






### Pin Configuration:

- 1. Base
- 2. Collector
- 3. Emitter
- 4. Collector

## Features:

- Collector-Emitter sustaining voltage-  $V_{CEO(sus)}$  = 50V (Minimum) 2N6109, 2N6290 DC current gain specified to 7A h<sub>FE</sub> = 2.3 (Minimum) at I<sub>C</sub> = 7A 2N6109, 2N6290
- Complementary Silicon Plastic Power Transistors

# **Maximum Ratings:**

| Parameter                                              | Symbol                            | Value       | Unit      |
|--------------------------------------------------------|-----------------------------------|-------------|-----------|
| Collector-Emitter Voltage                              | V <sub>CEO</sub>                  | 50          |           |
| Collector-Base Voltage                                 | V <sub>CBO</sub>                  | 60          | V         |
| Emitter-Base Voltage                                   | V <sub>EBO</sub>                  | 5           |           |
| Collector Current-Continuous -Peak                     | I <sub>C</sub>                    | 7           | Α         |
| Base Current                                           | I <sub>B</sub>                    | 3           | Α         |
| Total Power Dissipation at TC = 25°C Derate above 25°C | P <sub>D</sub>                    | 40<br>0.32  | W<br>W/°C |
| Operating and Storage Junction Temperature Range       | T <sub>J</sub> , T <sub>STG</sub> | -65 to +150 | °C        |

## **Thermal Characteristic:**

| Characteristic                      | Symbol         | Max.  | Unit |
|-------------------------------------|----------------|-------|------|
| Thermal Resistance Junction to Case | $R_{	heta jc}$ | 3.125 | °C/W |



# **Electrical Characteristics** ( $T_c = 25^{\circ}C$ unless otherwise noted):

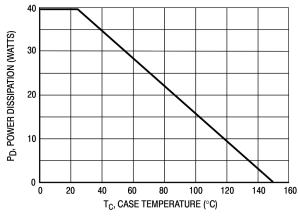
| Parameter                                                                                                                 | Symbol                | Min. | Max.     | Unit |
|---------------------------------------------------------------------------------------------------------------------------|-----------------------|------|----------|------|
| Off Characteristics                                                                                                       | •                     |      |          |      |
| Collector-Emitter Sustaining Voltage (1) (IC = 100mA, IB = 0)                                                             | V <sub>CEO(sus)</sub> | 50   | -        | V    |
| Collector Cut off Current (V <sub>CE</sub> = 40V, I <sub>B</sub> = 0)                                                     | I <sub>CEO</sub>      | -    | 1        |      |
| Collector Cut off Current $(V_{CE} = 60V, V_{BE(off)} = 1.5V)$ $(V_{CE} = 50V, V_{BE(off)} = 1.5V, T_{C} = 125^{\circ}C)$ | I <sub>CEX</sub>      | -    | 0.1<br>2 | mA   |
| Emitter Cut off Current $(V_{EB} = 5V, I_{C} = 0)$                                                                        | I                     | -    | 1        |      |
| On Characteristics (1)                                                                                                    |                       |      |          |      |
| DC Current Gain                                                                                                           |                       | 30   |          |      |

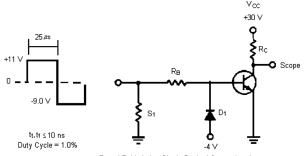
| DC Current Gain $(I_C = 2.5A, V_{CE} = 4V) (I_C = 7A, V_{CE} = 4V)$ | h <sub>FE</sub> | 30<br>2.3 | 150 | - |
|---------------------------------------------------------------------|-----------------|-----------|-----|---|
| Collector-Emitter Saturation Voltage $(I_C = 7A, I_B = 3A)$         | V               | -         | 3.5 | V |
| Base-Emitter On Voltage (I <sub>C</sub> = 7A, V <sub>CE</sub> = 4V) | V               | -         | 3   | V |

## **Dynamic Characteristics**

| Current Gain-Bandwidth Product (2) $(I_C = 0.5A, V_{CE} = 4V, f = 1MHz)$ | f | 2.5<br>10 | - | MHz |
|--------------------------------------------------------------------------|---|-----------|---|-----|
| Small Signal Current Gain ( $I_C = 0.5A$ , $V_{CE} = 4V$ , $f = 50kHz$ ) | h | 20        | - | -   |

<sup>(1)</sup> Pulse Test: Pulse width ≤300µs, Duty Cycle ≤2%





Figure 1. Power Derating

<sup>(2)</sup>  $f_T = h_{FE} \cdot f_{TEST}$ 

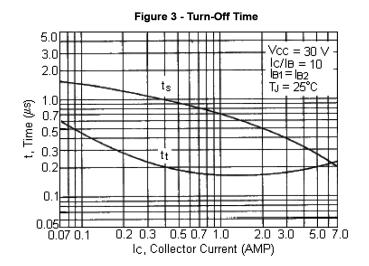





Figure 2 - Switching Time Test Circuit



Reand RcVaried to Obtain Desired Current Levels D1 must be fast recovery type, example: MB05300 used above IB = 100mA MSD6100 used below IB = 100mA



Tյ = 150°C hFE, DC Current Gain 100 50H 20 10E Ö.07 O.1 Ic, Collector Current (AMP)

Figure 4 - DC Current Gain

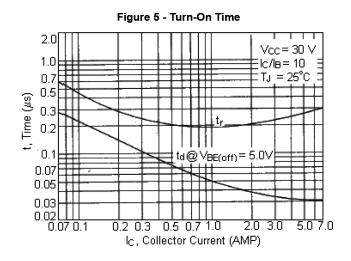
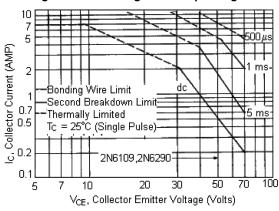






Figure - 6 Active Region Safe Operating Area



There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown safe operating area curves indicate  $\rm I_C$ - $\rm V_{CE}$  limits of the transistor that must be observed for reliable operation i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure - 6 curve is based on  $T_{J(PK)}$  = 150°C;  $T_C$  is variable depending on the power level. Second breakdown pulse limits are valid for duty cycles to 10% provided T<sub>J(PK)</sub> ≤150°C. At high case temperatures, thermal limitation will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

Figure 7 - Collector Saturation Region

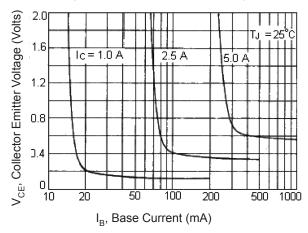
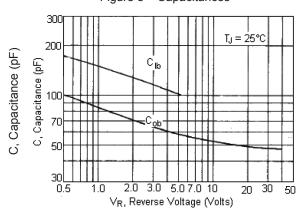




Figure 8 - Capacitances



VR, Reverse Voltage (Volts)



Figure 9 - "ON" Voltage Tj = 25 ℃ 1.6 V, Voltage (Volts)  $V_{BE(sat)}@l_C/l_B = 10$  $V_{BE} @ V_{CE} = 4.0 V$  $_{at})@lc/l_{B} = 10$ 0.07 0.1 0.2 0.5 1.0 2.0 4.0 7.0 I<sub>C</sub>, Collector Current (Amp)

I<sub>C</sub>, Collector Current (µA) 10 101 109 REVERSE 10 0.

Figure 10 - Collector Cut-Off Region

V<sub>BE</sub>, Base Emitter Voltage (Volts)

Max.

Min.

|                     | -T- SEATING PLANE |
|---------------------|-------------------|
| → B ← F             | T S S             |
| 4                   |                   |
| Q A                 | <u> </u>          |
|                     | u_ <sup>↑</sup>   |
| <u>H</u>            |                   |
| ↑_↑                 |                   |
| z                   |                   |
| L_>   <del> </del>  | R→ -              |
| v————               | J—>               |
| G → ←               |                   |
| D                   |                   |
| → N <del>&lt;</del> |                   |

| A | 14.48 | 15.75 |
|---|-------|-------|
| В | 9.66  | 10.28 |
| С | 4.07  | 4.82  |
| D | 0.64  | 0.91  |
| F | 3.61  | 4.09  |
| G | 2.42  | 2.66  |
| Н | 2.8   | 4.1   |
| J | 0.36  | 0.64  |
| K | 12.7  | 14.27 |
| L | 1.15  | 1.52  |
| N | 4.83  | 5.33  |
| Q | 2.54  | 3.04  |
| R | 2.04  | 2.79  |
| S | 1.15  | 1.39  |
| Т | 5.97  | 6.47  |
| U | 0     | 1.27  |
| V | 1.15  | -     |

# Pin Configuration:

- 1. Base
- 2. Collector
- 3. Emitter
- 4. Collector

**Dimension** 

### **Part Number Table**

| Description                    | Type | Part Number |
|--------------------------------|------|-------------|
| Complementary Power Transistor | NPN  | 2N6290      |

Important Notice: This data sheet and its contents (the "Information") belong to the members of the Premier Farnell group of companies (the "Group") or are licensed to it. No licence is granted for the use of it other than for information purposes in connection with the products to which it relates. No licence of any intellectual property rights is granted. The Information is subject to change without notice and replaces all data sheets previously supplied. The Information supplied is believed to be accurate but the Group assumes no responsibility for its accuracy or completeness, any error in or omission from it or for any use made of it. Users of this data sheet should check for themselves the Information and the suitability of the products for their purpose and not make any assumptions based on information included or omitted. Liability for loss or damage resulting from any reliance on the Information or use of it (including liability resulting from negligence or where the Group was aware of the possibility of such loss or damage arising) is excluded. This will not operate to limit or restrict the Group's liability for death or personal injury resulting from its negligence. Multicomp is the registered trademark of the Group. © Premier Farnell plc 2012.

www.element14.com www.farnell.com www.newark.com



2.04

Dimensions: Millimetres