

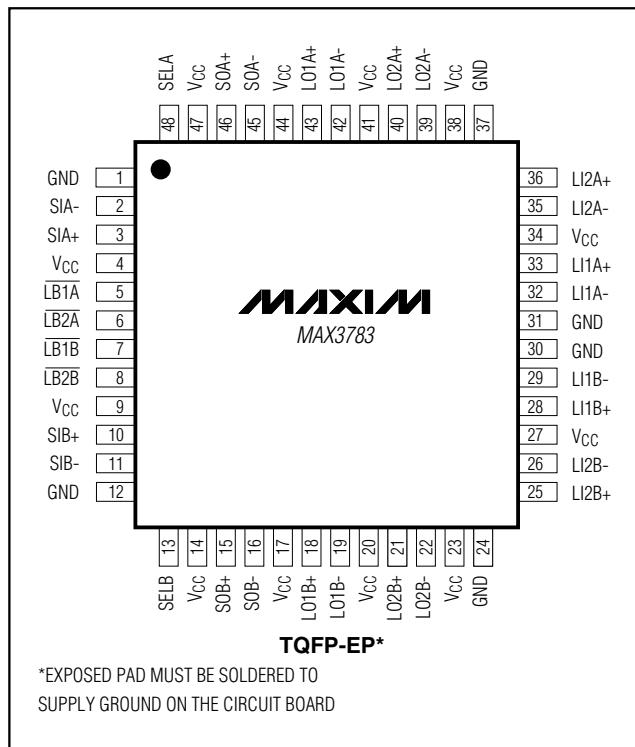
MAXIM**2.7Gbps Dual Mux/Buffer with Loopback****MAX3783****General Description**

The MAX3783 is a dual serial multiplexer (mux) and buffer with selectable line-side loopback for system interconnect and serial backplane applications up to 2.7Gbps. Each independent channel consists of a transmitter with fanout of two and a receiver with a 2:1 input mux. Selectable loopback paths support system testing.

Operating from a single 3.3V supply, this device has current-mode logic (CML) inputs and outputs, which can be AC-coupled for PECL compatibility, if desired. The IC is packaged in a compact 48-pin TQFP-EP package with exposed pad. Typical power consumption is 1.12W.

Applications

2.7Gbps Serial Communications
System Interconnect
Serial Backplane
Fail-Over and Protection Switching


Features

- ◆ Provides Redundant Serial I/O
- ◆ 11ps Deterministic Jitter
- ◆ Selectable Loopback
- ◆ On-Chip 50Ω Termination Resistors
- ◆ 3.3V Power Supply
- ◆ Two-Port Integration

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX3783UCM	0°C to +85°C	48 TQFP-EP*

* Exposed pad

Pin Configuration**MAXIM**

Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

2.7Gbps Dual Mux/Buffer with Loopback

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V_{CC} -0.5V to 4.0V
 Continuous Current at Serial Outputs..... $\pm 36\text{mA}$
 Voltage at SEL_{-} , \overline{LB}_{-} Pins-0.5V to (V_{CC} + 0.5V)
 Common-Mode Input Voltage (SI_{-} , LI_{-})-0.5V to (V_{CC} + 0.5V)
 Differential Input Voltage (SI_{-} , LI_{-}) (Note 1) $\pm 2.8\text{V}$

Continuous Power Dissipation ($T_A = +85^\circ\text{C}$)
 48-Pin TQFP-EP (derate 27mW/ $^\circ\text{C}$ above $+85^\circ\text{C}$)1.76W
 Storage Ambient Temperature-55 $^\circ\text{C}$ to +150 $^\circ\text{C}$
 Lead Temperature (soldering, 10s)+300 $^\circ\text{C}$

Note 1: The sum of the common-mode voltage and differential voltage on any input pin must be within -0.5V to (V_{CC} + 0.5V).

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

($V_{CC} = 3.0\text{V}$ to 3.6V , serial data rate = 2.75Gbps, $T_A = 0^\circ\text{C}$ to $+85^\circ\text{C}$. Typical values at $V_{CC} = 3.3\text{V}$, $T_A = +25^\circ\text{C}$, unless otherwise noted.)

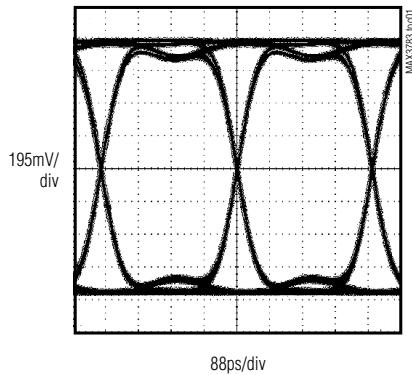
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Maximum Serial Data Rate			2.75	3.125		Gbps
Power Dissipation		AC-coupled inputs, outputs		1.12	1.68	W
Supply Current	I_{CC}		340	466		mA
CML Differential Output Voltage	V_{OD}	$R_L = 50\Omega$ to V_{CC} , or 100Ω differential (Note 2)	1200	1500	2200	mVp-p
CML Differential Input Voltage	V_{ID}		200	1600	2200	mVp-p
CML Output Impedance	R_{OUT}	Single ended	42.5	50	57.5	Ω
CML Input Impedance	R_{IN}	Differential	85	100	116	Ω
Random Jitter		(Note 3)		1	2	psRMS
Deterministic Jitter		(Notes 3, 4, 5)		11	25	psp-p
CML Output Edge Speed (20% to 80%)	t_R , t_F	2.5Gbps input (Note 3)	70	135		ps
		1.25Gbps input (Note 3)	80	200		
Propagation Delay		LI_{-} to SO_{-} , SI_{-} to LO_{-} , LI_{-} to LO_{-} (Note 3)	340	500		ps
Multiplexer Switch Time		SEL_{-} or \overline{LB}_{-} to valid output		9		ns
TTL Input Current High		$V_{IH} = +2.0\text{V}$ to (V_{CC} + 0.3V)			180	μA
TTL Input Current Low		$V_{IL} = -0.3\text{V}$ to +0.8V			440	μA

Note 2: Typical value measured using a repeating 1010 pattern at 500Mbps.

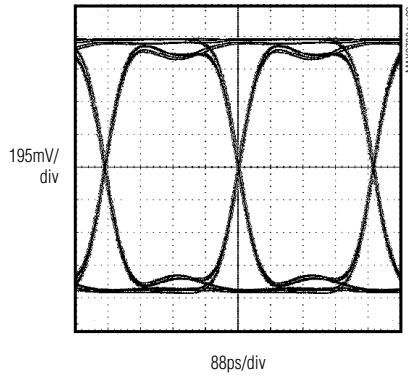
Note 3: AC specifications are guaranteed by design and characterization.

Note 4: Deterministic jitter is measured with a repeating K28.5 pattern.

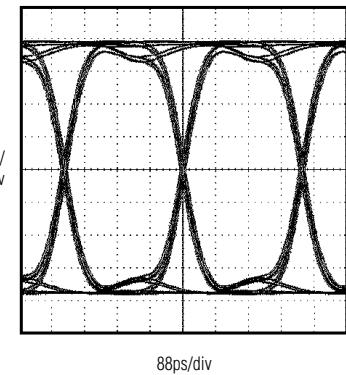
Note 5: With the peak-to-peak input swing on the selected (transmitted) CML input equal to or greater than that on the nonselected inputs.

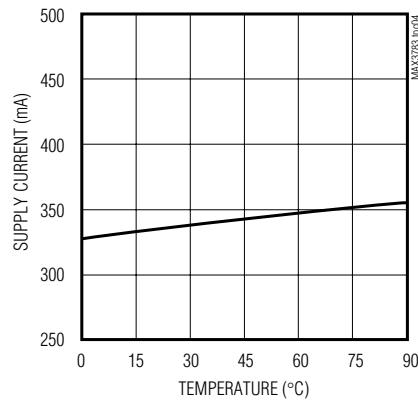

2.7Gbps Dual Mux/Buffer with Loopback

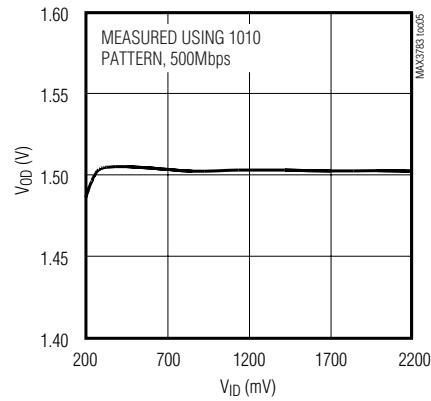
MAX3783

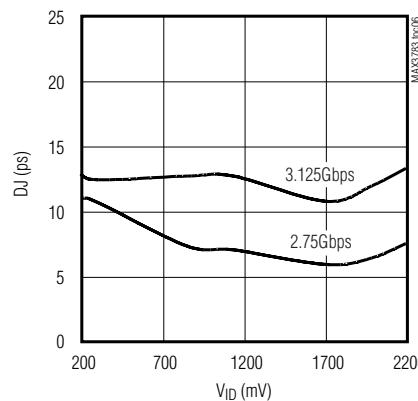

Typical Operating Characteristics

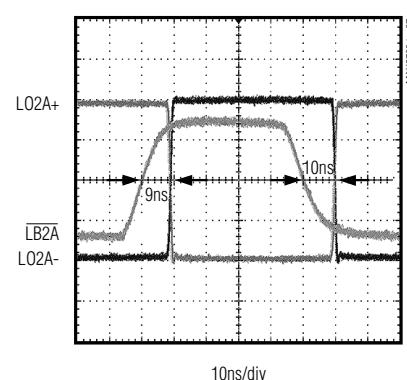
($V_{CC} = 3.3V$, $T_A = +25^\circ C$, unless otherwise noted.)


ELECTRICAL EYE DIAGRAM
2.75 Gbps, 2²³ - 1 PRBS PATTERN


ELECTRICAL EYE DIAGRAM
2.75 Gbps, K28.5 PATTERN


ELECTRICAL EYE DIAGRAM
3.125 Gbps, K28.5 PATTERN

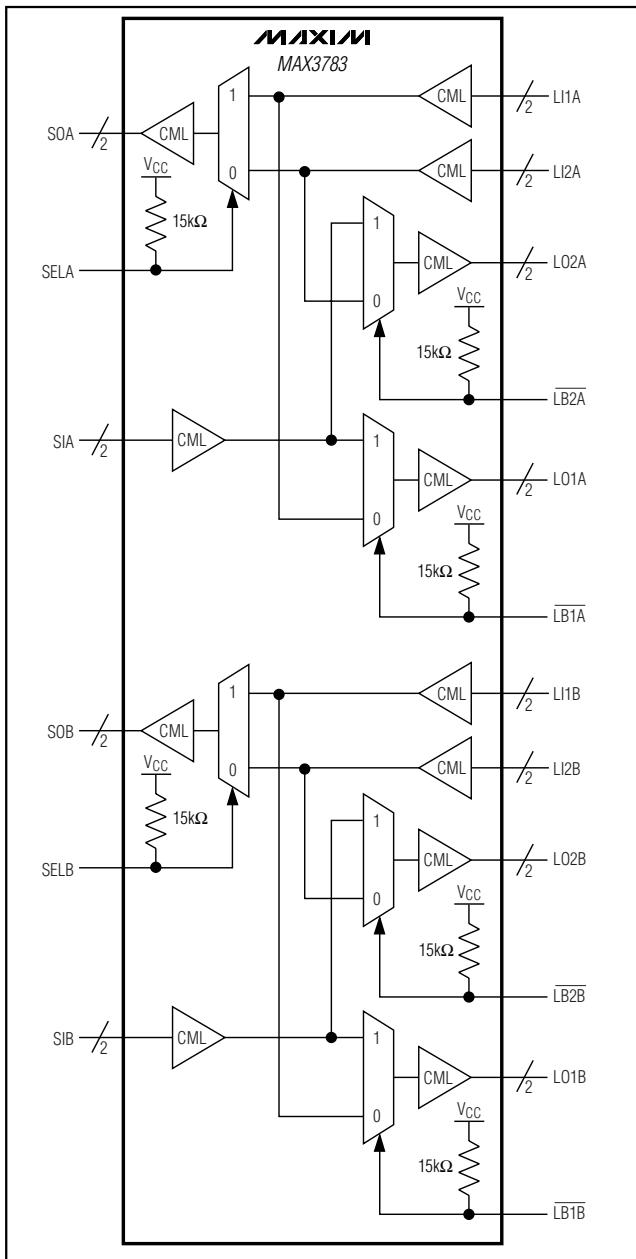

SUPPLY CURRENT vs. TEMPERATURE


CML DIFFERENTIAL OUTPUT VOLTAGE
vs. CML DIFFERENTIAL INPUT VOLTAGE

DETERMINISTIC JITTER vs. CML
DIFFERENTIAL INPUT VOLTAGE

MUXPLEXER SWITCH TIME

2.7Gbps Dual Mux/Buffer with Loopback


Pin Description

PIN	NAME	FUNCTION
1, 12, 24, 30, 31, 37	GND	Supply Ground
2	SIA-	Serial Input A Negative, CML
3	SIA+	Serial Input A Positive, CML
4, 9, 14, 17, 20, 23, 27, 34, 38, 41, 44, 47	VCC	+3.3V Supply
5	LB1A	Line Out 1A Loopback Mode Select. TTL low selects loopback.
6	LB2A	Line Out 2A Loopback Mode Select. TTL low selects loopback.
7	LB1B	Line Out 1B Loopback Mode Select. TTL low selects loopback.
8	LB2B	Line Out 2B Loopback Mode Select. TTL low selects loopback.
10	SIB+	Serial Input B Positive, CML
11	SIB-	Serial Input B Negative, CML
13	SELB	Serial Output B Input Select, TTL
15	SOB+	Serial Output B Positive, CML
16	SOB-	Serial Output B Negative, CML
18	LO1B+	Line Out 1B Positive, CML
19	LO1B-	Line Out 1B Negative, CML
21	LO2B+	Line Out 2B Positive, CML
22	LO2B-	Line Out 2B Negative, CML
25	LI2B+	Line In 2B Positive, CML
26	LI2B-	Line In 2B Negative, CML
28	LI1B+	Line In 1B Positive, CML
29	LI1B-	Line In 1B Negative, CML
32	LI1A-	Line In 1A Negative, CML
33	LI1A+	Line In 1A Positive, CML
35	LI2A-	Line In 2A Negative, CML
36	LI2A+	Line In 2A Positive, CML
39	LO2A-	Line Out 2A Negative, CML
40	LO2A+	Line Out 2A Positive, CML
42	LO1A-	Line Out 1A Negative, CML
43	LO1A+	Line Out 1A Positive, CML
45	SOA-	Serial Output A Negative, CML
46	SOA+	Serial Output A Positive, CML
48	SELA	Serial Out A Input Select, TTL
EP	Exposed Pad	Ground. Must be soldered to the circuit board for proper thermal and electrical performance (see <i>EP Package</i>).

2.7Gbps Dual Mux/Buffer with Loopback

MAX3783

Functional Diagram

Detailed Description

The MAX3783 is a 2.7Gbps dual serial mux/buffer with selectable line-side loopback for system test. Each half of the MAX3783 provides a transmitter with a fanout of two and a receiver with a 2:1 mux, as shown in the functional diagram.

Input Stages
The input amplifiers accept CML or AC-coupled PECL signals and each input has an on-chip 100Ω differential impedance for optimal termination, as shown in Figure 1.

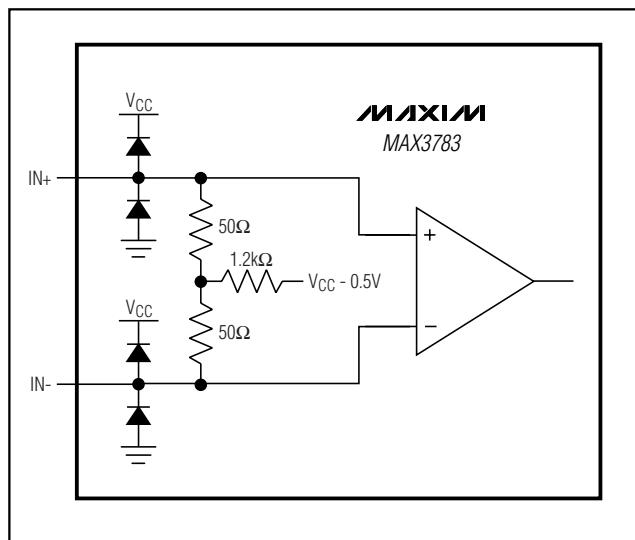


Figure 1. Input Structure

Control Lines

TTL-compatible control lines are provided to select the MAX3783's operating mode (Table 1). SELA and SELB set the mux for channels A and B, respectively, to select LI1_ or LI2_ to connect to the SO_ output. LB1A, LB1B, LB2A, and LB2B enable loopback mode for each of the four LO_ outputs. All control lines are internally pulled high through $15k\Omega$ resistors.

Table 1. Operating Modes

SEL_	SO_
0	LI2_
1	LI1_

LB_	LO_
0	LI_
1	SI_

Output Buffers

The outputs are high-speed CML interfaces with 50Ω back termination, as shown in Figure 2.

Exposed-Pad (EP) Package

The exposed pad on the 48-pin TQFP-EP provides a very low thermal-resistance path for heat removal from the IC. The pad is also electrical ground on the MAX3783 and must be soldered to the circuit board for proper thermal and electrical performance.

2.7Gbps Dual Mux/Buffer with Loopback

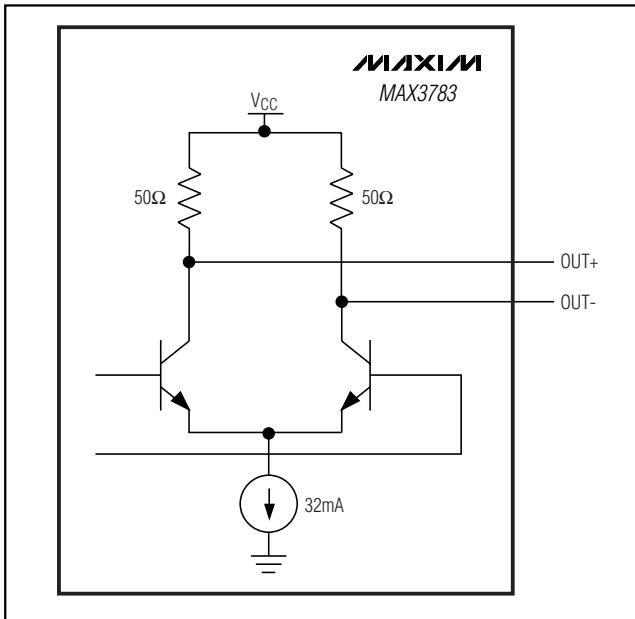
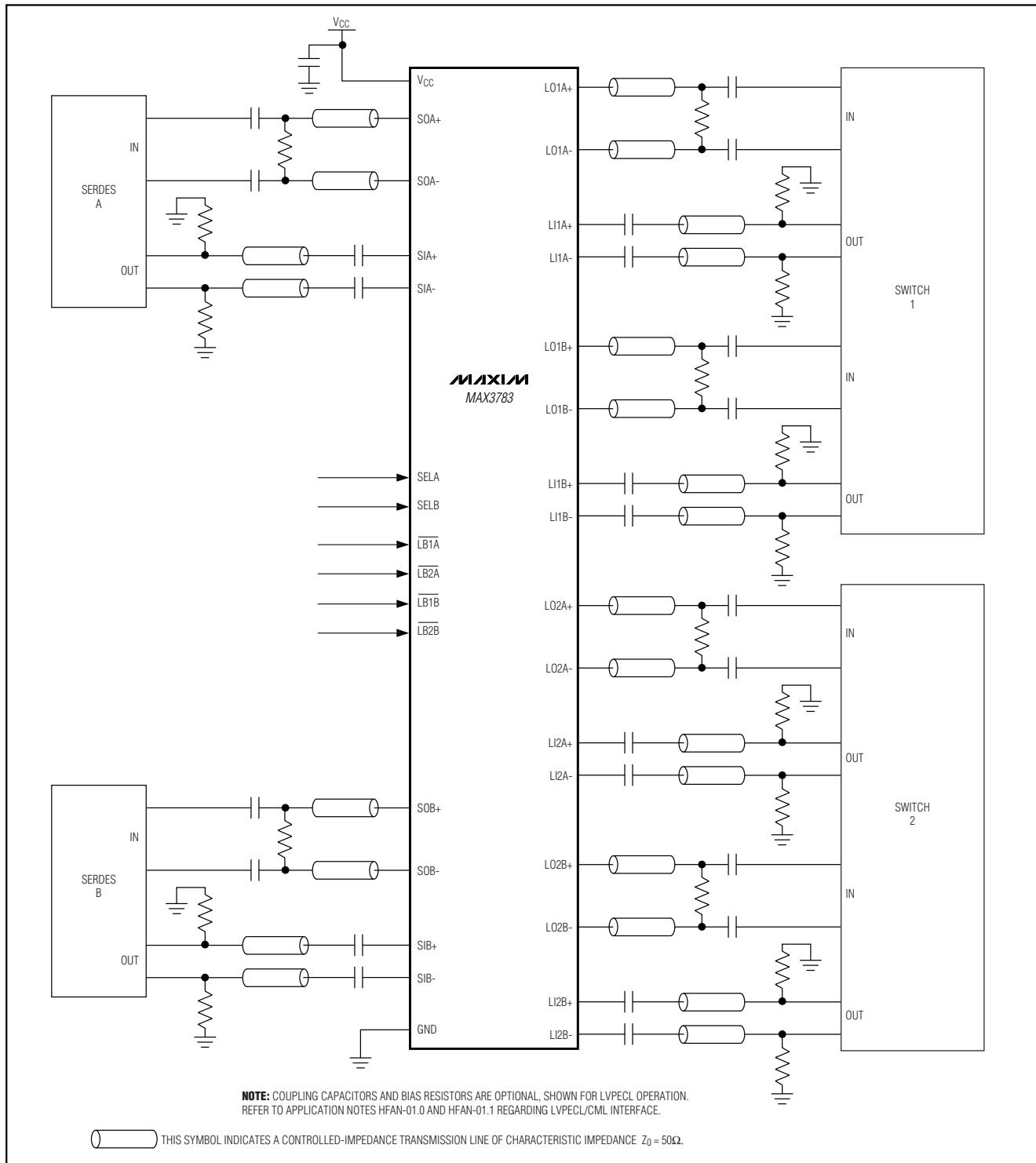


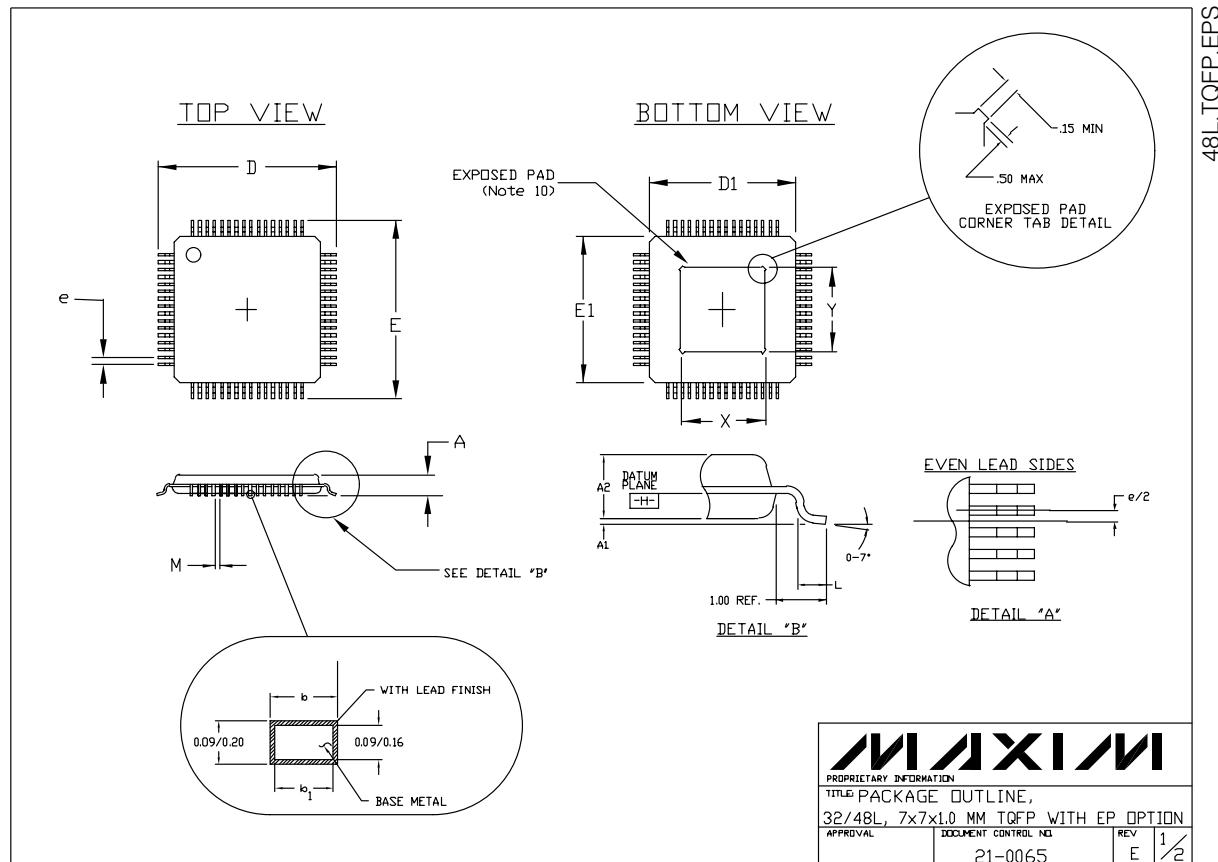
Figure 2. CML Output Structure

Chip Information


TRANSISTOR COUNT: 2816

PROCESS: Bipolar

2.7Gbps Dual Mux/Buffer with Loopback


MAX3783

Typical Application Circuit

2.7Gbps Dual Mux/Buffer with Loopback

Package Information

MAXIM			
PROPRIETARY INFORMATION			
APPROVAL	DOCUMENT CONTROL NO	REV	1/2
21-0065	E		

2.7Gbps Dual Mux/Buffer with Loopback

Package Information (continued)

MAX3783

NOTES:

1. ALL DIMENSIONS AND TOLERANCING CONFORM TO ANSI Y14.5-1982.
2. DATUM PLANE [—H—] IS LOCATED AT MOLD PARTING LINE AND COINCIDENT WITH LEAD, WHERE LEAD EXITS PLASTIC BODY AT BOTTOM OF PARTING LINE.
3. DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE MOLD PROTRUSION IS 0.254 MM ON D1 AND E1 DIMENSIONS.
4. THE TOP OF PACKAGE IS SMALLER THAN THE BOTTOM OF PACKAGE BY 0.15 MILLIMETERS.
5. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 MM TOTAL IN EXCESS OF THE b DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. CONTROLLING DIMENSION: MILLIMETER.
7. THIS OUTLINE CONFORMS TO JEDEC PUBLICATION 95 REGISTRATION MO-136, VARIATIONS AC AND AE.
8. LEADS SHALL BE COPLANAR WITHIN .004 INCH.
9. EXPOSED DIE PAD SHALL BE COPLANAR WITH BOTTOM OF PACKAGE WITHIN 2 MILS (.05 MM).
10. DIMENSIONS X & Y APPLY TO EXPOSED PAD (EP) VERSIONS ONLY. SEE INDIVIDUAL PRODUCT DATASHEET TO DETERMINE IF A PRODUCT USES EXPOSED PAD PACKAGE.

SYMBOL	JEDEC VARIATION ALL DIMENSIONS IN MILLIMETERS					
	AC			AE		
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.
A	—x—	—x—	1.20	—x—	—x—	1.20
A ₁	0.05	0.10	0.15	0.05	0.10	0.15
A ₂	0.95	1.00	1.05	0.95	1.00	1.05
D	9.00	BSC.		9.00	BSC.	
D ₁	7.00	BSC.		7.00	BSC.	
E	9.00	BSC.		9.00	BSC.	
E ₁	7.00	BSC.		7.00	BSC.	
L	0.45	0.60	0.75	0.45	0.60	0.75
M	0.15	—x—	—x—	0.14	—x—	—x—
N	32			48		
e	0.80	BSC.		0.50	BSC.	
b	0.30	0.37	0.45	0.17	0.22	0.27
b ₁	0.30	0.35	0.40	0.17	0.20	0.23
*X	3.20	3.50	3.80	3.70	4.00	4.30
*Y	3.20	3.50	3.80	3.70	4.00	4.30

* EXPOSED PAD
(Note 10)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

9