DATASHEET

Description

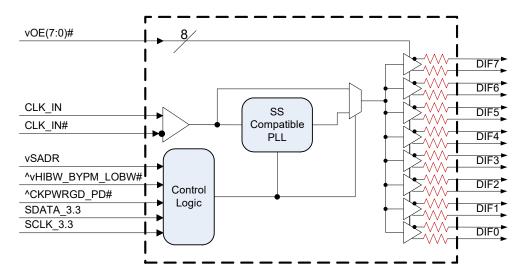
The 9DBV0841 is a 1.8V member of IDT's full featured PCIe family. It has integrated output terminations providing Zo = 100Ω for direct connection for 100Ω transmission lines. The device has 8 output enables for clock management and 3 selectable SMBus addresses.

Typical Applications

SSD, microServers, WLAN Access points

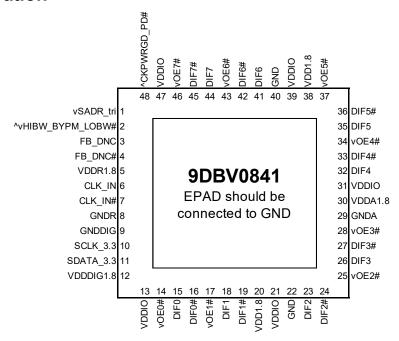
Output Features

• Eight 1-200MHz Low-Power (LP) HCSL DIF pairs


Key Specifications

- DIF cycle-to-cycle jitter < 50ps
- DIF output-to-output skew < 50ps
- DIF additive phase jitter is < 100fs rms for PCIe Gen4
- DIF additive phase jitter < 300fs rms for 12kHz–20MHz

Features/Benefits


- LP-HCSL outputs save 32 resistors; minimal board space and BOM cost
- 62mW typical power consumption in PLL mode; eliminates thermal concerns
- · Spread Spectrum (SS) compatible; allows use of SS for EMI reduction
- OE# pins; support DIF power management
- HCSL compatible differential input; can be driven by common clock sources
- · Programmable Slew rate for each output; allows tuning for various line lengths
- Programmable output amplitude; allows tuning for various application environments
- Pin/software selectable PLL bandwidth and PLL Bypass; minimize phase jitter for each application
- Outputs blocked until PLL is locked; clean system start-up
- Software selectable 50MHz or 125MHz PLL operation; useful for Ethernet applications
- Configuration can be accomplished with strapping pins; SMBus interface not required for device control
- 3.3V tolerant SMBus interface works with legacy controllers
- Space saving 6 × 6 mm 48-VFQFPN; minimal board space
- Selectable SMBus addresses; multiple devices can easily share an SMBus segment

Block Diagram

Pin Configuration

48-pin VFQFPN, 6x6 mm, 0.4mm pitch

- ^v prefix indicates internal 120KOhm pull up AND pull down resistor (biased to VDD/2)
- v prefix indicates internal 120KOhm pull down resistor
- ^ prefix indicates internal 120KOhm pull up resistor

SMBus Address Selection Table

	SADR	Address	+ Read/Write bit
State of SADR on first application of	0	1101011	x
CKPWRGD PD#	M	1101100	Х
CKPWRGD_PD#	1	1101101	X

Power Management Table

CKPWRGD PD#	CLK_IN	SMBus OEx# Pin		DIF	PLL	
CKFWKGD_FD#	OLK_IN	OEx bit	OLX# FIII	True O/P	Comp. O/P	FLL
0	Х	Х	X	Low	Low	Off
1	Running	0	Х	Low	Low	On ¹
1	Running	1	0	Running	Running	On ¹
1	Running	1	1	Low	Low	On ¹

^{1.} If Bypass mode is selected, the PLL will be off, and outputs will be running.

Power Connections

Pin Number			Description
VDD	VDDIO	GND	Description
			Input
5		8	receiver
			analog
12		9	Digital Power
20, 31, 38	13, 21, 31, 39, 47	22, 29, 40	DIF outputs
30		29	PLL Analog

Frequency Select Table

FSEL Byte3 [4:3]	CLK_IN (MHz)	DIFx (MHz)
00 (Default)	100.00	CLK_IN
01	50.00	CLK_IN
10	125.00	CLK_IN
11	Reserved	Reserved

PLL Operating Mode

HiBW_BypM_LoBW#	MODE	Byte1 [7:6] Readback	Byte1 [4:3] Control
0	PLL Lo BW	00	00
M	Bypass	01	01
1	PLL Hi BW	11	11

Pin Descriptions

PIN#	PIN NAME	TYPE	DESCRIPTION
1	VCADD tri	LATCHED	Tri-level latch to select SMBus Address. See SMBus Address Selection Table.
1	vSADR_tri	IN	Thevel factifito select Sivibus Address. See Sivibus Address Selection Table.
2	^vHIBW BYPM LOBW#	LATCHED	Trilevel input to select High BW, Bypass or Low BW mode.
	VIIIDVV_BII IVI_EODVV#	IN	See PLL Operating Mode Table for Details.
3	FB_DNC	DNC	True clock of differential feedback. The feedback output and feedback input are
	1 D_DNO	DIVO	connected internally on this pin. Do not connect anything to this pin.
4	FB DNC#	DNC	Complement clock of differential feedback. The feedback output and feedback
4	FB_DINC#	DINC	input are connected internally on this pin. Do not connect anything to this pin.
5	VDDR1.8	PWR	1.8V power for differential input clock (receiver). This VDD should be treated as
5	VDDR1.0	FVVIX	an Analog power rail and filtered appropriately.
6	CLK_IN	IN	True Input for differential reference clock.
7	CLK_IN#	IN	Complementary Input for differential reference clock.
8	GNDR	GND	Analog Ground pin for the differential input (receiver)
9	GNDDIG	GND	Ground pin for digital circuitry
10	SCLK_3.3	IN	Clock pin of SMBus circuitry, 3.3V tolerant.
11	SDATA_3.3	I/O	Data pin for SMBus circuitry, 3.3V tolerant.
12	VDDDIG1.8	PWR	1.8V digital power (dirty power)
13	VDDIO	PWR	Power supply for differential outputs
14	vOE0#	IN	Active low input for enabling DIF pair 0. This pin has an internal pull-down.
14	VOL0#	IIN	1 =disable outputs, 0 = enable outputs
15	DIF0	OUT	Differential true clock output
16	DIF0#	OUT	Differential Complementary clock output
17	vOE1#	IN	Active low input for enabling DIF pair 1. This pin has an internal pull-down.
.,			1 =disable outputs, 0 = enable outputs
18	DIF1	OUT	Differential true clock output
19	DIF1#	OUT	Differential Complementary clock output
20	VDD1.8	PWR	Power supply, nominal 1.8V
21	VDDIO	PWR	Power supply for differential outputs
22	GND	GND	Ground pin.
23	DIF2	OUT	Differential true clock output
24	DIF2#	OUT	Differential Complementary clock output
25	vOE2#	IN	Active low input for enabling DIF pair 2. This pin has an internal pull-down.
			1 =disable outputs, 0 = enable outputs
26	DIF3	OUT	Differential true clock output
27	DIF3#	OUT	Differential Complementary clock output
28	vOE3#	IN	Active low input for enabling DIF pair 3. This pin has an internal pull-down.
			1 =disable outputs, 0 = enable outputs
29	GNDA	GND	Ground pin for the PLL core.
30	VDDA1.8	PWR	1.8V power for the PLL core.
31	VDDIO	PWR	Power supply for differential outputs
32	DIF4	OUT	Differential true clock output
33	DIF4#	OUT	Differential Complementary clock output
34	vOE4#	IN	Active low input for enabling DIF pair 4. This pin has an internal pull-down. 1 =disable outputs, 0 = enable outputs
35	DIF5	OUT	Differential true clock output
36	DIF5#	OUT	Differential Complementary clock output
			Active low input for enabling DIF pair 5. This pin has an internal pull-down.
37	vOE5#	IN	1 =disable outputs, 0 = enable outputs
38	VDD1.8	PWR	Power supply, nominal 1.8V

Pin Descriptions (cont.)

PIN#	PIN NAME	TYPE	DESCRIPTION	
39	VDDIO	PWR	Power supply for differential outputs	
40	GND	GND	Ground pin.	
41	DIF6	OUT	Differential true clock output	
42	DIF6#	OUT	Differential Complementary clock output	
43	vOE6#	IN	Active low input for enabling DIF pair 6. This pin has an internal pull-down.	
43	VOE0#	IIN	1 =disable outputs, 0 = enable outputs	
44	DIF7	OUT	Differential true clock output	
45	DIF7#	OUT	Differential Complementary clock output	
46	vOE7#	IN	Active low input for enabling DIF pair 7. This pin has an internal pull-down.	
40	VOE1#	IIN	1 =disable outputs, 0 = enable outputs	
47	VDDIO	PWR	Power supply for differential outputs	
			Input notifies device to sample latched inputs and start up on first high	
48	^CKPWRGD_PD#	IN	assertion. Low enters Power Down Mode, subsequent high assertions exit	
	Power Down Mode. This pin has internal pull-up resistor.			
49	epad	GND	Connect epad to ground	

Test Loads

L = 5 inches

Alternate Terminations

The 9DBV family can easily drive LVPECL, LVDS, and CML logic. See <u>"AN-891 Driving LVPECL, LVDS, and CML Logic with IDT's "Universal" Low-Power HCSL Outputs"</u> for details.

Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the 9DBV0841. These ratings, which are standard values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
1.8V Supply Voltage	VDDxx	Applies to VDD, VDDA and VDDIO	-0.5		2.5	V	1,2
Input Voltage	V_{IN}		-0.5		V _{DD} +0.5V	V	1, 3
Input High Voltage, SMBus	V_{IHSMB}	SMBus clock and data pins			3.6V	V	1
Storage Temperature	Ts		-65		150	°C	1
Junction Temperature	Tj				125	°C	1
Input ESD protection	ESD prot	Human Body Model	2000			V	1

¹Guaranteed by design and characterization, not 100% tested in production.

Electrical Characteristics-Clock Input Parameters

TA = T_{AMB}. Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

ANID, Capp.) Tanagas per normal applications, Cas test Island 18. Islands								
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES	
Input Common Mode Voltage - DIF_IN	V _{COM}	Common Mode Input Voltage	150		1000	mV	1	
Input Swing - DIF_IN	V _{SWING}	Differential value	300			mV	1	
Input Slew Rate - DIF_IN	dv/dt	Measured differentially	0.4		8	V/ns	1,2	
Input Leakage Current	I _{IN}	$V_{IN} = V_{DD}$, $V_{IN} = GND$	-5		5	uA		
Input Duty Cycle	d _{tin}	Measurement from differential waveform	45		55	%	1	
Input Jitter - Cycle to Cycle	J_{DIFIn}	Differential Measurement	0		125	ps	1	

¹ Guaranteed by design and characterization, not 100% tested in production.

² Operation under these conditions is neither implied nor guaranteed.

³ Not to exceed 2.5V.

²Slew rate measured through +/-75mV window centered around differential zero.

Electrical Characteristics-Input/Supply/Common Parameters-Normal Operating Conditions

 $TA = T_{AMB}$. Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Supply Voltage	VDDx	Supply voltage for core and analog	1.7	1.8	1.9	V	
Output Supply Voltage	VDDIO	Supply voltage for Low Power HCSL Outputs	0.9975	1.05	1.9	V	
Ambient Operating	т	Commercial range	0	25	70	°C	
Temperature	T _{AMB}	Industrial range	-40	25	85	°C	
Input High Voltage	V _{IH}	Single-ended inputs, except SMBus	0.75 V _{DD}		V _{DD} + 0.3	V	
Input Mid Voltage	V_{IM}	Single-ended tri-level inputs ('_tri' suffix)	0.4 V _{DD}		0.6 V _{DD}	V	
Input Low Voltage	V _{IL}	Single-ended inputs, except SMBus	-0.3		0.25 V _{DD}	V	
	I _{IN}	Single-ended inputs, V_{IN} = GND, V_{IN} = VDD	-5		5	uA	
Input Current	I _{INP}	$\label{eq:VIN} Single-ended inputs $$V_{IN}=0\ V;$ Inputs with internal pull-up resistors $$V_{IN}=VDD;$ Inputs with internal pull-down resistors$	-200		200	uA	
	F _{ibyp}	Bypass mode	1		200	MHz	2
Input Fraguency	F _{ipll}	100MHz PLL mode	60	100.00	140	MHz	2
Input Frequency	F _{ipII}	125MHz PLL mode	75	125.00	175	MHz	2
	F _{ipll}	50MHz PLL mode	30	50.00	65	MHz	2
Pin Inductance	L_{pin}				7	nΗ	1
	C _{IN}	Logic Inputs, except DIF_IN	1.5		5	pF	1
Capacitance	C _{INDIF_IN}	DIF_IN differential clock inputs	1.5		2.7	pF	1,5
	C _{OUT}	Output pin capacitance			6	pF	1
Clk Stabilization	T _{STAB}	From V _{DD} Power-Up and after input clock stabilization or de-assertion of PD# to 1st clock		0.6	1	ms	1,2
Input SS Modulation Frequency PCle	f _{MODINPCIe}	Allowable Frequency for PCle Applications (Triangular Modulation)	30		33	kHz	
Input SS Modulation Frequency non-PCle	f _{MODIN}	Allowable Frequency for non-PCle Applications (Triangular Modulation)	0		66	kHz	
OE# Latency	t _{LATOE#}	DIF start after OE# assertion DIF stop after OE# deassertion	1		3	clocks	1,3
Tdrive_PD#	t _{DRVPD}	DIF output enable after PD# de-assertion			300	us	1,3
Tfall	t _F	Fall time of single-ended control inputs			5	ns	2
Trise	t _R	Rise time of single-ended control inputs				ns	2
SMBus Input Low Voltage	V_{ILSMB}	V_{DDSMB} = 3.3V, see note 4 for V_{DDSMB} < 3.3V			0.6	V	
SMBus Input High Voltage	V _{IHSMB}	V_{DDSMB} = 3.3V, see note 5 for V_{DDSMB} < 3.3V	2.1		3.6	V	4
SMBus Output Low Voltage	V _{OLSMB}	@ I _{PULLUP}			0.4	V	
SMBus Sink Current	I _{PULLUP}	@ V _{OL}	4			mA	
Nominal Bus Voltage	$V_{\rm DDSMB}$	Bus Voltage	1.7		3.6	V	
SCLK/SDATA Rise Time	t _{RSMB}	(Max VIL - 0.15) to (Min VIH + 0.15)			1000	ns	1
SCLK/SDATA Fall Time	t _{FSMB}	(Min VIH + 0.15) to (Max VIL - 0.15)			300	ns	1
SMBus Operating Frequency	f _{MAXSMB}	Maximum SMBus operating frequency			400	kHz	6

¹Guaranteed by design and characterization, not 100% tested in production.

 $^{^2\}mbox{Control}$ input must be monotonic from 20% to 80% of input swing.

³Time from deassertion until outputs are > 200 mV.

 $^{^{4}}$ For V_{DDSMB} < 3.3V, V_{IHSMB} > = 0.8x V_{DDSMB} .

⁵DIF IN input.

⁶The differential input clock must be running for the SMBus to be active.

Electrical Characteristics-Low Power HCSL Outputs

TA = T_{AMB}, Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Slew rate	dV/dt	Scope averaging on, fast setting	1.7	2.8	4	V/ns	1,2,3
Siew fate	dV/dt	Scope averaging on, slow setting	1.1	2.1	3.2	V/ns	1,2,3
Slew rate matching	∆dV/dt	Slew rate matching, Scope averaging on		6.2	20	%	1,2,4
Voltage High	V_{HIGH}	Statistical measurement on single-ended signal using oscilloscope math function. (Scope	660	789	850	mV	7
Voltage Low	V_{LOW}	averaging on)	-150	38	150	l IIIV	7
Max Voltage	Vmax	Measurement on single ended signal using		803	1150	mV	7
Min Voltage	Vmin	absolute value. (Scope averaging off)	-300	15		IIIV	7
Crossing Voltage (abs)	Vcross_abs	Scope averaging off	250	417	550	mV	1,5
Crossing Voltage (var)	Δ-Vcross	Scope averaging off		13	140	mV	1,6

¹Guaranteed by design and characterization, not 100% tested in production.

Electrical Characteristics-Current Consumption

TA = T_{AMB.} Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Operating Supply Current	I _{DDA}	VDDA+VDDR, PLL Mode, @100MHz		10.6	15	mA	1
	I _{DD}	VDD, All outputs active @100MHz		6.1	10	mA	1
	I _{DDO}	VDDO, All outputs active @100MHz		30.7	35	mA	1
	I _{DDAPD}	VDDA+VDDR, PLL Mode, @100MHz		0.58	1	mA	1, 2
Powerdown Current	I _{DDPD}	VDD, Outputs Low/Low		0.81	2	mA	1, 2
	I _{DDOPD}	VDDO,Outputs Low/Low		0.00	0.01	mA	1, 2

¹ Guaranteed by design and characterization, not 100% tested in production.

² Measured from differential waveform

³ Slew rate is measured through the Vswing voltage range centered around differential 0V. This results in a +/-150mV window around differential 0V.

⁴ Matching applies to rising edge rate for Clock and falling edge rate for Clock#. It is measured using a +/-75mV window centered on the average cross point where Clock rising meets Clock# falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations.

⁵ Vcross is defined as voltage where Clock = Clock# measured on a component test board and only applies to the differential rising edge (i.e. Clock rising and Clock# falling).

⁶ The total variation of all Vcross measurements in any particular system. Note that this is a subset of Vcross_min/max (Vcross absolute) allowed. The intent is to limit Vcross induced modulation by setting Δ-Vcross to be smaller than Vcross absolute.

⁷ At default SMBus settings.

² Input clock stopped.

Electrical Characteristics-Output Duty Cycle, Jitter, Skew and PLL Characteristics

TA = T_{AMB.} Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

AIVID, III	•	, 9 -					
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
PLL Bandwidth	BW	-3dB point in High BW Mode	2	2.7	4	MHz	1,5
FEE Balldwidtii	DVV	-3dB point in Low BW Mode	1	1.4	2	MHz	1,5
PLL Jitter Peaking	t _{JPEAK}	Peak Pass band Gain		1.1	2	dB	1
Duty Cycle	t _{DC}	Measured differentially, PLL Mode	45	50.1	55	%	1
Duty Cycle Distortion	t _{DCD}	Measured differentially, Bypass Mode @100MHz	-1	0.03	1	%	1,3
Skew, Input to Output	t _{pdBYP}	Bypass Mode, V _T = 50%	2800	3625	4500	ps	1
Skew, input to Output	t _{pdPLL}	PLL Mode V _T = 50%	Bypass Mode @100MHz		1,4		
Skew, Output to Output	t _{sk3}	V _T = 50%		39	50	ps	1,4
Jitter, Cycle to cycle	t.	PLL mode		14	50	ps	1,2
Jitter, Cycle to Cycle	t _{jcyc-cyc}	Additive Jitter in Bypass Mode		0.10	25	ps	1,2

¹ Guaranteed by design and characterization, not 100% tested in production.

Electrical Characteristics-Phase Jitter Parameters

 $TA = T_{AMB}$ Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

						INDUSTRY		
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	LIMIT	UNITS	Notes
	t _{jphPCleG1}	PCle Gen 1		24	32	86	ps (p-p)	1,2,3, 5
	4	PCle Gen 2 Lo Band 10kHz < f < 1.5MHz		0.5	0.8	3	ps (rms)	1,2,3 5
Phase Jitter, PLL Mode	t _{jphPCleG2}	PCle Gen 2 High Band 1.5MHz < f < Nyquist (50MHz)		1.7	2.3	3.1	ps (rms)	1,2,3 5
	t _{jphPCleG3}	PCIe Gen 3 (PLL BW of 2-4 or 2-5MHz, CDR = 10MHz)		0.4	0.6	1	ps (rms)	1,2,3 5
	t _{jphSGMII}	125MHz, 1.5MHz to 10MHz, -20dB/decade rollover < 1.5MHz, -40db/decade rolloff > 10MHz		2.0		NA	ps (rms)	1,6
	t _{jphPCleG1}	PCle Gen 1		0.6	2.6	N/A	ps (p-p)	1,2,3 5
	+	PCle Gen 2 Lo Band 10kHz < f < 1.5MHz		0.1	0.3	N/A	ps (rms)	1,2,3 4,5
Additive Phase Jitter, Bypass Mode	t _{jphPCleG2}	PCle Gen 2 High Band 1.5MHz < f < Nyquist (50MHz)		0.14	0.2	N/A	ps (rms)	1,2,3 4
bypass Mode	t _{jphPCleG3}	PCle Gen3–4 (PLL BW of 2-4 or 2-5MHz, CDR = 10MHz)		0.00	0.1	N/A	ps (rms)	1,2,3, 4
	t _{jphSGMII}	125MHz, 1.5MHz to 10MHz, -20dB/decade rollover < 1.5MHz, -40db/decade rolloff > 10MHz		0.27		N/A	ps (rms)	1,6

¹Guaranteed by design and characterization, not 100% tested in production.

² Measured from differential waveform

³ Duty cycle distortion is the difference in duty cycle between the output and the input clock when the device is operated in bypass mode.

⁴ All outputs at default slew rate

⁵ The MIN/TYP/MAX values of each BW setting track each other, i.e., Low BW MAX will never occur with Hi BW MIN.

² See http://www.pcisig.com for complete specs.

³ Sample size of at least 100K cycles. This figures extrapolates to 108ps pk-pk @ 1M cycles for a BER of 1⁻¹².

⁴ For RMS figures, additive jitter is calculated by solving the following equation: Additive jitter = SQRT[(total jitter)^2 - (input jitter)^2].

⁵ Driven by 9FGV0841/9FGL0841 or equivalent.

⁶ Driven by Rohde&Schartz SMA100.

General SMBus Serial Interface Information

How to Write

- Controller (host) sends a start bit
- Controller (host) sends the write address
- IDT clock will acknowledge
- Controller (host) sends the beginning byte location = N
- IDT clock will acknowledge
- Controller (host) sends the byte count = X
- IDT clock will acknowledge
- Controller (host) starts sending Byte N through Byte N+X-1
- IDT clock will acknowledge each byte one at a time
- Controller (host) sends a Stop bit

	Index Blo	ock V	Vrite Operation
Control	ler (Host)		IDT (Slave/Receiver)
Т	starT bit		
Slave	Address		
WR	WRite		
			ACK
Beginnin	g Byte = N		
			ACK
Data Byte	Count = X		
			ACK
Beginni	ng Byte N		
			ACK
0		$\rfloor \times \lfloor$	
0		X Byte	0
0		Ö	0
			0
Byte N	N + X - 1		
			ACK
Р	stoP bit		

Note: SMBus Address is Latched on SADR pin.

How to Read

- Controller (host) will send a start bit
- Controller (host) sends the write address
- IDT clock will acknowledge
- Controller (host) sends the beginning byte location = N
- IDT clock will acknowledge
- Controller (host) will send a separate start bit
- Controller (host) sends the read address
- IDT clock will acknowledge
- IDT clock will send the data byte count = X
- IDT clock sends Byte N+X-1
- IDT clock sends Byte 0 through Byte X (if X_(H) was written to Byte 8)
- · Controller (host) will need to acknowledge each byte
- Controller (host) will send a not acknowledge bit
- Controller (host) will send a stop bit

	Index Block F	Read C	peration
Co	ntroller (Host)		IDT (Slave/Receiver)
Т	starT bit		
SI	ave Address		
WR	WRite		
			ACK
Begi	nning Byte = N		
			ACK
RT	Repeat starT		
SI	ave Address		
RD	ReaD		
			ACK
			Data Byte Count=X
	ACK		
			Beginning Byte N
	ACK		
		क	0
	0	X Byte	0
	0	×	0
	0		
			Byte N + X - 1
N	Not acknowledge		
Р	stoP bit		

SMBus Table: Output Enable Register ¹

Byte 0	Name	Control Function	Type	0	1	Default
Bit 7	DIF OE7	Output Enable	RW	Low/Low	OE7# control	1
Bit 6	DIF OE6	Output Enable	RW	Low/Low	OE6# control	1
Bit 5	DIF OE5	Output Enable	RW	Low/Low	OE5# control	1
Bit 4	DIF OE4	Output Enable	RW	Low/Low	OE4# control	1
Bit 3	DIF OE3	Output Enable	RW	Low/Low	OE3# control	1
Bit 2	DIF OE2	Output Enable	RW	Low/Low	OE2# control	1
Bit 1	DIF OE1	Output Enable	RW	Low/Low	OE1# control	1
Bit 0	DIF OE0	Output Enable	RW	Low/Low	OE0# control	1

^{1.} A low on these bits will override the OE# pin and force the differential output Low/Low

SMBus Table: PLL Operating Mode and Output Amplitude Control Register

Byte 1	Name	Control Function	Type	0 1		Default
Bit 7	PLLMODERB1	PLL Mode Readback Bit 1	R	See PLL Operating Mode Table		Latch
Bit 6	PLLMODERB0	PLL Mode Readback Bit 0	R			Latch
Bit 5	PLLMODE SWCNTRL	Enable SW control of PLL Mode	RW	Values in B1[7:6]	Values in B1[4:3]	0
	T LEMODE_OWONTKE	Enable 644 control of 1 EE Wode	1 (0 0	set PLL Mode	set PLL Mode	U
Bit 4	PLLMODE1	PLL Mode Control Bit 1	RW ¹	See PLL Operating Mode Table		0
Bit 3	PLLMODE0	PLL Mode Control Bit 0	RW ¹	See FLL Operat	ing wode rable	0
Bit 2		Reserved				1
Bit 1	AMPLITUDE 1	Controls Output Amplitude	RW	00 = 0.6V	01 = 0.7V	1
Bit 0	AMPLITUDE 0	Controls Output Amplitude	RW	10= 0.8V	11 = 0.9V	0

^{1.} B1[5] must be set to a 1 for these bits to have any effect on the part.

SMBus Table: DIF Slew Rate Control Register

Byte 2	Name	Control Function	Type	0	1	Default
Bit 7	SLEWRATESEL DIF7	Adjust Slew Rate of DIF7	RW	Slow setting	Fast setting	1
Bit 6	SLEWRATESEL DIF6	Adjust Slew Rate of DIF6	RW	Slow setting	Fast setting	1
Bit 5	SLEWRATESEL DIF5	Adjust Slew Rate of DIF5	RW	Slow setting	Fast setting	1
Bit 4	SLEWRATESEL DIF4	Adjust Slew Rate of DIF4	RW	Slow setting	Fast setting	1
Bit 3	SLEWRATESEL DIF3	Adjust Slew Rate of DIF3	RW	Slow setting	Fast setting	1
Bit 2	SLEWRATESEL DIF2	Adjust Slew Rate of DIF2	RW	Slow setting	Fast setting	1
Bit 1	SLEWRATESEL DIF1	Adjust Slew Rate of DIF1	RW	Slow setting	Fast setting	1
Bit 0	SLEWRATESEL DIF0	Adjust Slew Rate of DIF0	RW	Slow setting	Fast setting	1

SMBus Table: Frequency Select Control Register

Byte 3	Name	Control Function	Type	0	1	Default	
Bit 7		Reserved					
Bit 6		Reserved				1	
Bit 5	FREQ SEL EN	Enable SW selection of	RW	SW frequency	SW frequency	0	
	TREQ_OLE_EN	frequency	1700	change disabled	change enabled		
Bit 4	FSEL1	Freq. Select Bit 1	RW ¹	See Frequenc	0		
Bit 3	FSEL0	Freq. Select Bit 0	RW ¹	Occ i requerio	y Ocicot Table	0	
Bit 2		Reserved				1	
Bit 1	Reserved					1	
Bit 0	SLEWRATESEL FB	Adjust Slew Rate of FB	RW	Slow setting	Fast setting	1	

^{1.} B3[5] must be set to a 1 for these bits to have any effect on the part.

Byte 4 is Reserved and reads back 'hFF

SMBus Table: Revision and Vendor ID Register

Byte 5	Name	Control Function	Type	0	1	Default
Bit 7	RID3		R		0	
Bit 6	RID2	Revision ID	R	A rev =	0	
Bit 5	RID1		R	A 16V -	0	
Bit 4	RID0		R		0	
Bit 3	VID3		R			0
Bit 2	VID2	VENDOR ID	R	0001	- IDT	0
Bit 1	VID1	VENDOR ID	R	0001 = IDT		0
Bit 0	VID0		R			1

SMBus Table: Device Type/Device ID

Byte 6	Name	Control Function	Туре	0	1	Default	
Bit 7	Device Type1	Device Type	R	00 = FGx	00 = FGx, 01 = DBx,		
Bit 6	Device Type0	Device Type	R	10 = DMx, 1	1		
Bit 5	Device ID5		R			0	
Bit 4	Device ID4		R				
Bit 3	Device ID3	Device ID	R	001000 bina	n, or 08 hov	1	
Bit 2	Device ID2	Device ID	R	00 1000 billa	ry or oo nex	0	
Bit 1	Device ID1		R				
Bit 0	Device ID0		R			0	

SMBus Table: Byte Count Register

Byte 7	Name	Control Function	Type	0	1	Default
Bit 7	Reserved					
Bit 6		Reserved				0
Bit 5		Reserved				0
Bit 4	BC4		RW			0
Bit 3	BC3		RW	Writing to this regist	er will configure how	1
Bit 2	BC2	Byte Count Programming	RW	many bytes will be r	ead back, default is	0
Bit 1	BC1		RW	= 8 b	ytes.	0
Bit 0	BC0		RW			0

Marking Diagrams

ICS
DBV0841AL
YYWW
COO
LOT

Notes:

- 1. "LOT" is the lot sequence number.
- 2. "COO" denotes country of origin.
- 3. YYWW is the last two digits of the year and week that the part was assembled.
- 4. Line 2: truncated part number
- 5. "L" denotes RoHS compliant package.
- 6. "I" denotes industrial temperature range device.

Thermal Characteristics

PARAMETER	SYMBOL	CONDITIONS	PKG	TYP VALUE	UNITS	NOTES
	θ_{JC}	Junction to Case		33	°C/W	1
	θ_{Jb}	Junction to Base		2.1	°C/W	1
Thermal Resistance	θ _{JΑ0θ}	Junction to Air, still air	NDG48 37		°C/W	1
Theiliai Resistance	θ_{JA1}	Junction to Air, 1 m/s air flow	NDG46	30	°C/W	1
	θ_{JA3}	Junction to Air, 3 m/s air flow	┥		°C/W	1
	θ_{JA5}	Junction to Air, 5 m/s air flow			°C/W	1

¹ePad soldered to board

Package Outline Drawings

The package outline drawings are appended at the end of this document and are accessible from the link below. The package information is the most current data available.

www.idt.com/document/psc/48-vfqfpn-package-outline-drawing-60-x-60-x-090-mm-body-epad-41-x-41-mm-040mm-pitch-ndg48p1

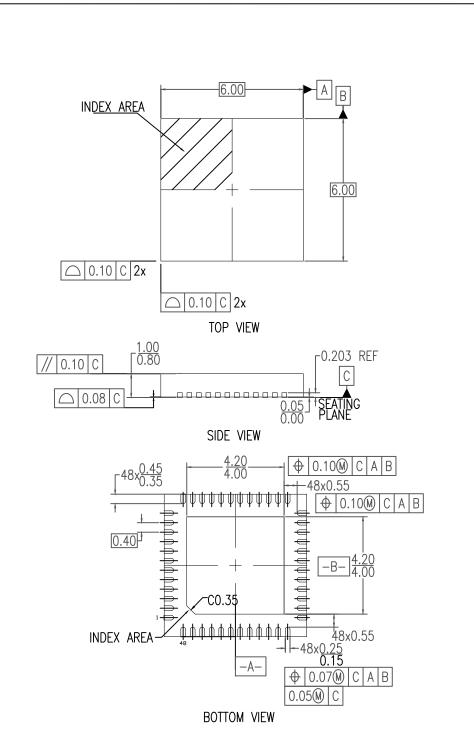
Ordering Information

Part / Order Number	Shipping Packaging	Package	Temperature
9DBV0841AKLF	Trays	48-pin VFQFPN	0 to +70° C
9DBV0841AKLFT	Tape and Reel	48-pin VFQFPN	0 to +70° C
9DBV0841AKILF	Trays	48-pin VFQFPN	-40 to +85° C
9DBV0841AKILFT	Tape and Reel	48-pin VFQFPN	-40 to +85° C

[&]quot;LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

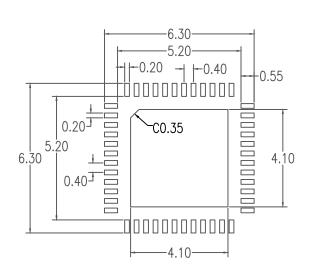
Revision History

Revision Date	Description
August 13, 2012	1. Removed "Differential" from DS title and Recommended Application, corrected typo's in
	Description. Updated block diagram to show integrated terminations.
	2. Removed references to 60KOhm pulldown under pinout.
	3. Updated "Phase Jitter Parameters" table by adding "Industry Limit" column and updated all
	Electrical Tables with characterization data.
	4. Updated Byte3[0] to be consistent with Byte 2. Updated Byte6[7:6] definition.
	5. Updated Mark spec with correct part revision (A) and added thermal data to page 13.
	6. Added NDG48 to "Package Outline and Package Dimensions" on page 14 and updated
	Ordering information to correct part revision (A rev).
	7. Move to final
	1. Changed VIH min. from 0.65*VDD to 0.75*VDD
February 18, 2013	2. Changed VIL max. from 0.35*VDD to 0.25*VDD
	3. Added missing mid-level input voltage spec (VIM) of 0.4*VDD to 0.6*VDD.
August 12, 2014	Changed package designator from "MLF" to "VFQFPN"
	Numerous typographical and grammatical updates for document consistency with other
March 10, 2016	devices in the family, including updated descriptions for Bytes 0 and 2.
	2. Fast and slow slew rates were swapped in the "DIF 0.7V Low Power HCSL Outputs" table.
	3. Changed PCle clock source from 9FG432 to 9FGV0841/9FGL0841 for PLL mode phase jitter
	numbers. New phase jitter numbers are lower.
	4. Added epad to pinout diagram and pin descriptions.
	5. Updated Clock Input Parameters to be consistent with PCle Vswing parameter.
	6. Updated package drawing to latest format.
April 28, 2016	1. Updated max frequency of 100MHz PLL mode to 140MHz
	2. Updated max frequency of 125MHz PLL mode to 175MHz
	3. Updated max frequency of 50MHz PLL mode to 65MHz
August 28, 2019	Updated to PCle Gen4.


[&]quot;A" is the device revision designator (will not correlate with the datasheet revision).

48-VFQFPN Package Outline Drawing

6.0 x 6.0 x 0.90 mm Body, Epad 4.1x 4.1 mm, 0.40mm Pitch NDG48P1, PSC-4212-01, Rev 01, Page 1


NOTES:

- 1. ALL DIMENSIONING AND TOLERANCING CONFORM TO ANSI Y14.5M-1982
- 2. ALL DIMENSIONS ARE IN MILLIMETERS.

48-VFQFPN Package Outline Drawing

6.0 x 6.0 x 0.90 mm Body, Epad 4.1 x 4.1 mm, 0.40mm Pitch NDG48P1, PSC-4212-01, Rev 01, Page 2

RECOMMENDED LAND PATTERN DIMENSION

NOTES:

- 1. ALL DIMENSION ARE IN MM. ANGLES IN DEGREES.
- 2. TOP DOWN VIEW. AS VIEWED ON PCB.
- 3. LAND PATTERN RECOMMENDATION PER IPC-7351B GENERIC REQUIREMENT FOR SURFACE MOUNT DESIGN AND LAND PATTERN.

Package Revision History			
Date Created	Rev No.	Description	
Aug16, 2018	Rev 01	New Format Change QFN to VFQFPN, Recalculate Land Pattern	
May 6, 2016	Rev 00	Add Chamfer	

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/