \text{-} \\ \end{array} \begin{array}{c} \text{-} \\ \text{-} \\ \text{-} \\ \text{-} \\ \text{-} \\ \end{array} \begin{array}{c} \text{-} \\ \text{-} \\ \text{-} \\ \text{-} \\ \end{array} \begin{array}{c} \text{-} \\ \text{-} \\ \text{-} \\ \text{-} \\ \end{array} \begin{array}{c} \text{-} \\ \text{-} \\ \text{-} \\ \text{-} \\ \end{array} \begin{array}{c} \text{-} \\ \text{-} \\ \text{-} \\ \text{-} \\ \text{-} \\ \end{array} \begin{array}{c} \text{-} \\ \end{array} \begin{array}{c} \text{-} \\ \end{array} \begin{array}{c} \text{-} \\ \text{-} \\ \text{-} \\ \text{-} \\ \text{-} \\ \end{array} \begin{array}{c} \text{-} \\ \text{-} \\ \text{-} \\ \text{-} \\ \text{-} \\ \end{array} \begin{array}{c} \text{-} \\ \text{-} \\ \text{-} \\ \text{-} \\ \end{array} \begin{array}{c} \text{-} \\ \text{-} \\ \text{-} \\ \text{-} \\ \end{array} \begin{array}{c} \text{-} \\ \text{-} \\ \text{-} \\ \end{array} \begin{array}{c} \text{-} \\ \text{-} \\ \text{-} \\ \end{array} \begin{array}{c} \text{-} \\ \end{array} \begin{array}{c} \text{-} \\ \text{-} \\ \end{array} \begin{array}{c} \text{-} \\ \text{-} \\ \end{array} \begin{array}{c} $			$V_{CC} = 2.7 \text{ V}$		-	-	6.6	ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	t_{PHZ}		OE to Qn; see Figure 8					
$ \frac{\text{TopLZ}}{\text{Full Excession Propagation delay}} \begin{tabular}{ l l l l l l l l l l l l l l l l l l l$		propagation delay	$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		2.0	3.7	5.7	ns
$ \begin{array}{c} \text{propagation delay} \\ \text{Propagation delay} \\ \text{V}_{CC} = 3.0 \text{V to } 3.6 \text{V} \\ \text{V}_{CC} = 2.7 \text{V} \\ \text{Propagation delay} \\ \text{V}_{CC} = 2.7 \text{V} \\ \text{Dn to LE; see Figure 10} \\ \text{V}_{CC} = 3.0 \text{V to } 3.6 \text{V} \\ \text{V}_{CC} = 3.0 \text{V to } 3.6 \text{V} \\ \text{V}_{CC} = 2.7 \text{V} \\ \text{Dn to LE; see Figure 10} \\ \text{V}_{CC} = 2.7 \text{V} \\ \text{Dn to LE; see Figure 10} \\ \text{V}_{CC} = 3.0 \text{V to } 3.6 \text{V} \\ \text{V}_{CC} = 2.7 \text{V} \\ \text{Dn to LE; see Figure 10} \\ \text{V}_{CC} = 2.7 \text{V} \\ \text{Dn to LE; see Figure 10} \\ \text{V}_{CC} = 2.7 \text{V} \\ \text{Dn to LE; see Figure 10} \\ \text{V}_{CC} = 3.0 \text{V to } 3.6 \text{V} \\ \text{Dn to LE; see Figure 10} \\$			$V_{CC} = 2.7 \text{ V}$		-	-	6.7	ns
$V_{CC} = 3.0 \text{ V to } 3.0 \text{ V} \\ V_{CC} = 2.7 \text{ V} \\ V_{CC} = 2.7 \text{ V} \\ V_{CC} = 3.0 \text{ V to } 3.6 \text{ V} \\ V_{CC} = 3.0 \text{ V to } 3.6 \text{ V} \\ V_{CC} = 2.7 \text{ V} \\ V_{CC} = 2.7 \text{ V} \\ V_{CC} = 2.7 \text{ V} \\ V_{CC} = 3.0 \text{ V to } 3.6 \text{ V} \\ V_{CC} = 3.0 \text{ V to } 3.6 \text{ V} \\ V_{CC} = 3.0 \text{ V to } 3.6 \text{ V} \\ V_{CC} = 2.7 \text{ V} \\ V_{CC} = 3.0 \text{ V to } 3.6 \text$	t_{PLZ}		OE to Qn; see Figure 9					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		propagation delay	$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		1.5	3.0	4.6	ns
$V_{CC} = 3.0 \ V \ to \ 3.6 \ V \\ V_{CC} = 2.7 \ V \\ O.6 \\ - ns \\ V_{CC} = 2.7 \ V \\ O.6 \\ - ns \\ O.7 \\ O.6 \\ - ns \\ O.7 \\ - ns \\ O.8 \\ O.7 \\ - ns \\ O.8 \\ O.8 \\ O.9 \\$			$V_{CC} = 2.7 \text{ V}$		-	-	5.1	ns
$V_{CC} = 2.7 \text{ V} & 0.6 & - & - & \text{ns} \\ V_{CC} = 2.7 \text{ V} & 0.6 & - & - & \text{ns} \\ V_{CC} = 2.7 \text{ V} & 0.6 & - & - & \text{ns} \\ \hline V_{CC} = 3.0 \text{ V to } 3.6 \text{ V} & 1.6 & - & - & \text{ns} \\ \hline V_{CC} = 2.7 \text{ V} & 1.8 & - & - & \text{ns} \\ \hline V_{CC} = 2.7 \text{ V} & 1.8 & - & - & \text{ns} \\ \hline V_{CC} = 3.0 \text{ V to } 3.6 \text{ V} & 3.3 & - & - & \text{ns} \\ \hline \end{array}$	t_{su}	set-up time	Dn to LE; see Figure 10	[2]				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		0.7	-	-	ns
$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V} \\ V_{CC} = 2.7 \text{ V} \\ \text{tw} \text{pulse width} \underbrace{\text{LE input HIGH; see Figure 6}}_{V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}} \underbrace{\text{I.6}}_{\text{I.8}} \text{ns}$					0.6	-	-	ns
$V_{CC} = 2.7 \text{ V} \\ \text{tw} \text{pulse width} \frac{\text{LE input HIGH; see } \underline{\text{Figure 6}}}{V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}} \\ 1.8 - - \text{ns} \\ \boxed{4}$	t _h	hold time	Dn to LE; see Figure 10	[3]				
tw pulse width $\frac{\text{LE input HIGH; see } \underline{\text{Figure 6}}}{\text{V}_{\text{CC}} = 3.0 \text{ V to } 3.6 \text{ V}} \qquad \qquad 3.3 \qquad - \qquad - \text{ns}$			$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		1.6	-	-	ns
V _{CC} = 3.0 V to 3.6 V 3.3 ns			$V_{CC} = 2.7 \text{ V}$		1.8	-	-	ns
	t_{W}	pulse width	LE input HIGH; see Figure 6	[4]				
$V_{CC} = 2.7 \text{ V}$ 3.3 ns					3.3	-	-	ns
			$V_{CC} = 2.7 V$		3.3			ns

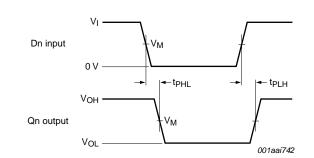
^[1] Typical values are at V_{CC} = 3.3 V and T_{amb} = 25 °C.

74LVT573


^[2] t_{su} is the same as $t_{su(L)}$ and $t_{su(H)}$.

 $^{[3] \}quad t_h \text{ is the same as } t_{h(L)} \text{ and } t_{h(H)}.$

^[4] t_W is the same as t_{WL} and t_{WH} .


3.3 V octal D-type transparent latch; 3-state

11. Waveforms

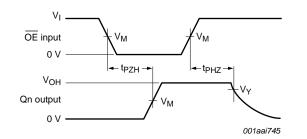
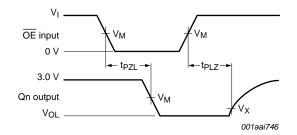

Measurement points are given in Table 8.

Fig 6. Propagation delays latch enable input (LE) to output (Qn), and latch enable (LE) pulse width

Measurement points are given in Table 8.


Fig 7. Propagation delay data input (Dn) to output (Qn)

Measurement points are given in Table 8.

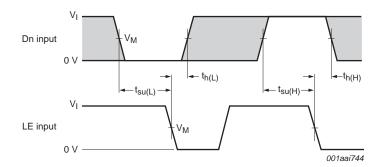

 $\mbox{V}_{\mbox{OL}}$ and $\mbox{V}_{\mbox{OH}}$ are typical voltage output levels that occur with the output load.

Fig 8. Output enable time to HIGH-state and output disable time from HIGH-state

Measurement points are given in Table 8.

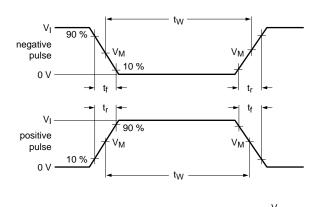
Fig 9. Output enable time to LOW-state and output disable time from LOW-state

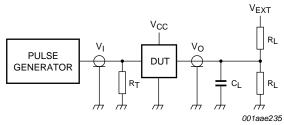
Measurement points are given in Table 8.

Remark: The shaded areas indicate when the input is permitted to change for predictable output performance.

Fig 10. Data setup and hold times for data (Dn) and latch enable (LE) inputs

Table 8. Measurement points


Input	Output		
V_{M}	V _M	V _X	V _Y
1.5 V	1.5 V	V _{OL} + 0.3 V	V _{OH} – 0.3 V


74LVT573

All information provided in this document is subject to legal disclaimers.

© Nexperia B.V. 2017. All rights reserved

3.3 V octal D-type transparent latch; 3-state

Test data is given in Table 9.

Definitions test circuit:

R_L = Load resistance.

 C_L = Load capacitance including jig and probe capacitance.

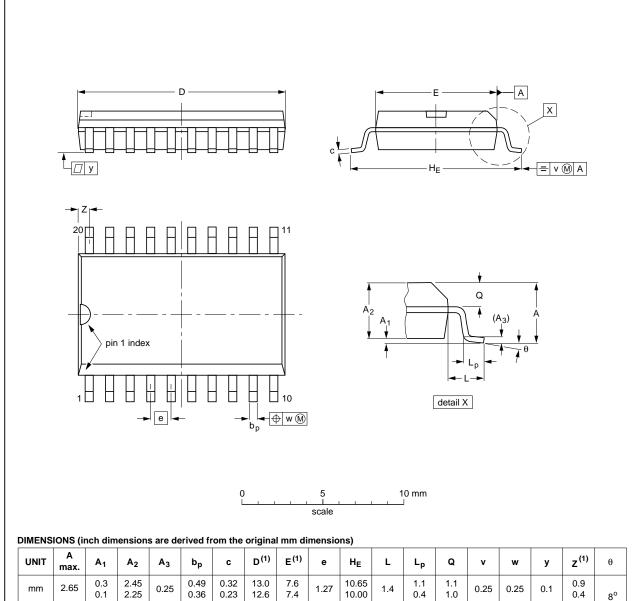
 R_T = Termination resistance should be equal to output impedance Z_o of the pulse generator.

 V_{EXT} = Test voltage for switching times.

Fig 11. Test circuitry for switching times

Table 9. Test data

Input				Load		V _{EXT}			
V_{l}	fi	t _W	t _r , t _f	CL	R_L	t _{PHZ} , t _{PZH}	t_{PLZ} , t_{PZL}	t _{PLH} , t _{PHL}	
2.7 V	\leq 10 MHz	500 ns	\leq 2.5 ns	50 pF	500Ω	GND	6 V	open	


74LVT573 **Nexperia**

3.3 V octal D-type transparent latch; 3-state

12. Package outline

SO20: plastic small outline package; 20 leads; body width 7.5 mm

SOT163-1

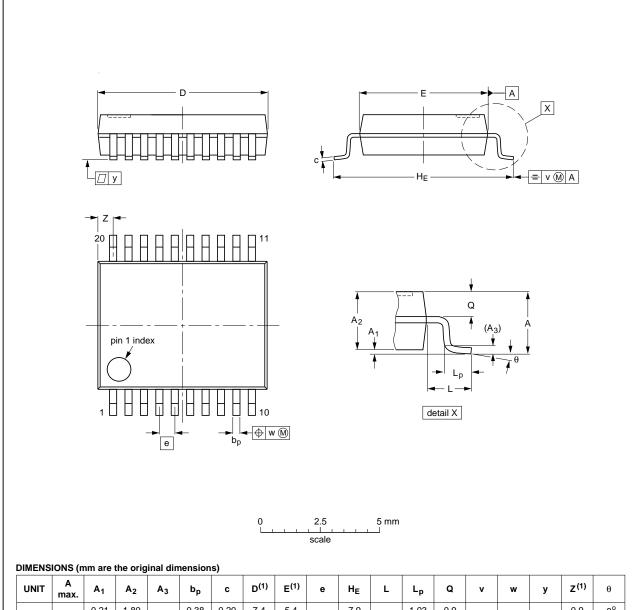
UNIT	A max.	A ₁	A ₂	A ₃	bp	C	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	٧	w	у	z ⁽¹⁾	θ
mm	2.65	0.3 0.1	2.45 2.25	0.25	0.49 0.36	0.32 0.23	13.0 12.6	7.6 7.4	1.27	10.65 10.00	1.4	1.1 0.4	1.1 1.0	0.25	0.25	0.1	0.9 0.4	8°
inches	0.1	0.012 0.004	0.096 0.089	0.01	0.019 0.014	0.013 0.009	0.51 0.49	0.30 0.29	0.05	0.419 0.394	0.055	0.043 0.016	0.043 0.039	0.01	0.01	0.004	0.035 0.016	0°

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE	
SOT163-1	075E04	MS-013				-99-12-27 03-02-19	

Fig 12. Package outline SOT163-1 (SO20)


All information provided in this document is subject to legal disclaimers.

74LVT573 **Nexperia**

3.3 V octal D-type transparent latch; 3-state

SSOP20: plastic shrink small outline package; 20 leads; body width 5.3 mm

SOT339-1

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	e	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	2	0.21 0.05	1.80 1.65	0.25	0.38 0.25	0.20 0.09	7.4 7.0	5.4 5.2	0.65	7.9 7.6	1.25	1.03 0.63	0.9 0.7	0.2	0.13	0.1	0.9 0.5	8° 0°

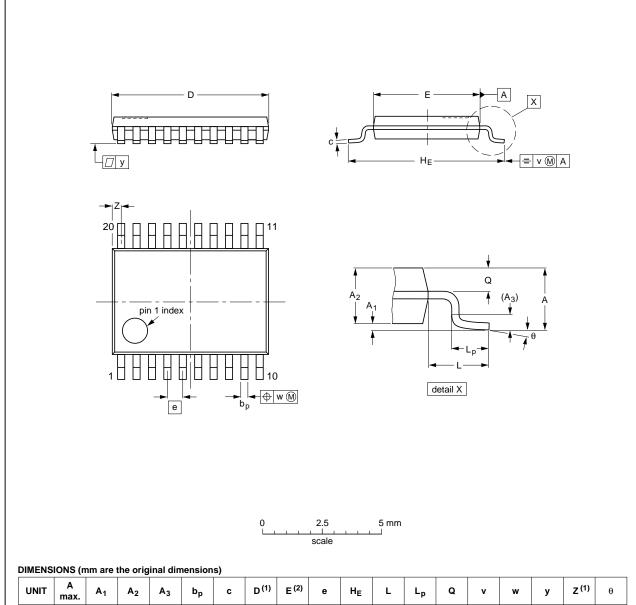
Note

1. Plastic or metal protrusions of 0.2 mm maximum per side are not included.

OUTLINE		REFERENCES				ISSUE DATE
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
SOT339-1		MO-150				99-12-27 03-02-19

Fig 13. Package outline SOT339-1 (SSOP20)

Product data sheet


All information provided in this document is subject to legal disclaimers. Rev. 8 — 22 November 2011

74LVT573 **Nexperia**

3.3 V octal D-type transparent latch; 3-state

TSSOP20: plastic thin shrink small outline package; 20 leads; body width 4.4 mm

SOT360-1

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽²⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	1.1	0.15 0.05	0.95 0.80	0.25	0.30 0.19	0.2 0.1	6.6 6.4	4.5 4.3	0.65	6.6 6.2	1	0.75 0.50	0.4 0.3	0.2	0.13	0.1	0.5 0.2	8° 0°

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	ENCES	EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE
SOT360-1		MO-153			99-12-27 03-02-19
)	03-02-19

Fig 14. Package outline SOT360-1 (TSSOP20)

All information provided in this document is subject to legal disclaimers.

3.3 V octal D-type transparent latch; 3-state

DHVQFN20: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 20 terminals; body 2.5 x 4.5 x 0.85 mm SOT764-1

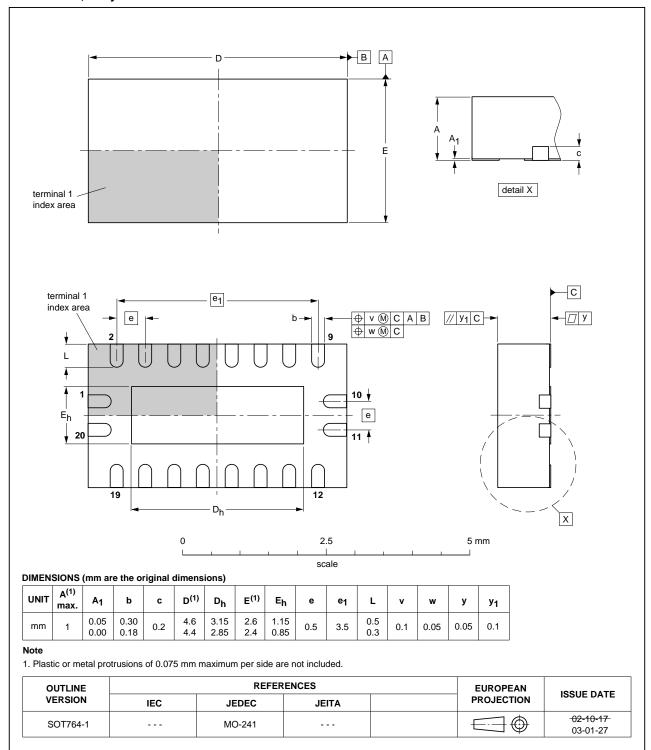


Fig 15. Package outline SOT764-1 (DHVQFN20)

LVT573 All information provided in this document is subject to legal disclaimers.

© Nexperia B.V. 2017. All rights reserved

3.3 V octal D-type transparent latch; 3-state

13. Abbreviations

Table 10. Abbreviations

Acronym	Description
BiCMOS	Bipolar Complementary Metal Oxide Semiconductor
DUT	Device Under Test
ESD	ElectroStatic Discharge
НВМ	Human Body Model
MM	Machine Model
TTL	Transistor-Transistor Logic

14. Revision history

Table 11. Revision history

	•			
Document ID	Release date	Data sheet status	Change notice	Supersedes
74LVT573 v.8	20111122	Product data sheet	-	74LVT573 v.7
Modifications:	 Legal pages 	updated.		
74LVT573 v.7	20110912	Product data sheet	-	74LVT573 v.6
74LVT573 v.6	20110727	Product data sheet	-	74LVT573 v.5
74LVT573 v.5	20110629	Product data sheet	-	74LVT573 v.4
74LVT573 v.4	20080915	Product data sheet	-	74LVT573 v.3
74LVT573 v.3	20011217	Product data sheet	-	74LVT573 v.2
74LVT573 v.2	19980219	Product specification	-	-

3.3 V octal D-type transparent latch; 3-state

15. Legal information

15.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

15.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

15.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or

malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia accepts no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

74LVT573

3.3 V octal D-type transparent latch; 3-state

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

15.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

16. Contact information

For more information, please visit: http://www.nexperia.com

For sales office addresses, please send an email to: salesaddresses@nexperia.com

3.3 V octal D-type transparent latch; 3-state

17. Contents

1	General description
2	Features and benefits
3	Ordering information
4	Functional diagram 2
5	Pinning information 3
5.1	Pinning
5.2	Pin description
6	Functional description
6.1	Function table
7	Limiting values 4
8	Recommended operating conditions 5
9	Static characteristics 5
10	Dynamic characteristics
11	Waveforms
12	Package outline
13	Abbreviations14
14	Revision history
15	Legal information
15.1	Data sheet status
15.2	Definitions
15.3	Disclaimers
15.4	Trademarks16
16	Contact information 16
17	Contents

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

NXP:

74LVT573D 74LVT573D-T 74LVT573DB 74LVT573DB-T 74LVT573PW-T