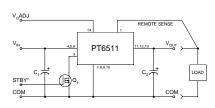

PT6511

Series

8 AMP HIGH-PERFORMANCE **5V TO 3.3V ISR**

(Revised 5/2/97)

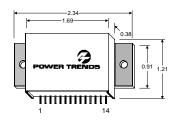

- Single Device 8A Output
- Input Voltage Range: 4.5V to 6.0V
- Adjustable Output Voltage
- 90% Efficiency
- Remote Sense Capability
- Standby Function
- Over-Temperature Protection

The PT6511 is a new addition to the Power Trends high performance +5V to

+3.3V family of 14-Pin SIP (Single Inline Package) Integrated Switching Regulators (ISRs), designed for stand alone operation in applications requiring as much as 8A of output current. The operating frequency is laser trimmed to a nominal 660 kHz for frequency sensitive applications.

Only two external capacitors are required for proper operation.

Standard Application



C₁ = Required 330µF electrolytic C₂ = Required 330µF electrolytic

Q₁= NFET or Open Collector Gate

Pin-Out Information

Pin No.	Function	Pin No.	Function
1	Remote Sense	8	GND
2	Do Not Connect	9	GND
3	STBY*- Standby	10	GND
4	V _{in}	11	V _{out}
5	V _{in}	12	V _{out}
6	Vin	13	V _{out}
7	GND	14	V _{out} Adjust

Ordering Information

PT6511 = +3.3 Volts

PT Series Suffix (PT1234X)

Case/Pin	Heat Tab Configuration			
Configuration	None	Side		
Vertical Through-Hole	N	R		
Horizontal Through-Hole	Α	G		
Horizontal Surface Mount	С	В		

Specifications

Characteristics			PT6511	PT6511 SERIES		
(T _A = 25°C unless noted)	Symbols	Conditions	Min	Тур	Max	Units
Output Current	I_{o}	Over V _{in} range	0.1*		8.0	ADC
Current Limit	I_{cl}	$V_{in} = +5V$	_	13.0	20.0	ADC
Short Circuit Current	I_{sc}	$V_{in} = +5V$	_	15.0	_	Apk
Input Voltage Range	V _{in}	$0.1A \le I_o \le 8.0A$	4.5	_	6.0	VDC
Static Voltage Tolerance	V_{o}	$V_{in} = +5V$, $I_o = 8.0A$ $T_a = 0$ °C to shutdown	3.2	3.3	3.4	VDC
Output Adjust Range	V_{adj}	$V_{\text{nom}} = 3.3V$	2.25	_	4.2**	VDC
Line Regulation	Reg _{line}	$4.5V \le V_{in} \le 6.0V, I_o = 8.0A$		±7	±17	mV
Load Regulation	Reg _{load}	$V_{in} = +5V, 0.1 \le I_o \le 8.0A$		±17	±33	mV
Ripple/Noise	V _n	$V_{\rm in} = 5V, \ I_{\rm o} = 8.0A$	_	50	_	mVpp
Transient Response with $C_2 = 330 \mu F$	$t_{ m tr} \ V_{ m os}$	I _o step between 4.0A and 8.0A V _o over/undershoot	_	100 150	_	μSec mV
Efficiency	η	$V_{in} = +5V, I_o = 3.0A$	_	90	_	%
		$V_{in} = +5V, I_o = 8.0A$	_	83	_	%
Switching Frequency	f_{o}	Over V _{in} and I _o range	635	660	725	kHz
Operating Temperature	T _a	Free Air Convection (40-60 LFM) Over V _{in} and I _o Ranges	0	_	***	°C
Thermal Resistance	θ_{ja}	Free Air Convection (40-60 LFM)	_	15	_	°C/W
Storage Temperature	T _s	_	-40	_	+125	°C
Mechanical Shock	_	Per Mil-STD-883D, Method 2002.3, 1 msec, Half Sine,	_		500	G's
Mechanical Vibration	_	Per Mil-STD-883D, Method 2007.2, 20-2000 Hz, mounted to a fixture	_	_	7.5	G's
Weight	_	_	_	23	_	grams
Relative Humidity	_	Non-condensing	0	_	95	%

^{*} ISR will operate down to no load with reduced specifications.

Note: The PT6511 Series requires two 330µF electrolytic capacitors for proper operation in all applications.

5/02/97

^{**} $V_{in}min = 4.5V \text{ or } V_o + 1.2V$

^{***} See PT6500 series thermal derating curves.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 2000, Texas Instruments Incorporated