INTEGRATED CIRCUITS

DATA SHEET

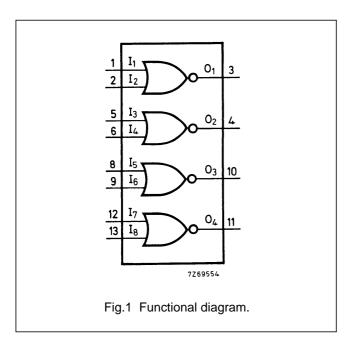
For a complete data sheet, please also download:

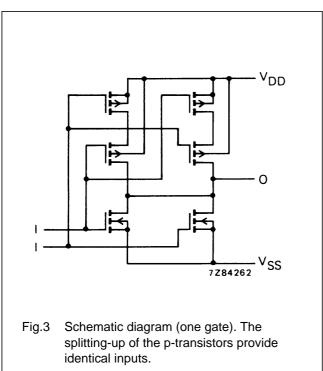
- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

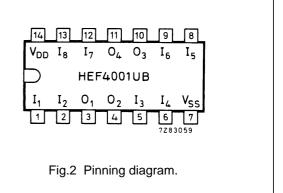
HEF4001UB gates Quadruple 2-input NOR gate

Product specification
File under Integrated Circuits, IC04

January 1995




Quadruple 2-input NOR gate


HEF4001UB gates

DESCRIPTION

The HEF4001UB is a quadruple 2-input NOR gate. This unbuffered single stage version provides a direct implementation of the NOR function. The output impedance and output transition time depends on the input voltage and input rise and fall times applied.

HEF4001UBP(N): 14-lead DIL; plastic

(SOT27-1)

HEF4001UBD(F): 14-lead DIL; ceramic (cerdip)

(SOT73)

HEF4001UBT(D): 14-lead SO; plastic

(SOT108-1)

(): Package Designator North America

FAMILY DATA, IDD LIMITS category GATES

See Family Specifications for $V_{\text{IH}}/V_{\text{IL}}$ unbuffered stages

Quadruple 2-input NOR gate

HEF4001UB gates

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD} V	SYMBOL	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays						
$I_n \to O_n$	5		65	130	ns	30 ns + (0,70 ns/pF) C _L
HIGH to LOW	10	t _{PHL}	30	60	ns	17 ns + (0,27 ns/pF) C _L
	15		25	50	ns	15 ns + (0,20 ns/pF) C _L
	5		40	80	ns	13 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}	20	40	ns	9 ns + (0,23 ns/pF) C _L
	15		15	30	ns	7 ns + (0,16 ns/pF) C _L
Output transition times	5		75	150	ns	15 ns + (1,20 ns/pF) C _L
HIGH to LOW	10	t _{THL}	30	60	ns	6 ns + (0,48 ns/pF) C _L
	15		20	40	ns	4 ns + (0,32 ns/pF) C _L
	5		60	110	ns	10 ns + (1,00 ns/pF) C _L
LOW to HIGH	10	t _{TLH}	30	60	ns	9 ns + (0,42 ns/pF) C _L
	15		20	40	ns	6 ns + (0,28 ns/pF) C _L
Input capacitance		C _{IN}	_	10	pF	

	V _{DD} V	TYPICAL FORMULA FOR P (μW)	
Dynamic power	5	500 $f_i + \sum (f_o C_L) \times V_{DD}^2$	where
dissipation per	10	5000 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _i = input freq. (MHz)
package (P)	15	$30\ 000\ f_i + \sum (f_o C_L) \times V_{DD}^2$	f _o = output freq. (MHz)
			C _L = load capacitance (pF)
			$\sum (f_o C_L) = \text{sum of outputs}$
			V _{DD} = supply voltage (V)

Quadruple 2-input NOR gate

HEF4001UB gates

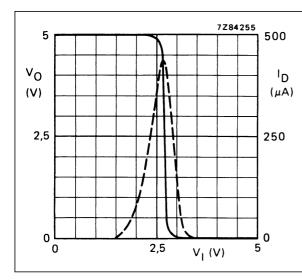


Fig.4 Typical transfer characteristics; one input, the other input connected to V_{SS} ;

$$V_O$$
;
 $---I_D$ (drain current);
 $I_O = 0$; $V_{DD} = 5$ V.

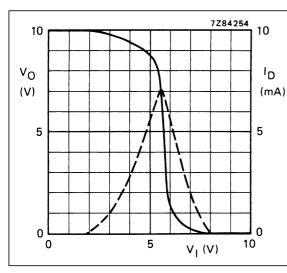


Fig.5 Typical transfer characteristics; one input, the other input connected to V_{SS} ;

$$\frac{1}{100} = \frac{1}{100} = \frac{1}$$

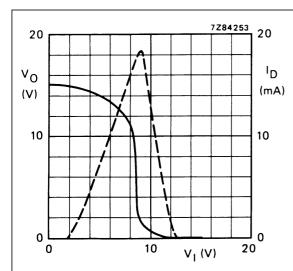


Fig.6 Typical transfer characteristics; one input, the other input connected to V_{SS} ;

Quadruple 2-input NOR gate

HEF4001UB gates

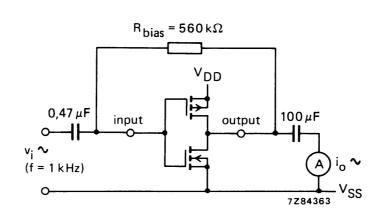
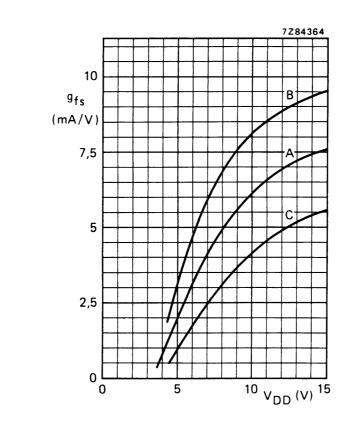
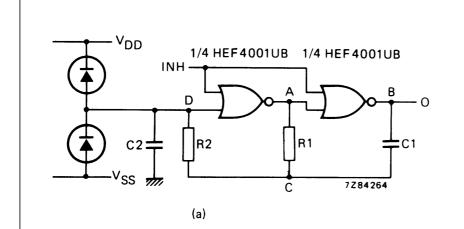



Fig.7 Test set-up for measuring forward transconductance $g_{fs} = di_o/dv_i$ at v_o is constant (see also graph Fig.8).

A : average,

 $\,C\,$: $\,$ average $-\,2$ s, in where 's' is the observed standard deviation.


Fig.8 Typical forward transconductance g_{fs} as a function of the supply voltage at T_{amb} = 25 °C.

Quadruple 2-input NOR gate

HEF4001UB gates

APPLICATION INFORMATION

Some examples of applications for the HEF4001UB are shown below. Because of the fact that this circuit is unbuffered, it is suitable for use in (partly) analogue circuits.

INH	0		
Н	L		
L	osc		

In Fig.9 the oscillation frequency is mainly determined by R1C1, provided R1 << R2 and R2C2 << R1C1.

The function of R2 is to minimize the influence of the forward voltage across the protection diodes on the frequency; C2 is a stray (parasitic) capacitance. The period T_p is given by $T_p = T_1 + T_2$, in which

$$\rm T_1 = R1C1 \; ln \frac{V_{DD} + V_{ST}}{V_{ST}} \; and \; T_2 = R1C1 \; ln \frac{2V_{DD} - V_{ST}}{V_{DD} - V_{ST}} \; where$$

 V_{ST} is the signal threshold level of the gate. The period is fairly independent of $V_{DD},\,V_{ST}$ and temperature. The duty factor, however, is influenced by $V_{ST}.$

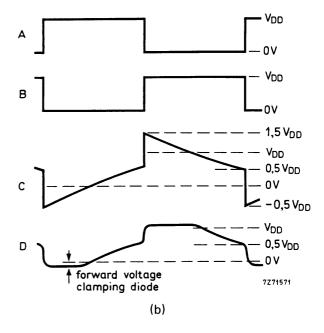
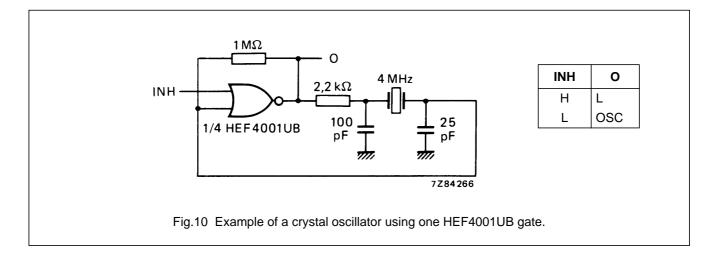



Fig.9 (a) Astable relaxation oscillator using two HEF4001UB gates; the diodes may be BAW62; C2 is a parasitic capacitance.

(b) Waveforms at the points marked A, B, C and D in the circuit diagram.

Quadruple 2-input NOR gate

HEF4001UB gates

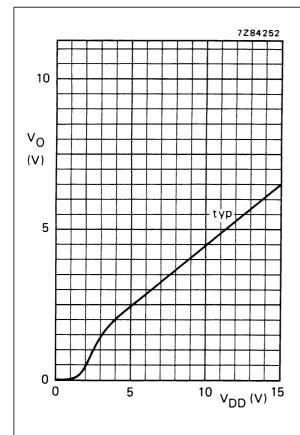


Fig.11 Output voltages as a function of supply voltage.

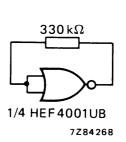


Fig.12 Test set-up for measuring graph of Fig.11. Condition: all other inputs connected to ground.

NOTES

If a gate is just used as an amplifying inverter, there are two possibilities:

- Connecting the inputs together gives simpler wiring, but makes the device output not completely symmetrical.
- 2. Connecting one input to $V_{\mbox{\footnotesize SS}}$ will give the device a symmetrical output.

Quadruple 2-input NOR gate

HEF4001UB gates

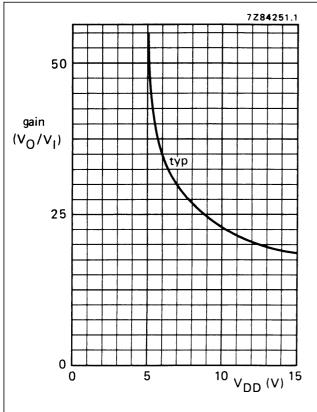


Fig.13 Voltage gain (V_O/V_I) as a function of supply voltage.

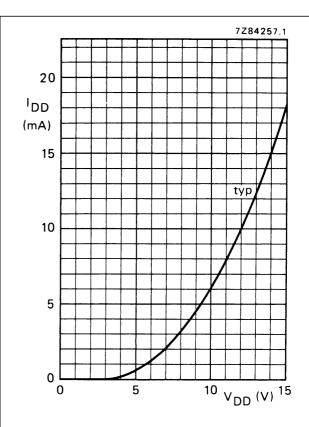


Fig.14 Supply current as a function of supply voltage.

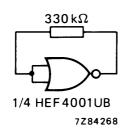


Fig.15 Test set-up for measuring graphs of Figs 13 and 14. Condition: all other inputs connected to ground.

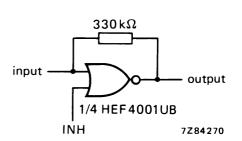


Fig.16 Example of an analogue amplifier with inhibit using one HEF4001UB gate.