

FAN6756—mWSaver™ PWM Controller

Features

- Single-Ended Topologies, such as Flyback and Forward Converters
- mWSaver™ Technology
 - Achieves Low No-Load Power Consumption: < 30 mW at 230 V_{AC} (EMI Filter Loss Included)
 - Eliminates X Capacitor Discharge Resistor Loss with AX-CAP® Technology
 - Linearly Decreases Switching Frequency to 23 kHz
 - Burst Mode Operation at Light-Load Condition
 - Impedance Modulation in “Deep” Burst Mode
 - Low Operating Current (450 µA) in Deep Burst Mode
 - 500 V High-Voltage JFET Startup Circuit to Eliminate Startup Resistor Loss
- Highly Integrated with Rich Features
 - Proprietary Frequency Hopping to Reduce EMI
 - High-Voltage Sampling to Detect Input Voltage
 - Peak-Current-Mode Control with Slope Compensation
 - Cycle-by-Cycle Current Limiting with Line Compensation
 - Leading Edge Blanking (LEB)
 - Built-In 7 ms Soft-Start
- Advanced Protections
 - Brown-in / Brownout Recovery
 - Internal Overload / Open-Loop Protection (OLP)
 - V_{DD} Under-Voltage Lockout (UVLO)
 - V_{DD} Over-Voltage Protection (V_{DD} OVP)
 - Over-Temperature Protection (OTP)
 - Current-Sense Short-Circuit Protection (SSCP)

Description

The FAN6756 is a next-generation Green Mode PWM controller with innovative mWSaver™ technology, which dramatically reduces standby and no-load power consumption, enabling compliance with worldwide Standby Mode efficiency guidelines.

An innovative AX-CAP® method minimizes losses in the EMI filter stage by eliminating the X-cap discharge resistors while meeting IEC61010-1 safety requirements. “Deep” Burst Mode clamps feedback voltage and modulates feedback impedance with an impedance modulator during Burst Mode operation, which forces the system to operate in a Deep Burst Mode with minimum switching losses.

Protections ensure safe operation of the power system in various abnormal conditions. A proprietary frequency-hopping function decreases EMI emission and built-in synchronized slope compensation allows more stable Peak-Current-Mode control over a wide range of input voltage and load conditions. The proprietary internal line compensation ensures constant output power limit over the entire universal line voltage range.

Requiring a minimum number of external components, FAN6756 provides a basic platform that is well suited for cost-effective flyback converter designs that require extremely low standby power consumption.

Applications

Flyback power supplies that demand extremely low standby power consumption, such as:

- Adapters for Notebooks, Printers, Game Consoles, etc.
- Open-Frame SMPS for LCD TV, LCD Monitors, Printer Power, etc.

Related Resources

- [Evaluation Board: FEBFAN6756MR_T03U065A](#)

Ordering Information

Part Number	Protections ⁽¹⁾				Operating Temperature Range	Package	Packing Method
	OLP	OVP	OTP	SSCP			
FAN6756MRMY	A/R	L	L	A/R	-40 to +105°C	8-Pin, Small Outline Package (SOP)	Tape & Reel
FAN6756MLMY	L	L	L	A/R			

Note:

1. A/R = Auto Recovery Mode protection, L = Latch Mode protection.

Application Diagram

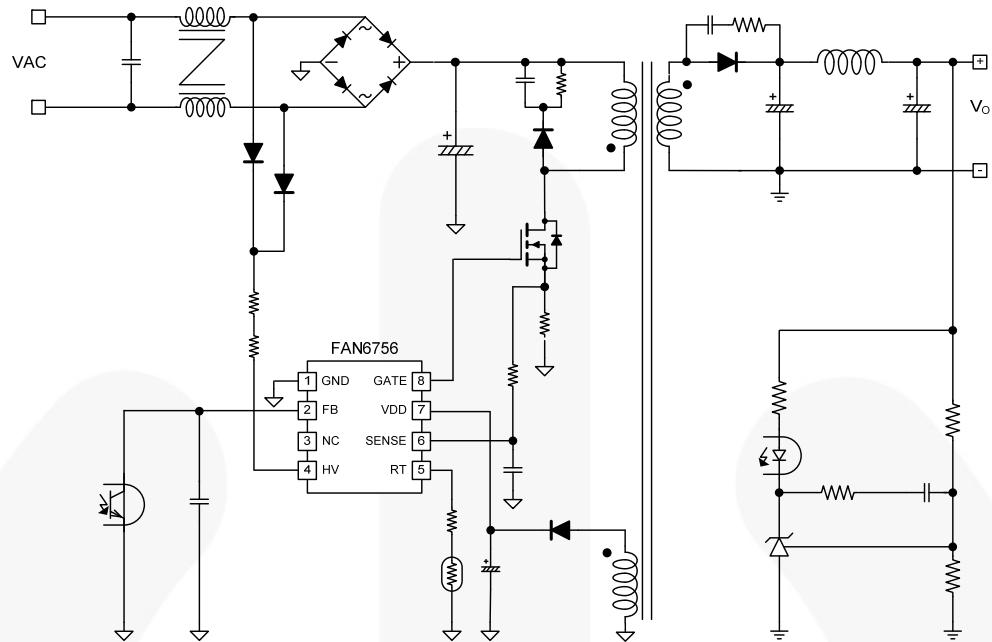


Figure 1. Typical Application

Internal Block Diagram

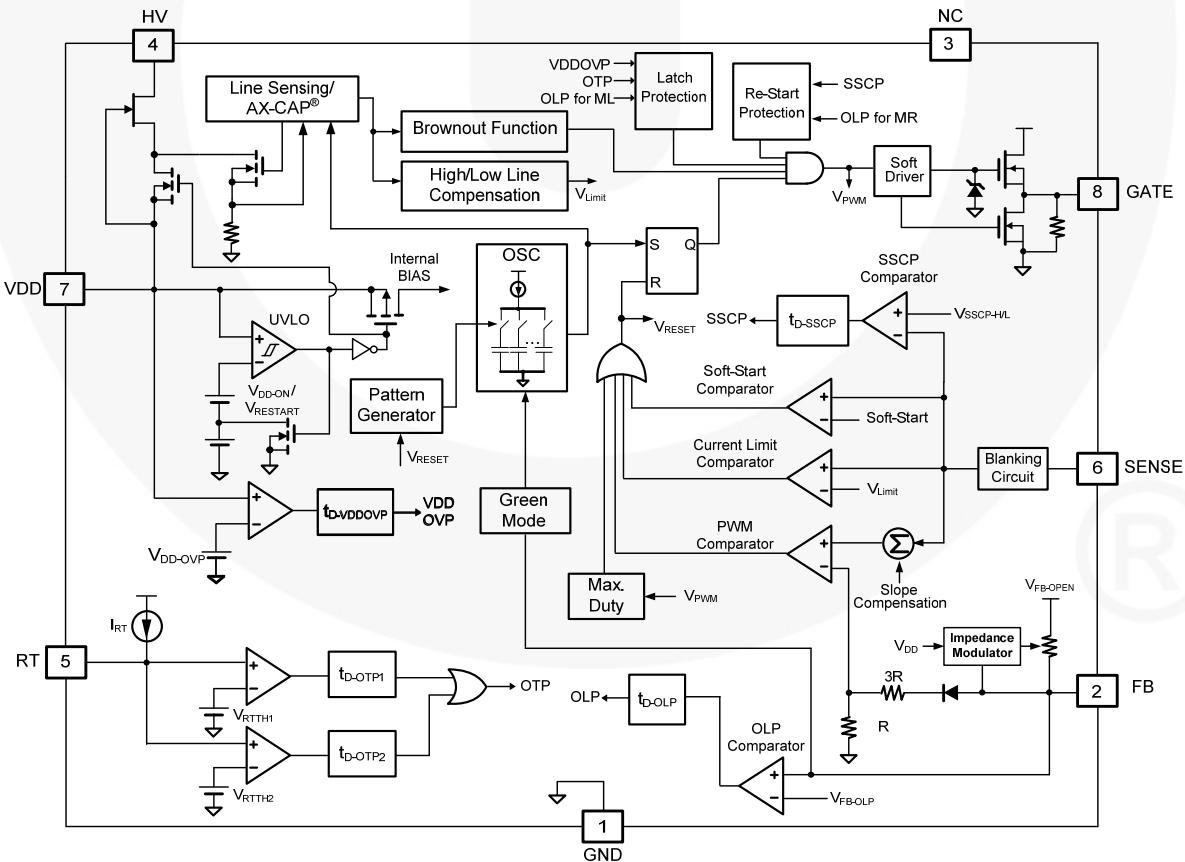
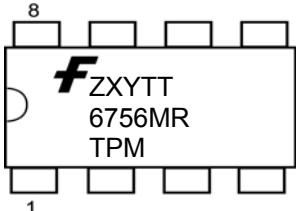
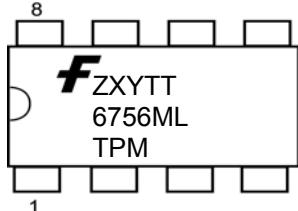




Figure 2. Functional Block Diagram

Marking Information

Z - Plant Code
 X - 1-Digit Year Code
 Y - 1-Digit Week Code
 TT - 2-Digit Die Run Code
 T - Package Type (M=SOP)
 P - Y: Green Package
 M - Manufacture Flow Code

Figure 3. Top Mark

Pin Configuration

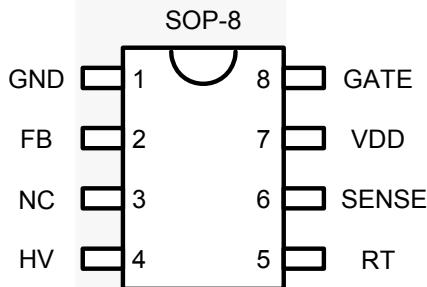


Figure 4. Pin Configuration (Top View)

Pin Definitions

Pin #	Name	Description
1	GND	Ground. Placing a 0.1 μ F decoupling capacitor between VDD and GND is recommended.
2	FB	Feedback. The output voltage feedback information from the external compensation circuit is fed into this pin. The PWM duty cycle is determined by comparing the FB signal with the current-sense signal from the SENSE pin.
3	NC	No Connection
4	HV	High-Voltage Startup. The HV pin is typically connected to the AC line input through two external diodes and one resistor (R_{HV}). This pin is used, not only to charge the V_{DD} capacitor during startup, but also to sense the line voltage. The line voltage information is used for brownout protection and power-limit line compensation. This pin also is used to intelligently discharge the EMI filter capacitor when removal of the AC line voltage is detected.
5	RT	Over-Temperature Protection. An external NTC thermistor is connected from this pin to GND. Once the voltage of the RT pin drops below the threshold voltage, the controller latches off the PWM. The RT pin also provides external latch protection. If the RT pin is not connected to the NTC resistor for over-temperature protection, it is recommended to place a 100 k Ω resistor to ground to prevent noise interference.
6	SENSE	Current Sense. The sensed voltage is used for Peak-Current-Mode control, short-circuit protection, and cycle-by-cycle current limiting.
7	VDD	Power Supply of IC. Typically a hold-up capacitor connects from this pin to ground. A rectifier diode, in series with the transformer auxiliary winding, connects to this pin to supply bias during normal operation.
8	GATE	Gate Drive Output. The totem-pole output driver for the power MOSFET; internally limited to $V_{GATE-CLAMP}$.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter		Min.	Max.	Unit
V_{VDD}	DC Supply Voltage ^(2,3)			30	V
V_{FB}	FB Pin Input Voltage		-0.3	7.0	V
V_{SENSE}	SENSE Pin Input Voltage		-0.3	7.0	V
V_{RT}	RT Pin Input Voltage		-0.3	7.0	V
V_{HV}	HV Pin Input Voltage			500	V
P_D	Power Dissipation ($T_A < 50^\circ\text{C}$)			400	mW
Θ_{JA}	Thermal Resistance (Junction-to-Air)			150	°C/W
T_J	Operating Junction Temperature		-40	+125	°C
T_{STG}	Storage Temperature Range		-55	+150	°C
T_L	Lead Temperature (Wave Soldering or IR, 10 Seconds)			+260	°C
ESD	Human Body Model, JEDEC:JESD22-A114	All Pins Except HV Pin ⁽⁴⁾		6000	V
	Charged Device Model, JEDEC:JESD22-C101	All Pins Except HV Pin ⁽⁴⁾		2000	

Notes:

2. All voltage values, except differential voltages, are given with respect to the network ground terminal.
3. Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device.
4. ESD level on HV pin is CDM=1250 V and HBM=500 V.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. We do not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Typ.	Max.	Unit
R_{HV}	Resistance on HV Pin	150	200	250	kΩ

Electrical Characteristics

$V_{DD}=15\text{ V}$ and $T_J=T_A=25^\circ\text{C}$ unless otherwise noted.

Symbol	Parameter	Condition	Min.	Typ.	Max.	Unit	
V_{DD} Section							
V_{DD-ON}	Threshold Voltage to Startup	V_{DD} Rising	16	17	18	V	
V_{UVLO}	Threshold Voltage to Stop Switching in Normal Mode	V_{DD} Falling	5.5	6.5	7.5	V	
$V_{RESTART}$	Threshold Voltage to Enable HV Startup to Charge V_{DD} in Normal Mode	V_{DD} Falling		4.7		V	
V_{DD-OFF}	Threshold Voltage to Stop Operating in Protection Mode	V_{DD} Falling	10	11	12	V	
V_{DD-OLP}	Threshold Voltage to Enable HV Startup to Charge V_{DD} in Protection Mode	V_{DD} Falling	6	7	8	V	
V_{DD-LH}	Threshold Voltage to Release Latch Mode	V_{DD} Falling	3.5	4.0	4.5	V	
V_{DD-AC}	Threshold Voltage of VDD pin for Enabling Brown-in		$V_{UVLO}+2.5$	$V_{UVLO}+3$	$V_{UVLO}+3.5$	V	
I_{DD-ST}	Startup Current	$V_{DD}=V_{DD-ON}-0.16\text{ V}$			30	μA	
I_{DD-OP1}	Supply Current in PWM Operation	$V_{DD}=15\text{ V}$, $V_{FB}=3\text{ V}$, Gate Open			1.8	mA	
I_{DD-OP2}	Supply Current when PWM Stops	$V_{DD}=15\text{ V}$, $V_{FB}<1.4\text{ V}$, Deep Burst Mode, Gate Off		450		μA	
I_{DD-OLP}	Internal Sink Current, $V_{DD-OLP}<V_{DD}<V_{DD-OFF}$, Protection Mode	$V_{DD}=V_{DD-OLP}+0.1\text{ V}$	FAN6756MRMY	90	140	190	μA
			FAN6756MLMY	160	210	260	μA
I_{LH}	Internal Sink Current, $V_{DD}<V_{DD-OLP}$, Latch-Protection Mode	$V_{DD}=5\text{ V}$		30			μA
V_{DD-OVP}	Threshold Voltage for V_{DD} Over-Voltage Protection			23.5	24.5	25.5	V
$t_{D-VDDOVP}$	V_{DD} Over-Voltage Protection Debounce Time			110	205	300	μs
$V_{DD-ZFBR}$	V_{DD} Threshold Voltage for FB-Pin Impedance Modulation in Deep Burst Mode				7		V

Continued on the following page...

Electrical Characteristics (Continued) $V_{DD}=15\text{ V}$ and $T_J=T_A=25^\circ\text{C}$ unless otherwise noted.

Symbol	Parameter	Condition	Min.	Typ.	Max.	Unit
HV Section						
I_{HV}	Maximum Supply Current, HV Pin	$V_{AC}=90\text{ V}$ ($V_{DC}=120\text{ V}$), $V_{DD}=0\text{ V}$	1.50	3.25	5.00	mA
V_{AC-OFF}	Threshold Voltage for Brownout	DC Source Series $R=200\text{ k}\Omega$ to HV Pin	90	100	110	V
V_{AC-ON}	Threshold Voltage for Brown-in	DC Source Series $R=200\text{ k}\Omega$ to HV Pin	100	110	120	V
ΔV_{AC}	$V_{AC-ON} - V_{AC-OFF}$	DC Source Series $R=200\text{ k}\Omega$ to HV Pin	8	12	16	V
$t_{D-AC-OFF}$	Debounce Time for Brownout		40	65	90	ms
t_{S-WORK}	Work Period of HV-Sampling Circuit in Deep Burst Mode	Deep Burst Mode, $V_{FB} < V_{FB-ZDC-DBM}$	95	140	185	ms
t_{S-REST}	Rest Period of HV-Sampling Circuit in Deep Burst Mode	Deep Burst Mode, $V_{FB} < V_{FB-ZDC-DBM}$	180	260	320	ms
V_{HV-DIS}	X-Cap. Discharge Threshold	$R_{HV}=200\text{ k}\Omega$ to HV Pin	$V_{DC}^{(5)} \times 0.45$	$V_{DC}^{(5)} \times 0.51$	$V_{DC}^{(5)} \times 0.56$	V
$t_{D-HV-DIS}$	Debounce Time for Triggering X-Cap. Discharge		75	115	155	ms
t_{HV-DIS}	Discharge Time when X-Cap. Discharge is Triggered		360	510	660	ms
Oscillator Section						
f_{OSC}	Switching Frequency when $V_{FB} > V_{FB-N}$	Center Frequency	62	65	68	kHz
		Hopping Range	± 3.55	± 4.25	± 4.95	
t_{HOP}	Hopping Period ⁽⁶⁾	$V_{FB} > V_{FB-G}$	5.12	6.40	7.68	ms
f_{OSC-G}	Switching Frequency when $V_{FB} < V_{FB-G}$	$V_{FB} < V_{FB-G}$	20	23	26	kHz
f_{DV}	Frequency Variation vs. V_{DD} Deviation	$V_{DD}=11\text{ to }22\text{ V}$			5	%
f_{DT}	Frequency Variation vs. Temperature Deviation	$T_A=-40\text{ to }105^\circ\text{C}$			5	%

Continued on the following page...

Electrical Characteristics (Continued) $V_{DD}=15\text{ V}$ and $T_J=T_A=25^\circ\text{C}$ unless otherwise noted.

Symbol	Parameter	Condition	Min.	Typ.	Max.	Unit
Feedback Input Section						
A_V	Feedback Voltage to Current-Sense Attenuation		1/4.5	1/4.0	1/3.5	V/V
Z_{FB}	Regular FB Internal Pull-High Impedance			8.5		k Ω
$V_{FB-OPEN}$	FB Internal Biased Voltage	FB Pin Open	5.2	5.4	5.6	V
V_{FB-OLP}	Threshold Voltage for OLP		4.3	4.6	4.9	V
t_{D-OLP}	Delay for OLP		45.0	57.5	70.0	ms
V_{FB-N}	Threshold Voltage for Maximum Switching Frequency		2.6	2.8	3.0	V
V_{FB-G}	Threshold Voltage for Minimum Switching Frequency		2.1	2.3	2.5	V
$V_{FB-ZDCR}$	FB Threshold Voltage for Zero-Duty Recovery		1.9	2.1	2.3	V
V_{FB-ZDC}	FB Threshold Voltage for Zero-Duty		1.8	2.0	2.2	V
$V_{FB-ZDCR-DBM}$	FB Threshold Voltage for Zero-Duty Recovery in Deep Burst Mode	$V_{DD}=V_{UVLO}+0.3\text{ V}$	2.5	2.7	2.9	V
$V_{FB-ZDC-DBM}$	FB Threshold Voltage for Zero-Duty in Deep-Burst Mode		2.35	2.55	2.75	V
t_{DBM}	Condition of Triggering Deep Burst Mode	$V_{FB} < V_{FB-ZDC}$ Repeats 3 Times Continuously		7.5		ms
t_{D-DBM}	Delay time of Entering Deep Burst Mode		600			ms
$V_{FB-RECOVER}$	Threshold Voltage for Leaving Deep Burst Mode Immediately	Deep Burst Mode, $V_{DD} > V_{DD-ZFBR}$ and Gate Off		0.9		V
Current-Sense Section						
t_{PD}	Propagation Delay to Output			100	250	ns
t_{LEB}	Leading Edge Blanking Time		200	265	330	ns
$V_{LIMIT-L}$	Current Limit at Low Line ($V_{AC-RMS}=86\text{ V}$)	$V_{DC}=122\text{ V}$, Series $R=200\text{ k}\Omega$ to HV	0.43	0.46	0.49	V
$V_{LIMIT-H}$	Current Limit at High Line ($V_{AC-RMS}=259\text{ V}$)	$V_{DC}=366\text{ V}$, Series $R=200\text{ k}\Omega$ to HV	0.36	0.39	0.42	V
V_{SSCP-L}	Threshold Voltage for SSCP at Low Line ($V_{AC-RMS}=86\text{ V}$)	$V_{DC}=122\text{ V}$, Series $R=200\text{ k}\Omega$ to HV	30	50	70	mV
V_{SSCP-H}	Threshold Voltage for SSCP at High Line ($V_{AC-RMS}=259\text{ V}$)	$V_{DC}=366\text{ V}$, Series $R=200\text{ k}\Omega$ to HV	80	100	120	mV
$t_{ON-SSCP}$	Minimum On-time of Gate to Trigger SSCP	$V_{SENSE} < V_{SSCP-(L/H)}$	4.00	4.55	5.10	μs
t_{D-SSCP}	Debounce Time for SSCP	$V_{SENSE} < V_{SSCP-(L/H)}$	110	170	230	μs
t_{SS}	Soft-Start Time	Startup	5	7	9	ms

Continued on the following page...

Electrical Characteristics (Continued) $V_{DD}=15V$ and $T_J=T_A=25^\circ C$ unless otherwise noted.

Symbol	Parameter	Condition	Min.	Typ.	Max.	Unit
GATE Section						
DCY_{MAX}	Maximum Duty Cycle		75.0	82.5	90.0	%
V_{GATE-L}	Gate Low Voltage	$V_{DD}=15V$, $I_O=5mA$			1.5	V
V_{GATE-H}	Gate High Voltage	$V_{DD}=1V$, $I_O=5mA$	8			V
t_r	Gate Rising Time	$V_{DD}=1V$, $C_L=nF$		110		ns
t_f	Gate Falling Time	$V_{DD}=15V$, $C_L=1nF$		40		ns
$V_{GATE-CLAMP}$	Gate Output Clamping Voltage	$V_{DD}=22V$	11.0	14.5	18.0	V
n_{SKIP}	Continuously Gate Switching Number for Leaving Deep-Burst Mode ⁽⁶⁾			112		pulses
RT Section						
I_{RT}	Output Current of RT Pin			100		μA
V_{RTTH1}	Threshold Voltage for Over-Temperature Protection	$V_{RTTH2} < V_{RT} < V_{RTTH1}$, Latch Off After 14.5 ms	1.000	1.035	1.070	V
V_{RTTH2}	Threshold Voltage for Latch Triggering	$V_{RT} < V_{RTTH2}$, Latch Off After 185 μs	0.65	0.70	0.75	V
R_{OTP}	Maximum External Resistance of RT Pin to Trigger Latch Protection		9.66	10.50	11.34	$k\Omega$
t_{D-OTP1}	Debounce Time for Over-Temperature Protection Triggering	$V_{RTTH2} < V_{RT} < V_{RTTH1}$	11.0	14.5	18.0	ms
t_{D-OTP2}	Debounce Time for Latch Triggering	$V_{RT} < V_{RTTH2}$	110	185	260	μs
Over-Temperature Protection Section (OTP)						
T_{OTP}	Protection Junction Temperature ^(6,7)			+135		$^\circ C$
$T_{RESTART}$	Restart Junction Temperature ⁽⁶⁾			$T_{OTP}-25$		$^\circ C$

Notes:

5. V_{DC} is $V_{AC} \times \sqrt{2}$.
6. Guaranteed by design.
7. When activated, the output is stopped until junction temperature drops below $T_{RESTART}$.

Typical Performance Characteristics

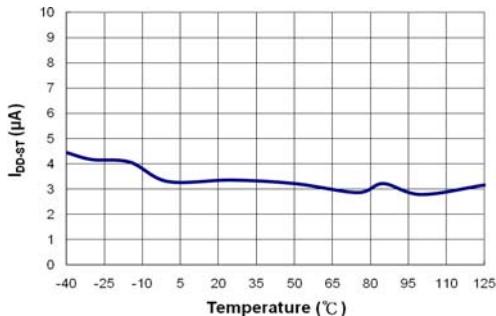


Figure 5. Startup Current (I_{DD-ST}) vs. Temperature

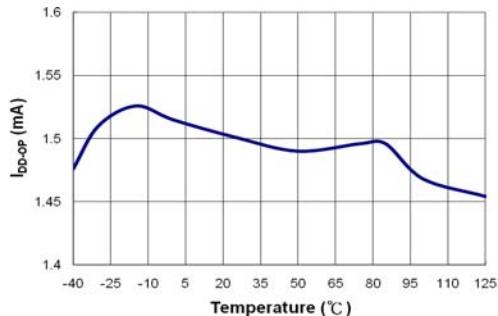


Figure 6. Operation Supply Current (I_{DD-OP1}) vs. Temperature

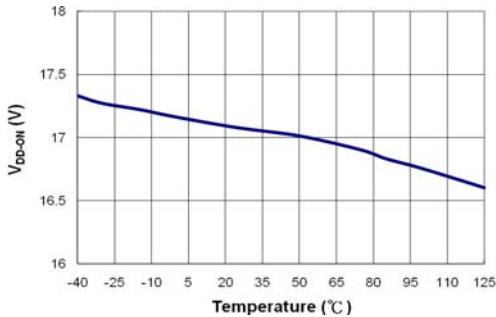


Figure 7. Start Threshold Voltage (V_{DD-ON}) vs. Temperature

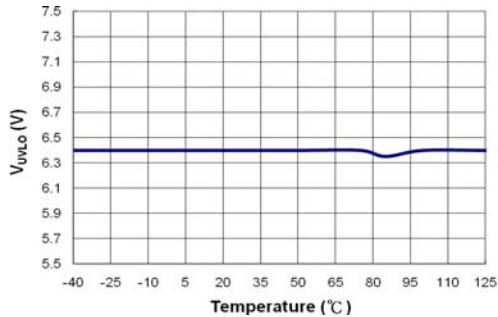


Figure 8. Minimum Operating Voltage (V_{UVLO}) vs. Temperature

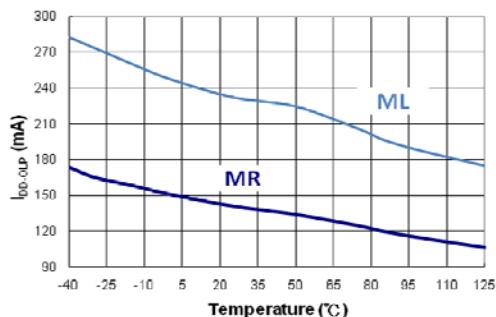


Figure 9. OFF-State Internal Sink Current Under Protection Mode (I_{DD-OLP}) vs. Temperature

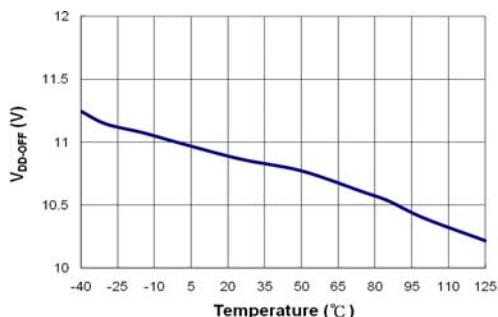


Figure 10. Minimum Operating Voltage Under Protection Mode (V_{DD-OFF}) vs. Temperature

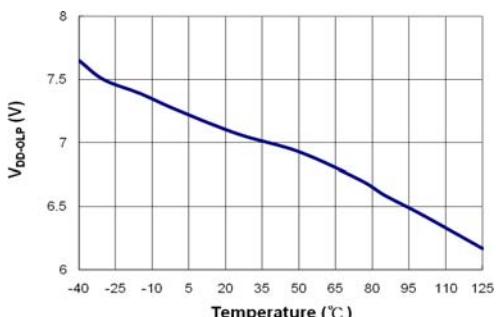


Figure 11. Threshold Voltage to Enable HV startup in Protection Mode (V_{DD-OLP}) vs. Temperature

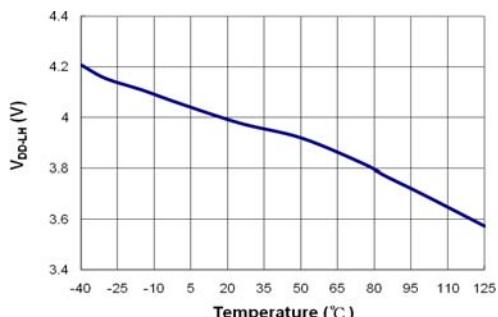
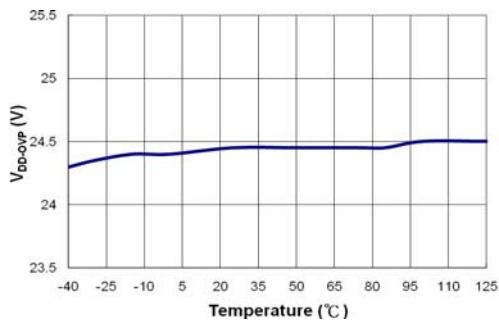
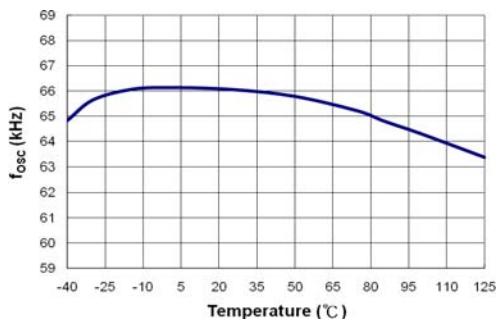
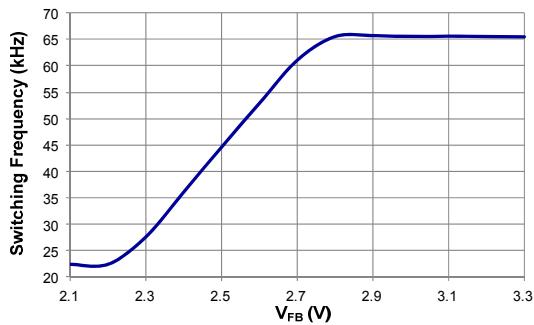
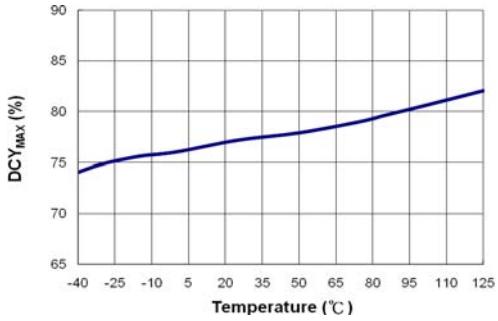
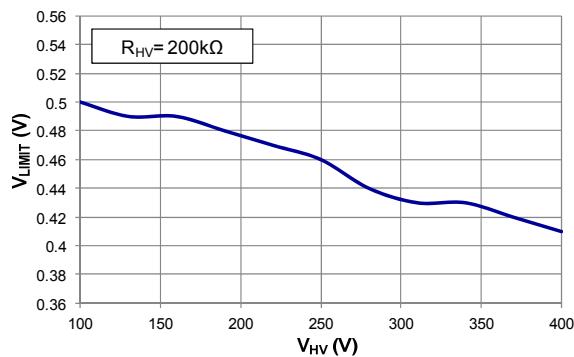
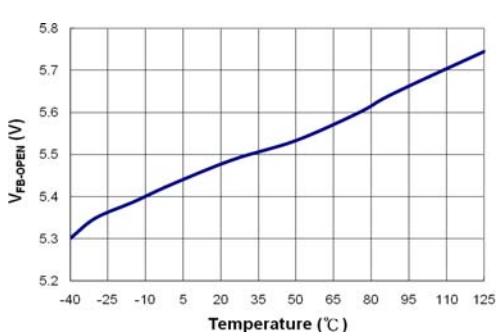




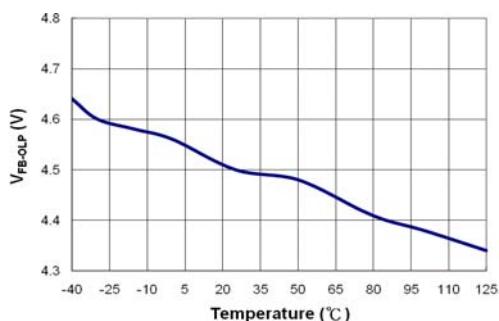
Figure 12. Threshold Voltage to Release Latch Mode (V_{DD-LH}) vs. Temperature


Typical Performance Characteristics (Continued)


Figure 13. V_{DD} Over-Voltage Protection (V_{DD-OVP}) vs. Temperature


Figure 14. Frequency in Normal Mode (f_{osc}) vs. Temperature


Figure 15. PWM Switching Frequency vs. Feedback Voltage (V_{FB})


Figure 16. Maximum Duty Cycle (DCY_{MAX}) vs. Temperature

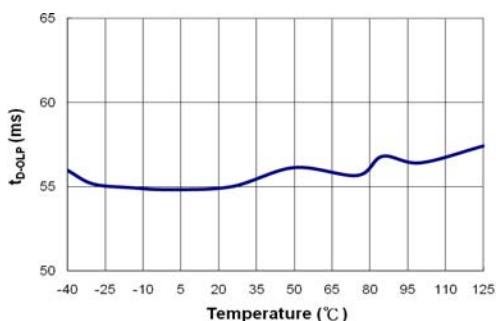

Figure 17. Current Limit (V_{LIMIT}) vs. HV Voltage (V_{HV})

Figure 18. FB-Pin Internal Bias Voltage ($V_{FB-OPEN}$) vs. Temperature

Figure 19. Open-Loop Protection Triggering Level (V_{FB-OLP}) vs. Temperature

Figure 20. Delay Time of Open-Loop Protection (t_{D-OLP}) vs. Temperature

Typical Performance Characteristics (Continued)

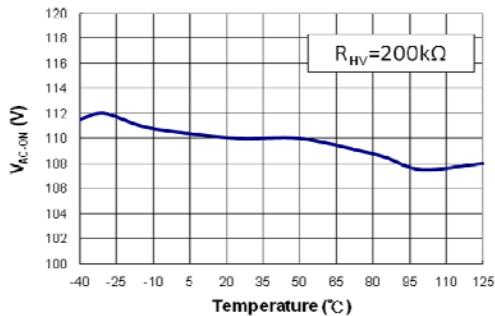


Figure 21. Brown-in (V_{AC-ON}) vs. Temperature

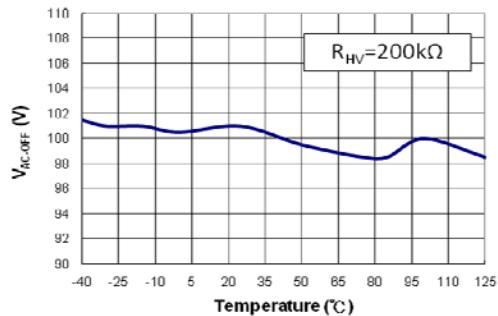


Figure 22. Brownout (V_{AC-OFF}) vs. Temperature

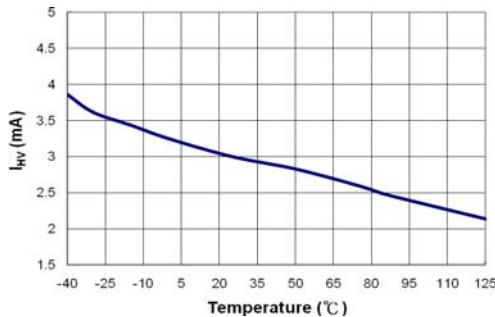


Figure 23. Inherent Current Limit of HV-Pin (I_{Hv}) vs. Temperature

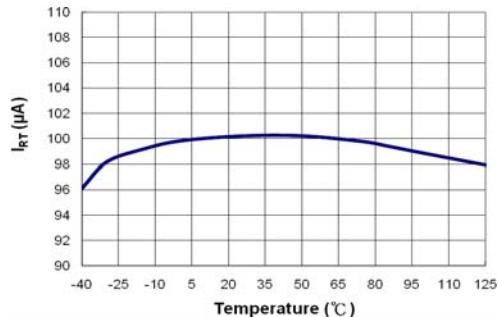


Figure 24. Output Current from RT Pin (I_{RT}) vs. Temperature

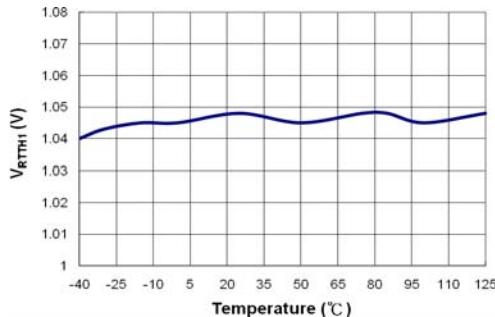


Figure 25. Over-Temperature Protection Threshold Voltage (V_{RTTH1}) vs. Temperature

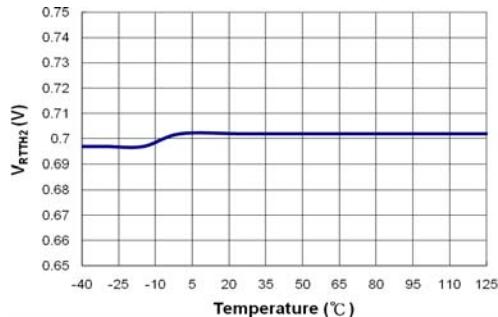


Figure 26. Over-Temperature Protection Threshold Voltage (V_{RTTH2}) vs. Temperature

Functional Description

Current Mode Control

FAN6756 employs Peak-Current Mode control, as shown in Figure 27. An opto-coupler (such as the H11A817A) and a shunt regulator (such as the KA431) are typically used to implement the feedback network. Comparing the feedback voltage with the voltage across the R_{sense} resistor makes it possible to control the switching duty cycle. The built-in slope compensation stabilizes the current loop and prevents sub-harmonic oscillation.

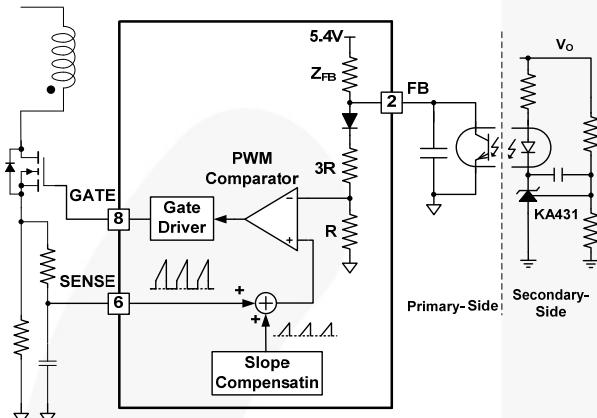


Figure 27. Current-Mode Control Circuit Diagram

Leading-Edge Blanking (LEB)

Each time the power MOSFET is switched on, a turn-on spike occurs on the sense resistor. To avoid premature termination of the switching pulse, a leading-edge blanking time, t_{LEB} , is introduced. During this blanking period, the current-limit comparator is disabled and cannot switch off the gate driver.

mWSaver™ Technology

Green-Mode

FAN6756 modulates the PWM frequency as a function of the FB voltage to improve the medium- and light-load efficiency, as shown in Figure 28. Since the output power is proportional to the FB voltage in Current-Mode control, the switching frequency decreases as load decreases. In heavy-load conditions, the switching frequency is fixed at 65 kHz. Once V_{FB} decreases below V_{FB-N} (2.8 V), the PWM frequency starts linearly decreasing from 65 kHz to 23 kHz to reduce switching losses. As V_{FB} drops to V_{FB-G} (2.3 V), where switching frequency is decreased to 23 kHz, the switching frequency is fixed to avoid acoustic noise.

When V_{FB} falls below V_{FB-ZDC} (2.0 V) as load decreases further, the FAN6756 enters Burst Mode, where PWM switching is disabled. Then the output voltage starts to drop, causing the feedback voltage to rise. Once V_{FB} rises above $V_{FB-ZDCR}$ (2.1 V), switching resumes. Burst Mode alternately enables and disables switching, thereby reducing switching loss for lower power consumption, as shown in Figure 29.

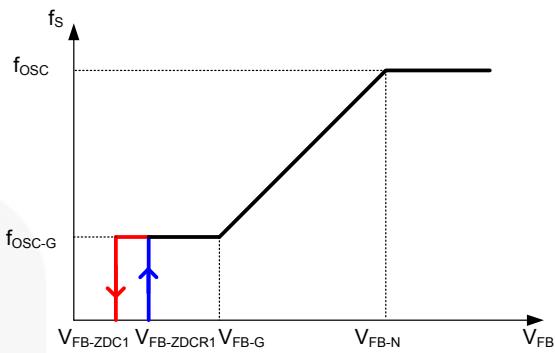


Figure 28. V_{FB} vs. PWM Frequency

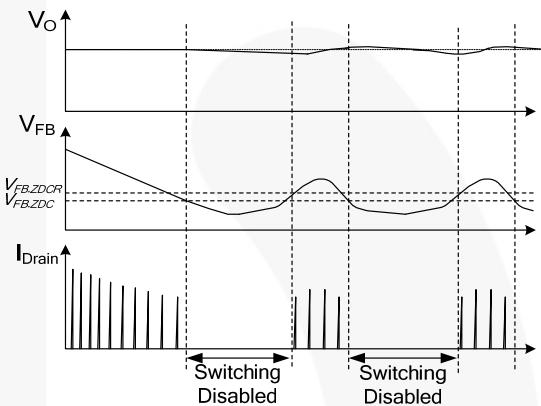


Figure 29. Burst Switching in Green Mode

Deep Burst Mode & Feedback Impedance Switching

Deep Burst Mode is defined as a special operational mode to minimize power consumption at extremely light-load or no-load condition where, not only the switching loss, but also power consumption of the FAN6756 itself, are reduced further than in Green Mode. Deep Burst Mode is initiated when the non-switching state of burst switching in Green Mode persists longer than t_{DBM} (7.5 ms) for three consecutive burst switchings (as shown in Figure 30). To prevent entering Deep Burst Mode during dynamic load change, there is t_{D-DBM} (>600 ms) delay. If there are more than 112 consecutive switching pulses during the t_{D-DBM} delay, the FAN6756 does not go into Deep Burst Mode.

Once the FAN6756 enters Deep Burst Mode, the feedback impedance, Z_{FB} , is modulated by the impedance modulator, as shown in Figure 31. When V_{FB} is under a threshold level, the impedance modulator clamps V_{FB} and disables switching. When V_{DD} drops to $V_{DD-ZFBR}$ (7 V, which is 0.5 V higher than V_{UVLO}), the impedance modulator controls Z_{FB} , allowing V_{FB} to rise and resume switching operation. As shown in Figure 32, by clamping V_{FB} to disable switching while modulating Z_{FB} to enable switching, the system is forced into a "Deep" Burst Mode to reduce switching loss.

Deep Burst Mode maintains V_{DD} as low as possible so power consumption can be minimized. When the FAN6756 enters Deep Burst Mode, several blocks are disabled and the operation current is reduced from I_{DD-OP1} (1.8 mA) to I_{DD-OP2} (450 μ A).

The feedback voltage thresholds where FAN6756 enters and exits Burst Mode change from V_{FB-ZDC} (2.0 V) and $V_{FB-ZDCR}$ (2.1 V) to $V_{FB-ZDC-DBM}$ (2.55 V) and $V_{FB-ZDCR-DBM}$ (2.7 V) in Deep Burst Mode. This reduces the switching loss more by increasing the energy delivered to the load per switching operation, which eventually reduces the total switching for a given load condition.

The FAN6756 exits Deep Burst Mode after more than 112 consecutive switching pulses in Deep Burst Mode. Once the FAN6756 exits Deep Burst Mode, the feedback impedance is modulated to $8.5\text{ k}\Omega$ to keep the original loop response. The FAN6756 also exits Deep Burst Mode when the opto-coupler transistor current is virtually zero and V_{FB} rises above $V_{FB-RECOVER}$ (0.9 V) while switching is suspended.

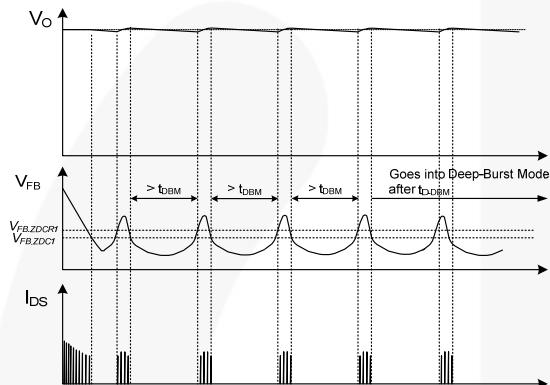


Figure 30. Entering Deep Burst Mode

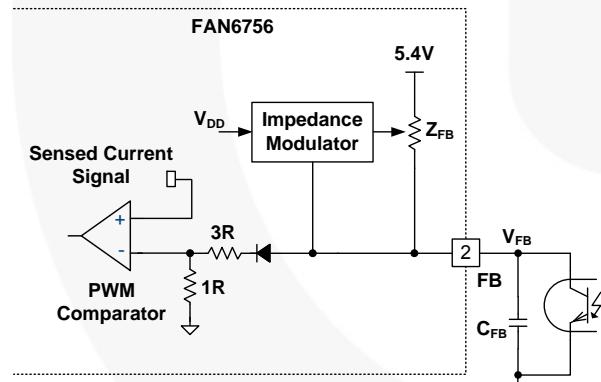


Figure 31. Feedback Impedance Modulation

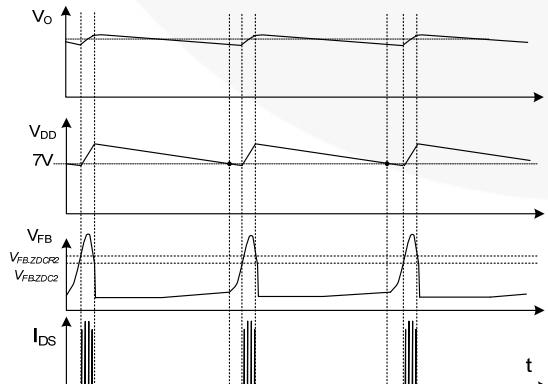


Figure 32. Operation in Deep Burst Mode

High-Voltage Startup and Line Sensing

The HV pin is typically connected to the AC line input through two external diodes and one resistor (R_{HV}), as shown in Figure 33. When the AC line voltage is applied, the V_{DD} hold-up capacitor is charged by the line voltage through the diodes and resistor. After V_{DD} voltage reaches the turn-on threshold voltage (V_{DD-ON}), the startup circuit charging the V_{DD} capacitor is switched off and V_{DD} is supplied by the auxiliary winding of the transformer. Once the FAN6756 starts, it continues operating until V_{DD} drops below 6.5 V (V_{UVLO}). IC startup time with a given AC line input voltage is given as:

$$t_{STARTUP} = R_{HV} \cdot C_{DD} \cdot \ln \frac{\frac{2\sqrt{2}}{\pi}}{\frac{2\sqrt{2}}{\pi} - V_{DD-ON}} \quad (1)$$

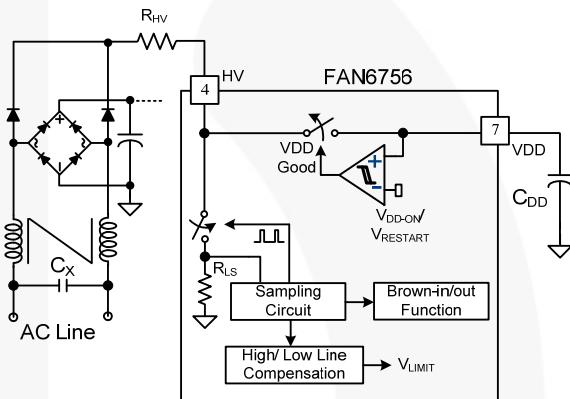


Figure 33. Startup Circuit

The HV pin detects the AC line voltage using a switched voltage divider that consists of external resistor (R_{HV}) and internal resistor (R_{LS}), as shown in Figure 33. The internal line-sensing circuit detects line voltage using a sampling circuit and peak-detection circuit. Since the voltage divider causes power consumption when it is switched on, the switching is driven by a signal with a very narrow pulse width to minimize power loss. The sampling frequency is adaptively changed according to the load condition to minimize power consumption in light-load condition.

Based on the detected line voltage, brown-in and brownout thresholds are determined as:

$$V_{BROWN-IN} (\text{RMS}) = \frac{R_{HV}}{200k} \cdot \frac{V_{AC-ON}}{\sqrt{2}} \quad (2)$$

$$V_{BROWNOUT} (\text{RMS}) = \frac{R_{HV}}{200k} \cdot \frac{V_{AC-OFF}}{\sqrt{2}} \quad (3)$$

Since the internal resistor ($R_{LS}=1.6\text{ k}\Omega$) of the voltage divider is much smaller than R_{HV} , the thresholds are given as a function of R_{HV} .

Note:

8. V_{DD} must be larger than V_{DD-AC} to start, even though the sensed line voltage satisfies Equation (2), as shown in Figure 34.

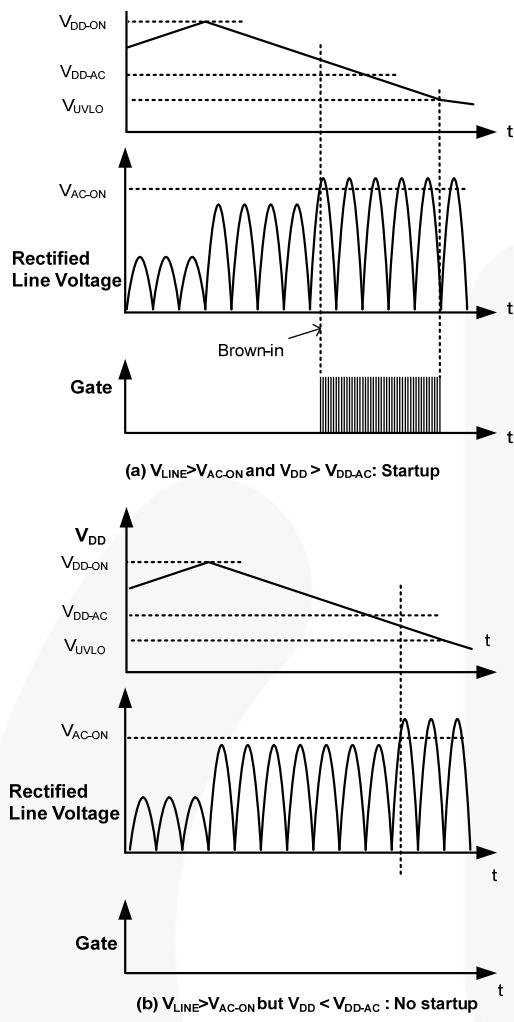


Figure 34. Timing Diagram for Brown-in Function

AX-CAP® Discharge

The EMI filter in the front end of the switched-mode power supply (SMPS) typically includes a capacitor across the AC line connector (C_x). Most of the safety regulations, such as UL 1950 and IEC61010-1, require that the capacitor be discharged to a safe level within a given time when the AC plug is abruptly removed from its receptacle. Typically, discharge resistors across the capacitor are used to make sure that capacitor is discharged naturally, which introduces power loss as long as it is connected to the receptacle.

Fairchild's innovative AX-CAP® technology intelligently discharges the filter capacitor only when the power supply is unplugged from the power outlet. Since the discharging circuit is disabled in normal operation, the power loss in the EMI filter can be virtually removed.

The discharge of the capacitor is achieved through the HV pin. Once AC outlet detaching is detected, the HV pin behaves as a resistor to ground, so the charges on the capacitor can be discharged through the R_{HV} in series with the internal resistor of the HV pin. Since the HV-pin internal resistor is much smaller than R_{HV} , the time constant of discharging process is almost $R_{HV} \cdot C_x$.

High / Low Line Compensation for Constant Power Limit

FAN6756 has pulse-by-pulse current limit as shown in Figure 35, which limits the maximum input power with a given input voltage. If the output consumes beyond this maximum power, the output voltage drops, triggering the overload protection.

As shown in Figure 35, based on the line voltage, V_{LINE}^{PK} , the high/low line compensation block adjusts the current limit level, V_{LIMIT} , defined as:

$$V_{LIMIT} = \frac{V_{LIMIT-H} - V_{LIMIT-L}}{2} \cdot \frac{R_{LS} \cdot V_{LINE}^{PK}}{R_{HV}} + \frac{3 \cdot V_{LIMIT-L} - V_{LIMIT-H}}{2} \quad (4)$$

To maintain the constant output power limit regardless of line voltage, the cycle-by-cycle current limit level, V_{LIMIT} , decreases as line voltage increases. The current limit level is proportional to the R_{HV} resistor value and power limit can be tuned using the R_{HV} resistor. Figure 36 shows how the pulse-by-pulse current limit changes with the line voltage for different R_{HV} resistors.

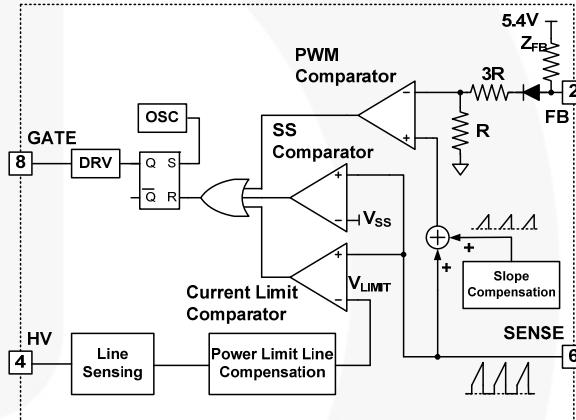


Figure 35. Pulse-by-Pulse Current Limit Circuit

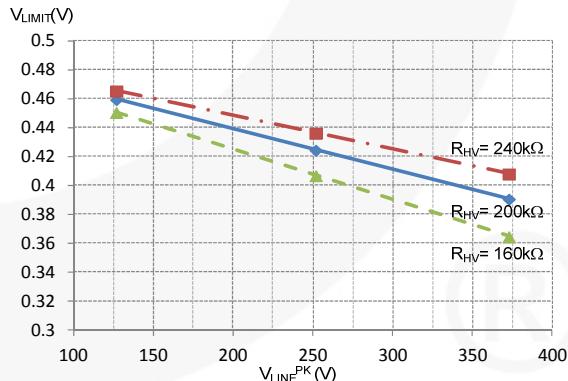


Figure 36. Current Limit vs. Line Voltage

Soft-Start

An internal soft-start circuit progressively increases the pulse-by-pulse current-limit level of MOSFET for 7 ms during startup to establish the correct working conditions for transformers and capacitors.

Protections

FAN6756 provides full protection functions, including Overload / Open-Loop Protection (OLP), V_{DD} Over-Voltage Protection (OVP), Over-Temperature Protection (OTP), and Current-Sense Short-Circuit Protection (SSCP). SSCP is implemented as Auto-Restart Mode, while OVP and OTP are implemented as Latch Mode protections. OLP is Auto-Restart Mode for FAN6756MRMY and Latch Mode for FAN6756MLMY.

When an Auto-Restart Mode protection is triggered, switching is terminated and the MOSFET remains off, causing V_{DD} to drop. When V_{DD} drops to the V_{DD-OFF} (11 V), the protection is reset. When V_{DD} drops further to V_{DD-OLP} (7 V), the internal startup circuit is enabled and the supply current drawn from HV pin charges the hold-up capacitor. When V_{DD} reaches the turn-on voltage of 17 V, normal operation resumes. In this manner, auto restart alternately enables and disables the MOSFET switching until the abnormal condition is eliminated.

When a Latch Mode protection is triggered, PWM switching is terminated and the MOSFET remains off, causing V_{DD} to drop. When V_{DD} drops to the V_{DD-OLP} (7 V), the internal startup circuit is enabled without resetting the protection and the supply current drawn from HV pin charges the hold-up capacitor. Since the protection is not reset, the IC does not resume PWM switching even when V_{DD} reaches the turn-on voltage of 17 V, disabling HV startup circuit. Then V_{DD} drops again down to 7 V. In this manner, the Latch Mode protection alternately charges and discharges V_{DD} until there is no more energy delivered into HV pin. The protection is reset when V_{DD} drops to 4 V, which is allowed only after power supply is unplugged from the AC line.

V_{DD} Over-Voltage Protection (OVP)

V_{DD} over-voltage protection prevents IC damage from voltage exceeding the IC voltage rating. When the V_{DD} voltage exceeds 24.5 V, the protection is triggered. This protection is typically caused by an open circuit in the secondary-side feedback network.

Over-Temperature Protection (OTP) and External Latch Triggering

The RT pin provides adjustable Over-Temperature Protection (OTP) and external latch triggering function. For OTP, an NTC thermistor, R_{NTC} , usually in series with a resistor R_A , is connected between the RT pin and ground. The internal current source, I_{RT} (100 μ A), introduces voltage on RT as:

$$V_{RT} = I_{RT} \cdot (R_{NTC} + R_A) \quad (5)$$

At high ambient temperature, R_{NTC} decreases, reducing V_{RT} . When V_{RT} is lower than V_{RTTH1} (1.035 V) for longer than t_{D-OTP1} (14.5 ms), the protection is triggered and the FAN6756 enters Latch Mode protection.

The OTP can be triggered by pulling down the RT pin voltage using an opto-coupler or transistor. Once V_{RT} is less than V_{RTTH2} (0.7 V) for longer than t_{D-OTP2} (185 μ s), the protection is triggered and the FAN6756 enters Latch Mode protection.

When OTP is not used, place a 100 k Ω resistor between this pin and ground to prevent noise interference.

Open-Loop / Overload Protection (OLP)

Because of the pulse-by-pulse current-limit capability, the maximum peak current is limited and, therefore, the maximum input power is also limited. If the output consumes more than this limited maximum power, the output voltage (V_O) drops below the set voltage. Then the currents through the opto-coupler and transistor become virtually zero and V_{FB} is pulled HIGH. Once V_{FB} is higher than V_{FB-OLP} (4.6 V) for longer than t_{D-OLP} (57.5 ms), OLP is triggered. OLP is also triggered when the feedback loop is open by soldering defect.

Sense Short-Circuit Protection (SSCP)

The FAN6756 provides safety protection for Limited Power Source (LPS) test. When the current-sense resistor is short circuited by a soldering defect during production, current-sensing information is not properly obtained, resulting in unstable power supply operation.

To protect the power supply against a short circuit across the current-sense resistor, FAN6756 shuts down when current sense voltage is very low; even with a relatively large duty cycle. As shown in Figure 37, the current-sense voltage is sampled $t_{ON-SSCP}$ (4.55 μ s) after the gate turn-on. If the sampled voltage (V_{S-CS}) is lower than V_{SSCP} for 11 consecutive switching cycles (170 μ s), the FAN6756 shuts down immediately. V_{SSCP} varies linearly with line voltage. At 122 V DC input, it is typically 50 mV (V_{SSCP-L}); at 366 V DC, it is typically 100 mV (V_{SSCP-H}).

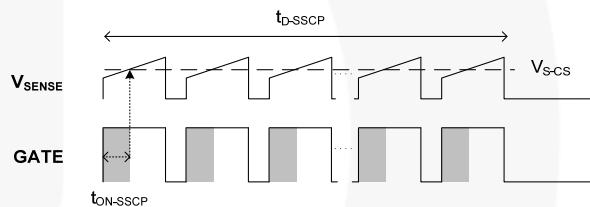


Figure 37. Timing Diagram of SSCP

Two-Level Under-Voltage Lockout (UVLO)

As shown in Figure 38, as long as protection is not triggered, the turn-off threshold of V_{DD} is fixed internally at V_{UVLO} (6.5 V). When a protection is triggered, the V_{DD} level to terminate PWM gate switching is changed to V_{DD-OFF} (11 V), as shown in Figure 39. When V_{DD} drops below V_{DD-OFF} , the switching is terminated and the operating current from V_{DD} is reduced to I_{DD-OLP} to slow down the discharge of V_{DD} until V_{DD} reaches V_{DD-OLP} . This delays re-startup after shutdown by protection to minimize the input power and voltage / current stress of switching devices during a fault condition.

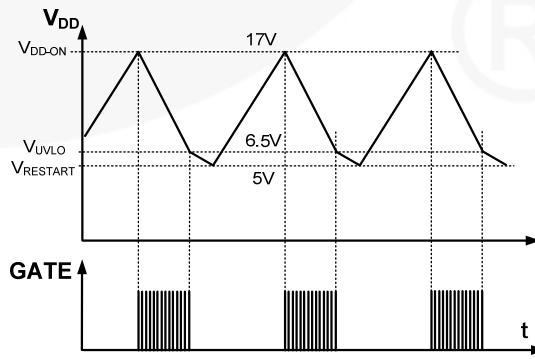


Figure 38. V_{DD} UVLO at Normal Mode

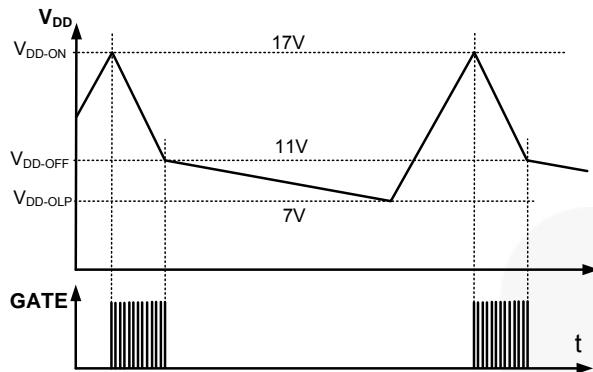


Figure 39. V_{DD} UVLO at Protection Mode

Gate Output / Soft Driving

The BiCMOS output stage has a fast totem-pole gate driver. The output driver is clamped by an internal 14.5 V Zener diode to protect the power MOSFET gate from over voltage. A soft driving is implemented to minimize Electromagnetic Interference (EMI) by reducing the switching noise.

Typical Application Circuit

Application	PWM Controller	Input Voltage Range	Output
65 W Notebook Adapter	FAN6756MRMY	85 V _{AC} ~ 265 V _{AC}	19 V, 3.42 A

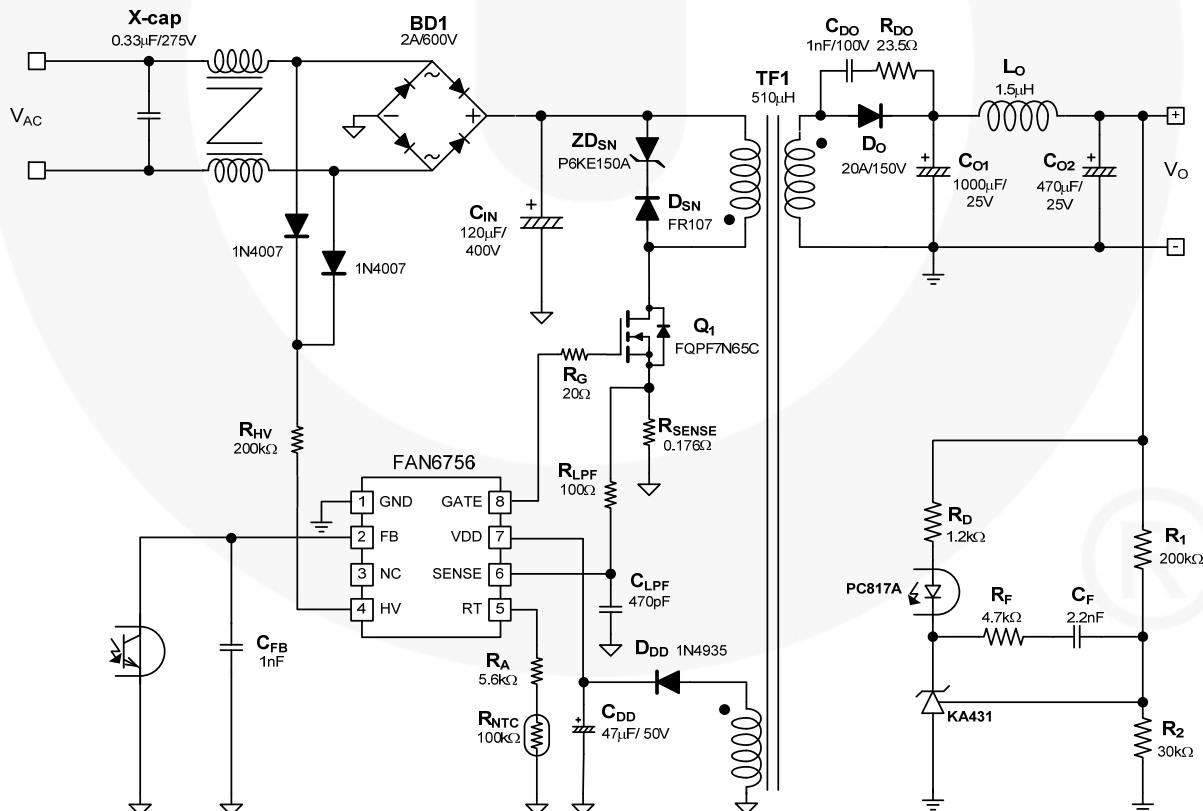


Figure 40. Schematic of Typical Application Circuit

Transformer Schematic Diagram

- Core: Ferrite Core RM-10
- Bobbin: RM-10

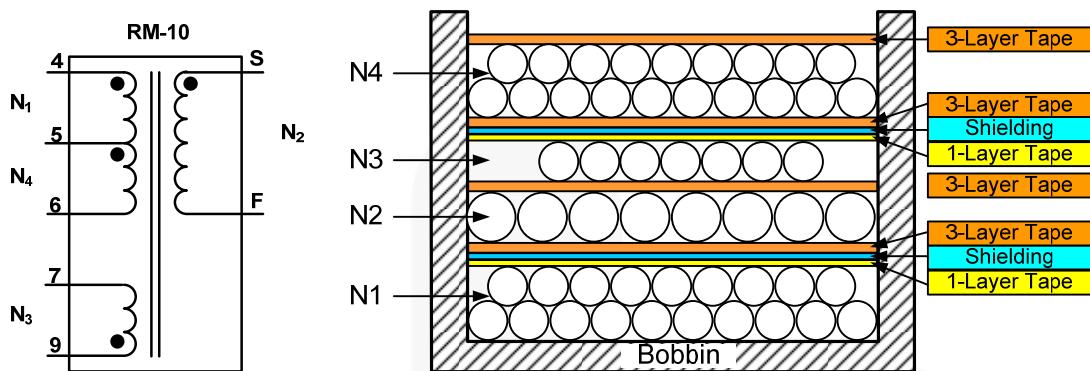


Figure 41. Transformer Specification

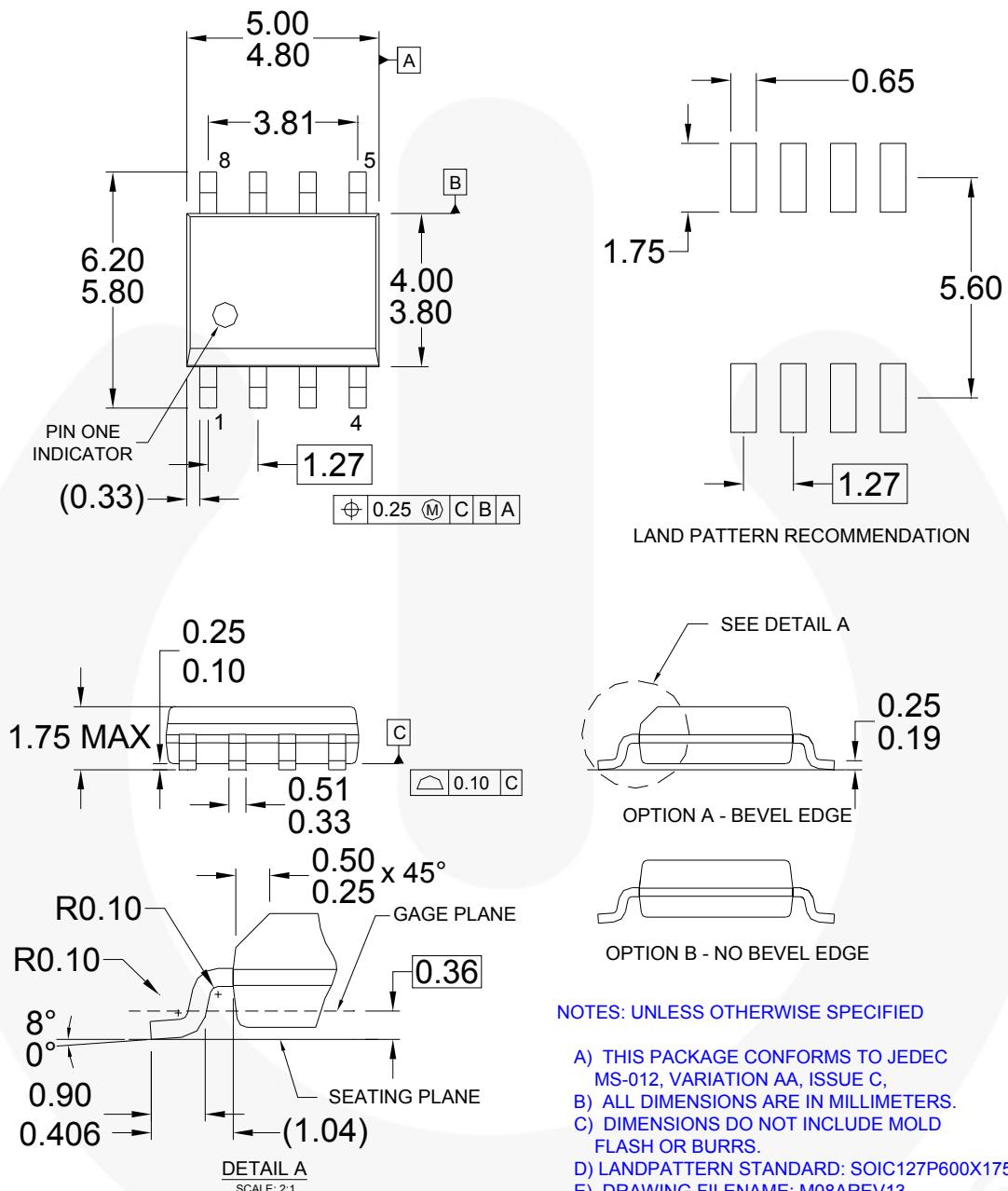
Winding Specification

	Pin (Start --> Finish)	Wire	Turns	Winding Method	Remark
N1	4 → 5	0.5φ×1	19	Solenoid Winding	Enameled Copper Wire
Insulation: Polyester Tape, $t = 0.025$ mm, 1-Layer					
Shielding: Adhesive Tape of Copper Foil, $t = 0.025 \times 7$ mm, 1.2-Layer Open Loop, Connected to Pin 4.					
Insulation: Polyester Tape $t = 0.025$ mm, 3-Layer					
N2	S → F	0.9φ×1	8	Solenoid Winding	Triple Insulated Wire
Insulation: Polyester Tape, $t = 0.025$ mm, 3-Layer					
N3	9 → 7	0.4φ×1	7	Solenoid Winding	Enameled Copper Wire
Insulation: Polyester Tape, $t = 0.025$ mm, 1-Layer					
Shielding: Adhesive Tape of Copper Foil, $t = 0.025 \times 7$ mm, 1.2-Layer Open Loop, Connected to Pin 4.					
Insulation: Polyester Tape $t = 0.025$ mm, 3-Layer					
N4	5 → 6	0.5φ×1	19	Solenoid Winding	Enameled Copper Wire
Insulation: Polyester Tape $t = 0.025$ mm, 3-Layer					

Electrical Characteristics

		Pin	Specification	Remark
Primary-Side Inductance		4 – 6	$510 \mu\text{H} \pm 5\%$	1 kHz, 1 V
Primary-Side Effective Leakage Inductance		4 – 6	20 μH Maximum	Short All Other Pins

Typical Performance


Power Consumption

Input Voltage	Output Power	Actual Output Power	Input Power	Specification
230 V _{AC}	No Load	0 W	0.024 W	Input Power < 0.03 W
	0.25 W	0.232 W	0.339 W	Input Power < 0.5 W
	0.5 W	0.495 W	0.643 W	Input Power < 1 W

Efficiency

Output Power	115 V, 60 Hz	230 V, 60 Hz	16.25 W	32.5 W	48.75 W	65 W	Average
88.48%	88.00%	88.00%	88.58%	87.89%	87.45%	86.22%	87.68%
88.00%	87.92%	87.92%	87.89%	87.47%	87.47%	86.22%	87.82%

Physical Dimensions

Figure 42. 8-Pin SOP-8 Package

Package drawings are provided as a service to customers considering our components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact our representative to verify or obtain the most recent revision. Package specifications do not expand the terms of our worldwide terms and conditions, specifically the warranty therein, which covers our products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:
<http://www.fairchildsemi.com/packaging/>.

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

2Cool™
AccuPower™
AX-CAP®
BitSIC™
Build it Now™
CorePLUS™
CorePOWER™
CROSSVOLT™
CTL™
Current Transfer Logic™
DEUXPEED®
Dual Cool™
EcoSPARK®
EfficientMax™
ESBC™
F®
Fairchild®
Fairchild Semiconductor®
FACT Quiet Series™
FACT®
FAST®
FastvCore™
FETBench™

FPS™
F-PFST™
FRFET®
Global Power Resource™
GreenBridge™
Green FPS™
Green FPS™ e-Series™
Gmax™
GTO™
IntelliMAX™
ISOPLANAR™
Making Small Speakers Sound Louder and Better™
MegaBuck™
MICROCOUPLER™
MicroFET™
MicroPak™
MicroPak2™
MillerDrive™
MotionMax™
mWSaver™
OptoHiTT™
OPTOLOGIC®
OPTOPLANAR®

PowerTrench®
PowerXST™
Programmable Active Droop™
QFET®
QST™
Quiet Series™
RapidConfigure™
Saving our world, 1mW/kW at a time™
SignalWise™
SmartMax™
SMART START™
Solutions for Your Success™
SPM®
STEALTH™
SuperFET®
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SupreMOS®
SyncFET™

Sync-Lock™
E SYSTEM GENERAL®
TinyBoost™
TinyBuck™
TinyCalc™
TinyLogic®
TINYOPTO™
TinyPower™
TinyPWM™
TinyWire™
TransiC™
TriFault Detect™
TRUECURRENT®
μSerDes™
μ SerDes™
UHC™
Ultra FRFET™
UniFET™
VCXTM
VisualMax™
VoltagePlus™
XS™

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN, NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 164

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

[Fairchild Semiconductor:](#)

[FAN6756MLMY](#) [FAN6756MRMY](#) [FAN6756AMRMY](#) [FAN6756AMLMY](#)