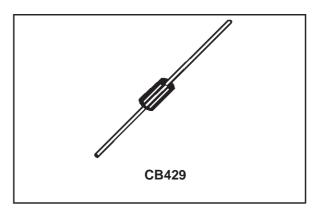
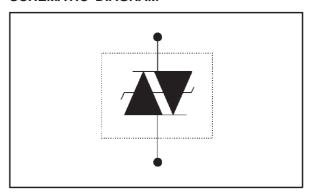


TPB SERIES

 $\mathsf{TRISIL}^\mathsf{TM}$


FEATURES

- BIDIRECTIONAL CROWBAR PROTECTION.
- VOLTAGE RANGE: FROM 62 V TO 270 V.
- HOLDING CURRENT: I_H = 150mA min.
- REPETITIVE PEAK PULSE CURRENT: IPP = 100 A, 10/1000 µs.
- UL RECOGNIZED FILE # E136224


DESCRIPTION

The TPB series are TRISIL devices especially designed for protecting sensitive telecommunication equipment against lightning and transient voltages induced by AC power lines. They are available in the CB429 axial package.

TRISIL devices provide bidirectional protection by crowbar action. Their characteristic response to transient overvoltages makes them particularly suited to protect voltage sensitive telecommunication equipment.

SCHEMATIC DIAGRAM

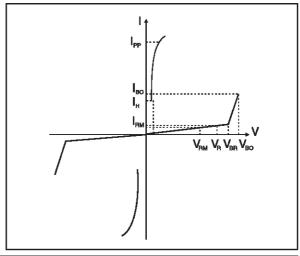
	Peak Surge Voltage (V)	Voltage Waveform (μs)	Current Waveform (μs)	Admissible lpp (A)	Necessary Resistor (Ω)
CCITT K20	4000	10/700	5/310	100	-
VDE0433	4000	10/700	5/310	100	-
VDE0878	4000	1.2/50	1/20	100	-
IEC-1000-4-5	level 4 level 4	10/700 1.2/50	5/310 8/20	100	
FCC Part 68	1500 800	10/160 10/560	10/160 10/560	200 100	-
BELLCORETR-NWT-001089	2500 1000	2/10 10/1000	2/10 10/1000	500 100	-

March 1998 - Ed: 6

TPB SERIES

ABSOLUTE MAXIMUM RATINGS (Tamb = 25°C)

Symbol	Parameter	Value	Unit	
Р	Power dissipation on infinite heatsink	5	W	
Ірр	Peak pulse current	10/1000 μs 8/20 μs 2/10 μs	100 150 500	А
I _{TSM}	Non repetitive surge peak on-state current	tp = 20 ms	50	Α
l ² t	I ² t value for fusing	tp = 20 ms	25	A ² s
dV/dt	Critical rate of rise of off-state voltage	5	kV/μs	
T _{stg} T _j	Storage temperature range Maximum junction temperature	- 55 to + 150 150	ဂိဂိ	
TL	Maximum lead temperature for soldering during case	230	°C	


THERMAL RESISTANCES

Symbol	Parameter	Value	Unit
R _{th} (j-l)	Junction to leads (L _{lead} = 10mm)	20	°C/W
R _{th} (j-a)	Junction to ambient on printed circuit ($L_{lead} = 10 \text{ mm}$)	75	°C/W

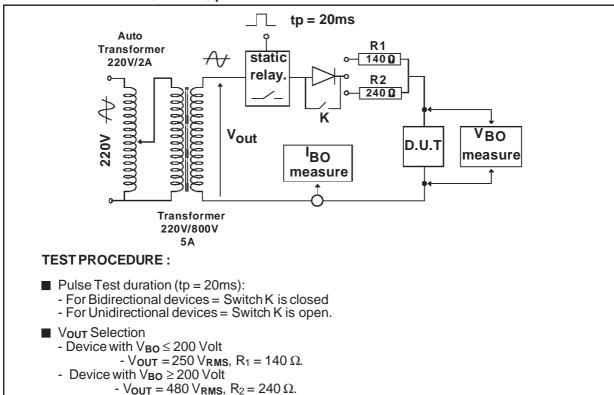
ELECTRICAL CHARACTERISTICS

 $(T_{amb} = 25^{\circ}C)$

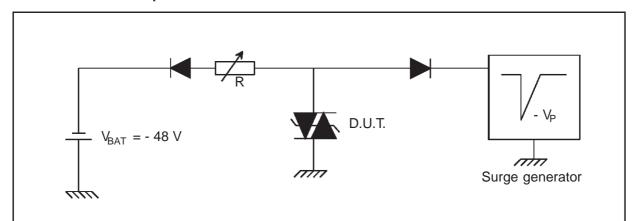
Symbol	Parameter				
VRM	Stand-offvoltage				
IRM	Leakage current at stand-off voltage				
V _R	Continuous Reverse voltage				
V_{BR}	Breakdown voltage				
V _{BO}	Breakovervoltage				
lμ	Holding current				
I _{BO}	Breakovercurrent				
I _{PP}	Peak pulse current				
С	Capacitance				

Туре	I _{RM} @ V _{RM} max.		I _R @ V _R max. note1		V _{BO} @ I _{BO} max. note2		Iн min. note3	C max. note4
	μ Α	V	μ Α	V	V	mA	mA	pF
TPB62 TPB68 TPB100 TPB120 TPB130 TPB180 TPB200 TPB220	2 2 2 2 2 2 2 2 2	56 61 90 108 117 162 180 198	50 50 50 50 50 50 50	62 68 100 120 130 180 200 220	82 90 133 160 173 240 267 293	800 800 800 800 800 800 800 800	150 150 150 150 150 150 150	300 300 200 200 200 200 200 200 200
TPB240 TPB270	2 2	216 243	50 50	240 270	320 360	800 800	150 150	200 200

Note 1: I_R measured at V_R guarantees $V_{BRmin} \ge V_R$


Note 3: See test circuit 2.

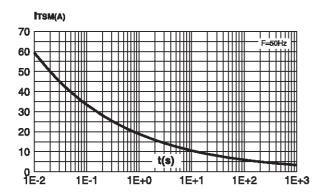
Note 2: Measured at 50 Hz (1 cycle) - See test circuit 1. Note 4: $V_R = 1V$, F = 1MHz, refer to fig.3 for C versus V_R .


SGS-THOMSON MICROELEC TRONICS

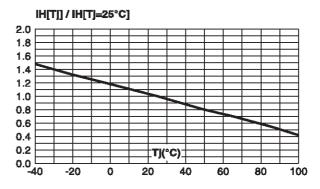
2/5

TEST CIRCUIT 1 FOR IBO and VBO parameters:

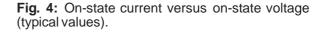
TEST CIRCUIT 2 for I_H parameter

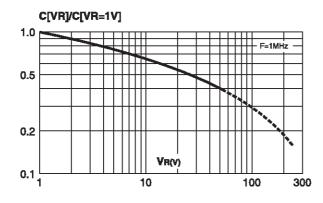


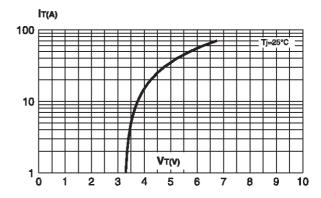
This is a GO-NO GO test which allows to confirm the holding current (I_H) level in a functional test circuit.

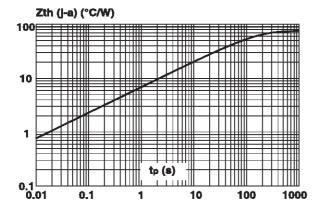

TEST PROCEDURE:

- Adjust the current level at the $I_{\mbox{\scriptsize H}}$ value by short circuiting the D.U.T.
- Fire the D.U.T. with a surge current : $I_{pp} = 10A$, $10/1000 \,\mu s$.
- The D.U.T. will come back to the off-state within 50 ms max.


Fig. 1: Non repetitive surge peak on-state current versus overload duration (Tj initial=25°C).




Fig. 2: Relative variation of holding current versus junction temperature.


Fig. 3: Relative variation of junction capacitance versus reverse applied voltage(typical values). Note: For V_{RM} upper than 56V, the curve is extrapolated (dotted line).

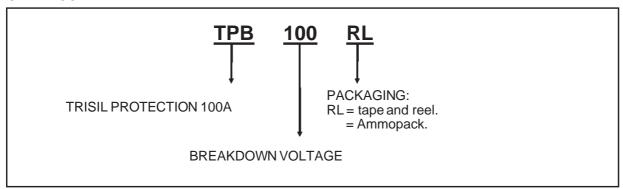
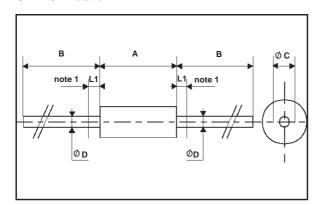


Fig. 5: Transient thermal impedance junction to ambient versus pulse duration (for FR4 PC Board with $T_{Lead} = 10$ mm).


ORDER CODE

MARKING: Logo, Date Code, Part Number.

PACKAGE MECHANICAL DATA.

CB429 Plastic

	DIMENSIONS							
REF.	EF. Millimeters		Inches					
	Min.	Тур.	Max.	. Min. Typ. N		Max.		
Α	9.45	9.50	9.80	0.372	0.374	0.386		
В	26			1.024				
ØC	4.90	5.00	5.10	0.193	0.197	0.201		
ØD	0.94	1.00	1.06	0.037	0.039	0.042		
L1			1.27			0.050		
note 1 : the lead is not controlled in zone L ₁								

Packaging: Standard packaging is in tape and reel.

Weight: 0.85g

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1998 SGS-THOMSON Microelectronics - Printed in Italy - All rights reserved.

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Morocco The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics:

<u>TPB130</u> <u>TPB200</u> <u>TPB62</u>