

Temperature Sensing MOSFET, N-Channel 40-V (D-S)

PRODUCT SUMMARY		
$V_{(BR)DSS}$ (V)	$r_{DS(on)}$ (Ω)	I_D (A)
40	0.009 at $V_{GS} = 10$ V	60 ^a
	0.012 at $V_{GS} = 4.5$ V	60

Notes:

a. Package Limited.

DESCRIPTION

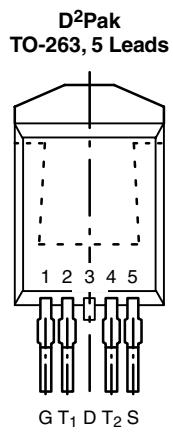
The SUM60N04-12LT is a 40 V N-Channel, 15 m Ω logic level MOSFET in a 5-lead D²PAK package built on the Vishay Siliconix proprietary high-cell density TrenchFET technology.

Two anti-parallel electrically isolated poly-silicon diodes are used to sense the temperature changes in the MOSFET.

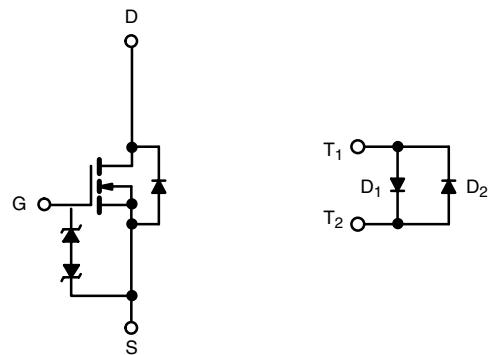
The gate of the MOSFET is protected from high voltage transients by two back-to-back poly-silicon zener diodes.

FEATURES

- Temperature-Sense Diodes for Thermal Shutdown
- TrenchFET® Power MOSFET
- 175 °C Maximum Junction Temperature
- ESD Protected: 2000 V
- Logic-Level Low On-Resistance
- Avalanche Rated
- Low Gate Charge
- Fast Turn-On Time
- 100 % R_g Tested
- 5 Lead D²PAK



RoHS*
COMPLIANT


APPLICATIONS

- Industrial

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

Ordering Information: SUM60N04-12LT
SUM60N04-12LT-E3 (Lead (Pb)-free)

N-Channel MOSFET

* Pb containing terminations are not RoHS compliant, exemptions may apply.

ABSOLUTE MAXIMUM RATINGS $T_A = 25^\circ\text{C}$, unless otherwise noted

Parameter	Symbol	Limit	Unit
Drain-Source Voltage	V_{DS}	40	V
Gate-Source Voltage	V_{GS}	± 20	
V_{GS} Clamp Current	I_G	50	mA
Continuous Drain Current ($T_J = 175^\circ\text{C}$)	I_D	60 ^a	A
		50	
		50	
Avalanche Current	I_{AR}	50	
Repetitive Avalanche Energy	E_{AR}	125	mJ
Source-to-Anode Voltage	V_{SA}	100	V
Source-to-Cathode Voltage	V_{SC}	100	
Maximum Power Dissipation ^a	P_D	110	W
		3.75	
Operating Junction and Storage Temperature Range	T_J, T_{stg}	- 55 to 175	°C

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Limit	Unit
Junction-to-Ambient ^d	R_{thJA}	40	°C/W
Junction-to-Case	R_{thJC}	1.35	

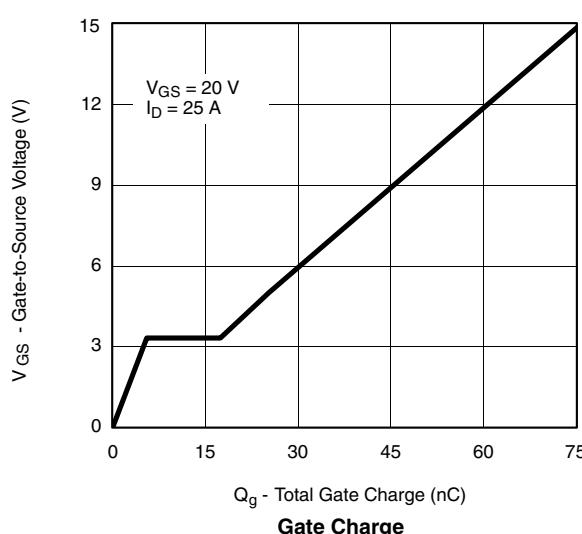
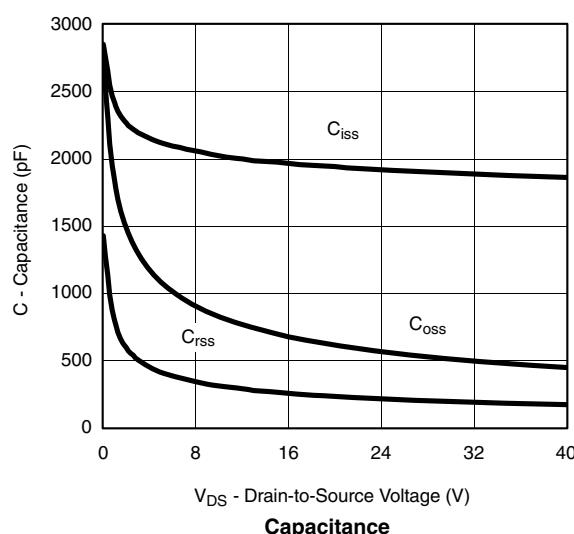
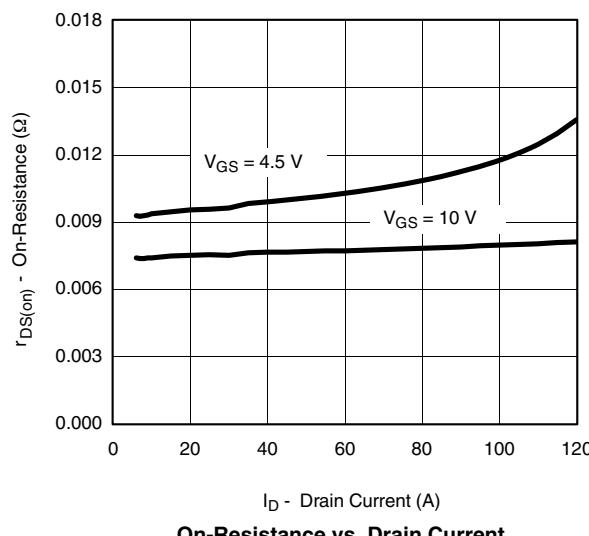
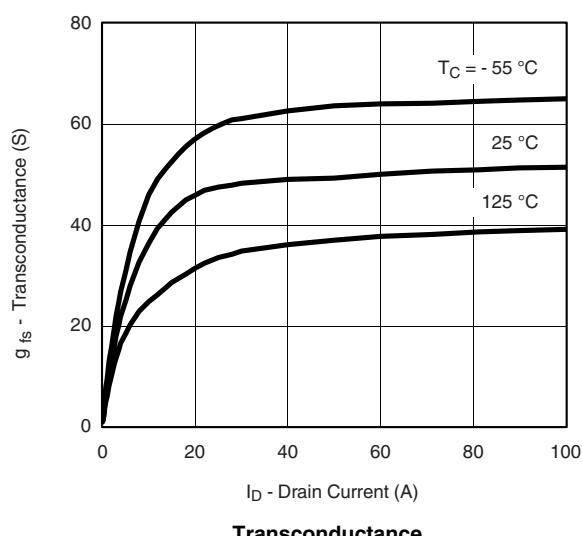
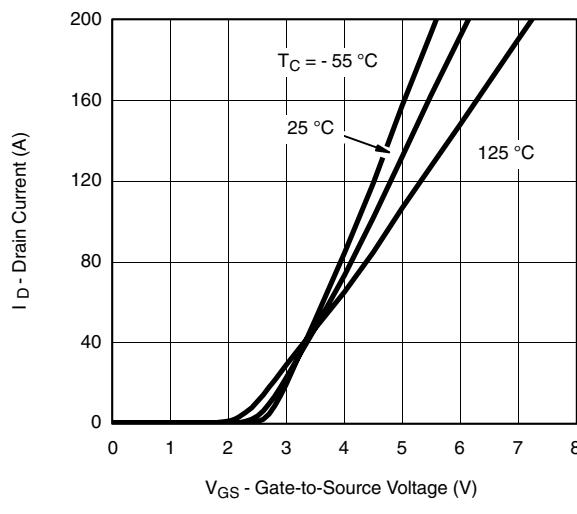
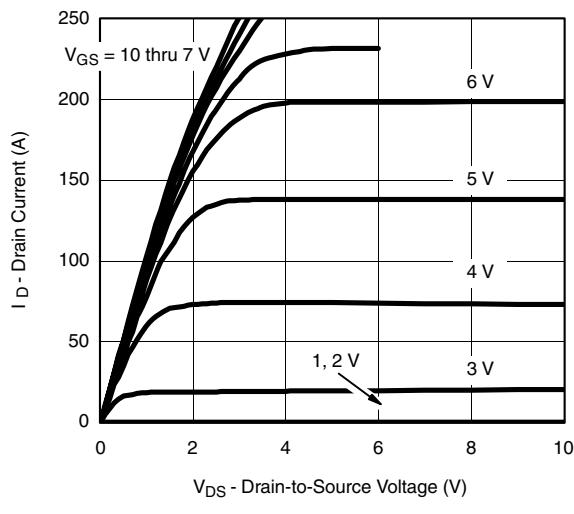
Notes:

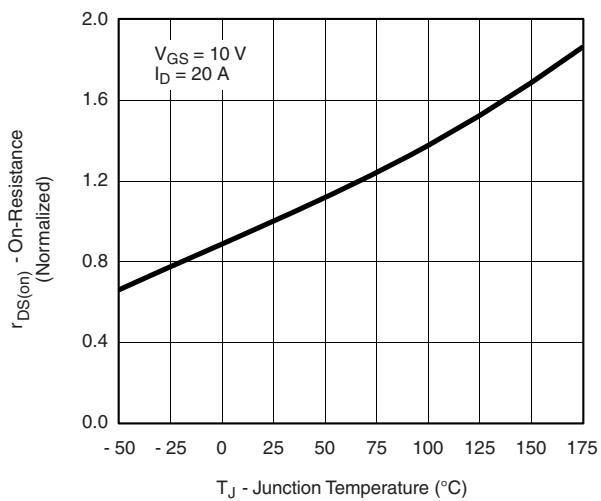
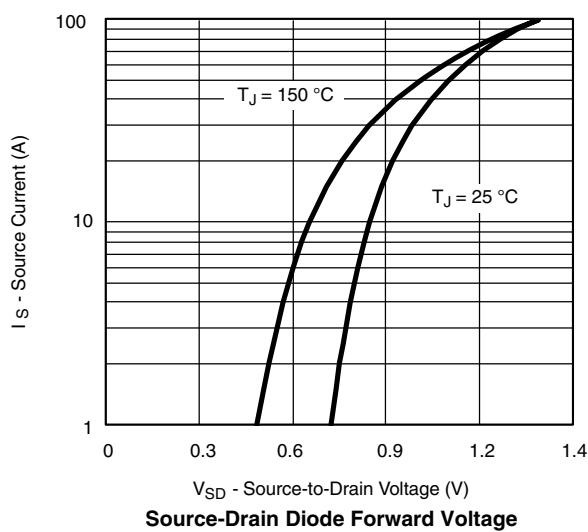
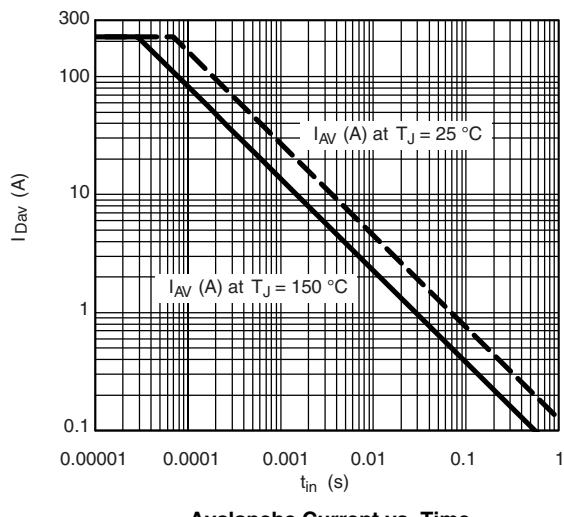
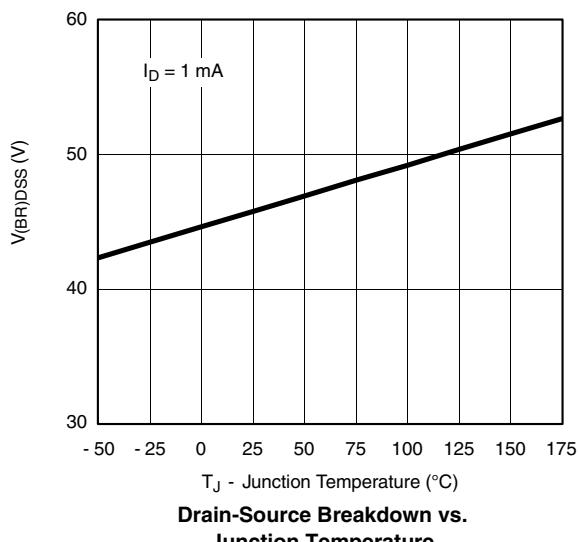
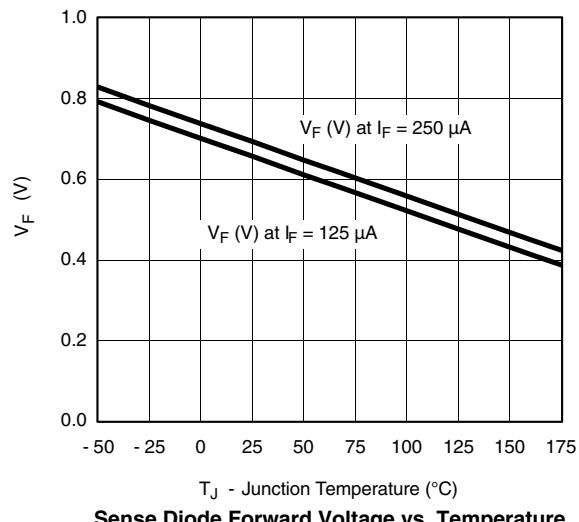
- a. Package limited.
- b. Duty Cycle $\leq 1\%$.
- c. See SOA curve for voltage derating.
- d. When Mounted on 1" square PCB FR4.

MOSFET SPECIFICATIONS $T_J = 25^\circ\text{C}$, unless otherwise noted						
Parameter	Symbol	Test Conditions	Min.	Typ.	Max.	Unit
Static						
Drain-Source Breakdown Voltage	$V_{(\text{BR})\text{DSS}}$	$V_{\text{GS}} = 0 \text{ V}, I_D = 1 \text{ mA}$	40			
V_{GS} Clamp Voltage	V_{GS}	$V_{\text{DS}} = 0 \text{ V}, I_G = 20 \mu\text{A}$	10		20	
Gate-Threshold Voltage	$V_{\text{GS}(\text{th})}$	$V_{\text{DS}} = V_{\text{GS}}, I_{\text{DS}} = 1 \text{ mA}$	1		2	
Gate-Body Leakage	I_{GSS}	$V_{\text{DS}} = 0 \text{ V}, V_{\text{GS}} = \pm 5 \text{ V}$			± 250	nA
Zero Gate Voltage Drain Current	I_{DSS}	$V_{\text{DS}} = 40 \text{ V}, V_{\text{GS}} = 0 \text{ V}$			1	
		$V_{\text{DS}} = 40 \text{ V}, V_{\text{GS}} = 0 \text{ V}, T_J = 125^\circ\text{C}$			50	
		$V_{\text{DS}} = 40 \text{ V}, V_{\text{GS}} = 0 \text{ V}, T_J = 175^\circ\text{C}$			250	
Drain-Source On-State Resistance ^a	$r_{\text{DS}(\text{on})}$	$V_{\text{GS}} = 10 \text{ V}, I_D = 20 \text{ A}$		0.0075	0.009	
		$V_{\text{GS}} = 10 \text{ V}, I_D = 20 \text{ A}, T_J = 125^\circ\text{C}$			0.0135	
		$V_{\text{GS}} = 10 \text{ V}, I_D = 20 \text{ A}, T_J = 175^\circ\text{C}$			0.018	
		$V_{\text{GS}} = 4.5 \text{ V}, I_D = 20 \text{ A}$		0.0095	0.012	
Sense Diode Forward Voltage	$V_{\text{FD}1}$	$I_F = 250 \mu\text{A}$	675		735	
	$V_{\text{FD}2}$	$I_F = 250 \mu\text{A}$	675		735	
Sense Diode Forward Voltage Increase	ΔV_F	From $I_F = 125 \mu\text{A}$ to $I_F = 250 \mu\text{A}$	25		50	
Forward Transconductance ^a	g_{fs}	$V_{\text{DS}} = 15 \text{ V}, I_D = 20 \text{ A}$		35		S
Dynamic^b						
Input Capacitance	C_{iss}	$V_{\text{GS}} = 0 \text{ V}, V_{\text{DS}} = 25 \text{ V}, f = 1 \text{ MHz}$		1920		
Output Capacitance	C_{oss}			560		
Reverse Transfer Capacitance	C_{rss}			210		
Total Gate Charge ^c	Q_g	$V_{\text{DS}} = 20 \text{ V}, V_{\text{GS}} = 10 \text{ V}, I_D = 25 \text{ A}$		51	70	
Gate-Source Charge ^c	Q_{gs}			5.5		
Gate-Drain Charge ^c	Q_{gd}			12		
Gate Resistance	R_g		1.2		4.1	Ω
Turn-On Delay Time ^c	$t_{\text{d}(\text{on})}$	$V_{\text{DD}} = 20 \text{ V}, R_L = 0.8 \Omega$ $I_D \geq 25 \text{ A}, V_{\text{GEN}} = 10 \text{ V}, R_g = 2.5 \Omega$		20	40	
Rise Time ^c	t_r			70	120	
Turn-Off Delay Time ^c	$t_{\text{d}(\text{off})}$			35	70	
Fall Time ^c	t_f			20	40	
Source-Drain Diode Ratings and Characteristics $T_C = 25^\circ\text{C}^b$						
Continuous Current	I_S				60	
Pulsed Current	I_{SM}				240	
Forward Voltage ^a	V_{SD}	$I_F = 60 \text{ A}, V_{\text{GS}} = 0 \text{ V}$			1.4	V
Reverse Recovery Time	t_{rr}	$I_F = 60 \text{ A}, \text{di/dt} = 100 \text{ A}/\mu\text{s}$		40	60	ns

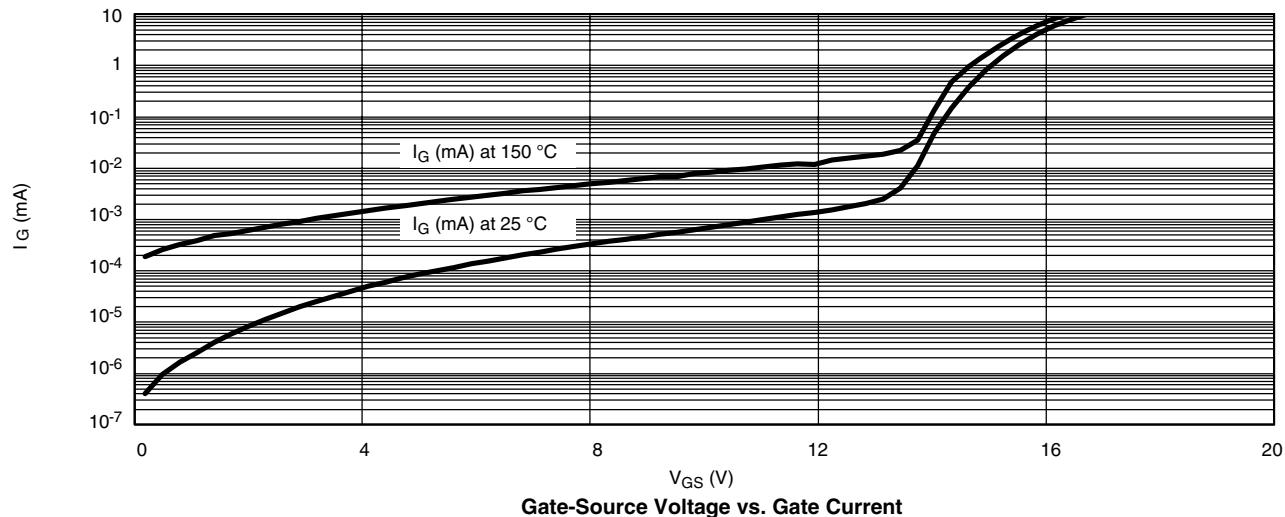
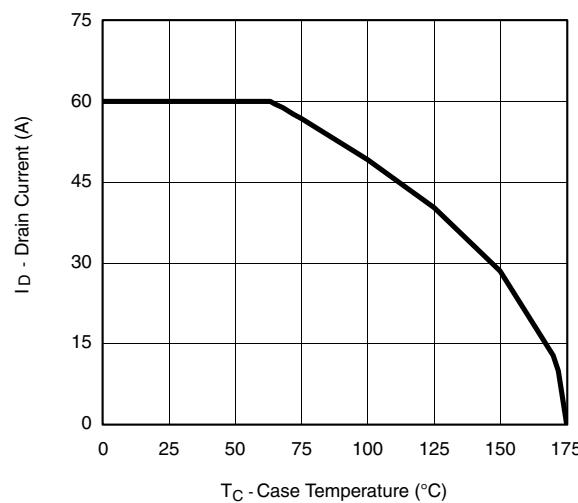
Notes:

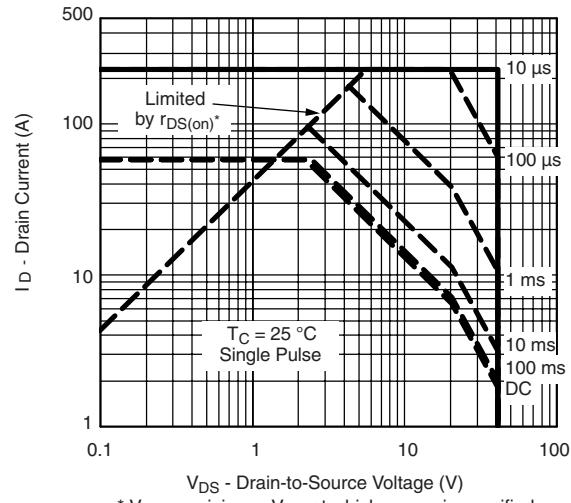
- a. Pulse test; pulse width $\leq 300 \mu\text{s}$, duty cycle $\leq 2\%$.
- b. Guaranteed by design, not subject to production testing.
- c. Independent of operating temperature.

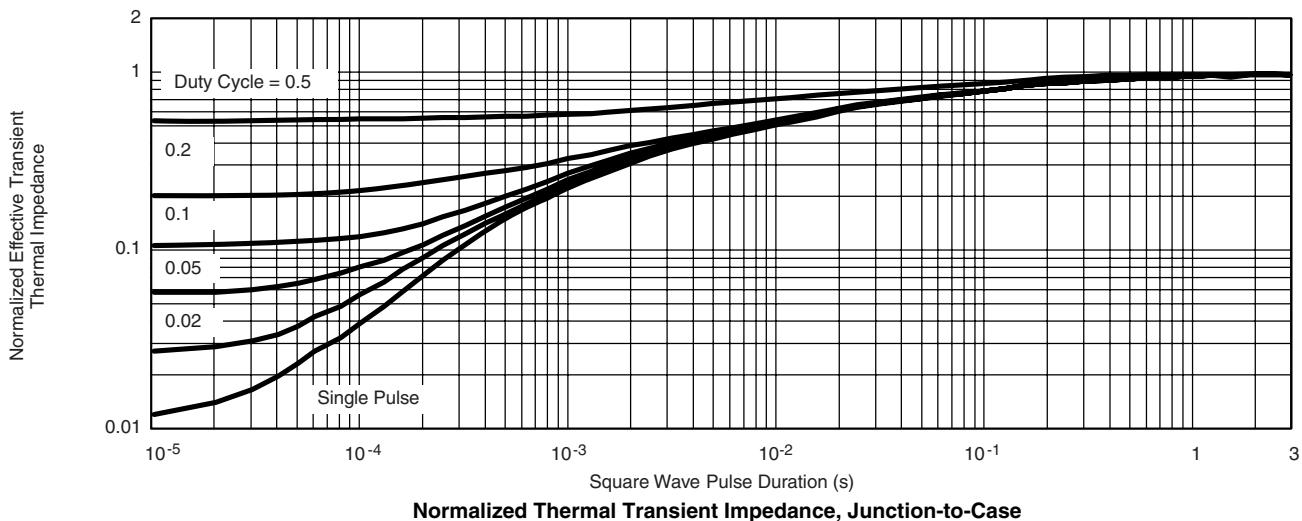






Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

SUM60N04-12LT



Vishay Siliconix


TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted


TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

On-Resistance vs. Junction Temperature

Source-Drain Diode Forward Voltage

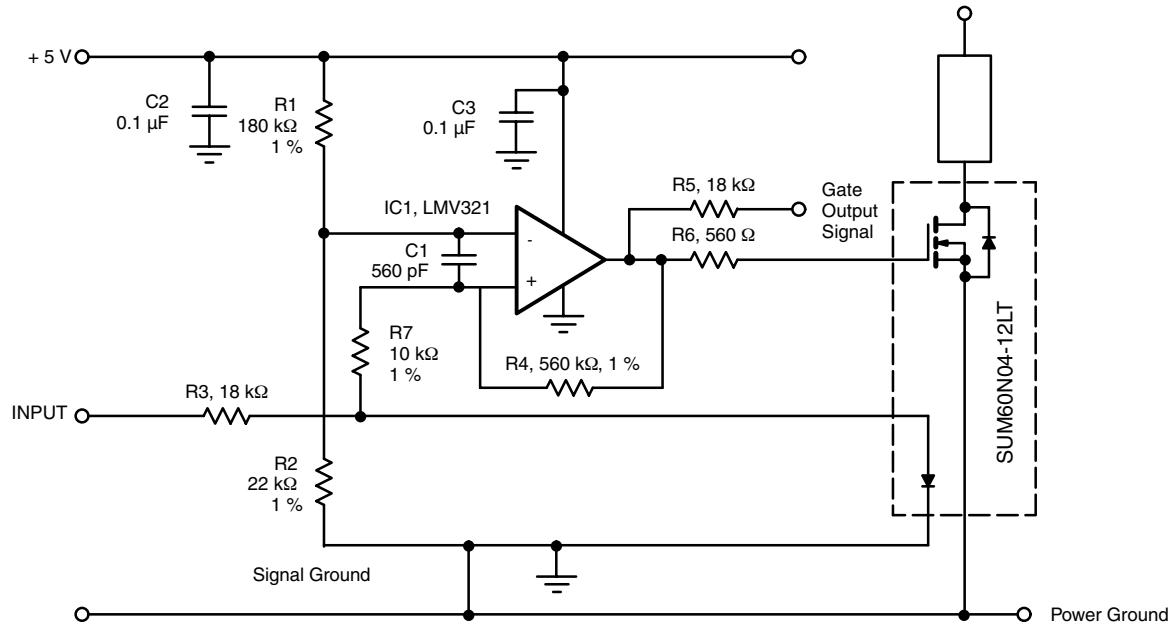
Avalanche Current vs. Time

Drain-Source Breakdown vs. Junction Temperature

Sense Diode Forward Voltage vs. Temperature

Sense Diode Forward Voltage

TYPICAL CHARACTERISTICS OF G-S CLAMPING DIODES 25 °C, unless otherwise noted **THERMAL RATINGS**


Maximum Avalanche and Drain Current vs. Case Temperature

* $V_{GS} >$ minimum V_{GS} at which $r_{DS(on)}$ is specified

Safe Operating Area

Normalized Thermal Transient Impedance, Junction-to-Case

APPLICATIONS

Figure 1.

The SUM60N04-12LT provides a non-committed diode to allow temperature sensing of the actual MOSFET chip. The addition of one simple comparator and a few other components is all that is required to implement a temperature protected MOSFET. Since it has a very tight tolerance on forward voltage, the forward voltage of the diode can be used to provide a shutdown signal. The diode forward voltage falls to around 0.4 V with a bias current of 250 μ A when the MOSFET chip is close to the maximum permitted temperature value. The external comparator used to detect over temperature can also be used as a driver stage for the MOSFET, meaning that the on/off input is logic compatible, and can be driven from a logic gate.

A typical circuit is shown in Figure 1. Here a LMV321 operational amplifier is used to drive the MOSFET, and as a comparator to when the maximum junction temperature is reached. The circuit will turn on once more when the chip has cooled to approximately 110 °C, and can cycle on and off until the fault is cleared or the power is removed. This circuit has assumed a 5 V rail is available, but the circuit could easily be adapted for a 12 V rail, for example.

The LMV321 op amp was selected to give reasonable output current to drive the MOSFET at a reasonable price. The SC-70 package means that the protection circuit uses very little board space. However the limited output current means that it can only be used in slow switching applications, where one microsecond switching time and limited dv/dt immunity can be accepted. For PWM and other faster applications, a buffer should be added to drive the MOSFET, or the schematic in Figure 2 used to give fast switching speed.

The reference voltage for the trip point is derived from the 5 V rail, which should have reasonable voltage accuracy and stability (± 0.5 V). A voltage reference could be added if required, but the circuit is only intended to make the MOSFET invulnerable to drastic faults that might otherwise cause it to fail, not to give a precise shutdown point. 1 % resistors are used to provide a reference voltage of 0.545 V, giving a nominal rising trip point of around 155 °C, allowing for the hysteresis drop over R7.

A 560 pF capacitor across the inputs of the comparator provides some noise immunity and gives a response time of around a micro second, just faster than the switching speed of the MOSFET in this circuit (faster response has diminishing returns as the turn-off time is fixed). This does have a side effect of introducing such a delay at turn-on. If this is an issue (although if this delay is an issue, the switching time should be reviewed also), a separate driver could be added using a comparator for over temperature detection only as shown in Figure 2. The diode is then left biased whenever the power is applied to the load and there is no turn-on delay. In a very noisy environment C1 should be increased and additional capacitors may also be required from each input of the comparator to ground and on the logic input.

The bias current of 250 μ A nominal is derived from the input signal. In this manner, a simple comparator can be used as a driver for normal on/off operation and a fault detector circuit. The circuit used to provide the input signal must therefore be able to source 0.25 mA with no significant voltage drop.

The LMV321 can provide a output current of 60 mA typical, which provides reasonable switching time for non-PWM applications. A 560 Ω resistor is added in series to protect the op amp and to prevent instability, but will result in switching times of several micro seconds. A lower value may be possible depending on layout, but may violate conditions recommended by the op amp manufacturer.

Hysteresis is added by means of a resistor network around the comparator. Approximately 40 °C hysteresis is added using the components shown. This hysteresis could be reduced if necessary by increasing the value of R4. Another means of implementing hysteresis is to use the output of the comparator to provide some of the bias current for the sensing diode. When the comparator output is low (tripped/off), the bias current is reduced by, say, 150 μ A, causing the forward voltage to drop by around 50 mV. This concept

would also allow a lower sourcing capability in the logic circuit providing the on/off signal and therefore should be used if input current requirements become a problem.

With the input high, bias current flows and as long as the forward voltage of the diode is higher than 0.465 V, the comparator output is high and the MOSFET is on. If the forward voltage of the diode drops below 0.465 V, the comparator output goes low and the MOSFET is turned off. The gate drive voltage can also be used as an output signal (if required) for logic to interpret and to signify that there is a fault. Note the cathode of the sensing diode should NOT be connected directly to the source of the MOSFET as the noise introduced by high currents in the source loop could affect operation of the sensing circuit. A separate signal ground should be used and connect to power ground at one point only.

A variation on this schematic is shown in Figure 2. Here a low cost comparator (again in a SOT-23 or SC-70) is used to provide a fault output signal only. The diode bias current is taken from the 5 V. In this manner the diode bias is applied at all times, so the noise filtering capacitor, C1 will not introduce a turn-on delay. The fault output signal could be used to enable the gate driver as shown, or fed to larger monitoring circuit to shutdown the MOSFET.

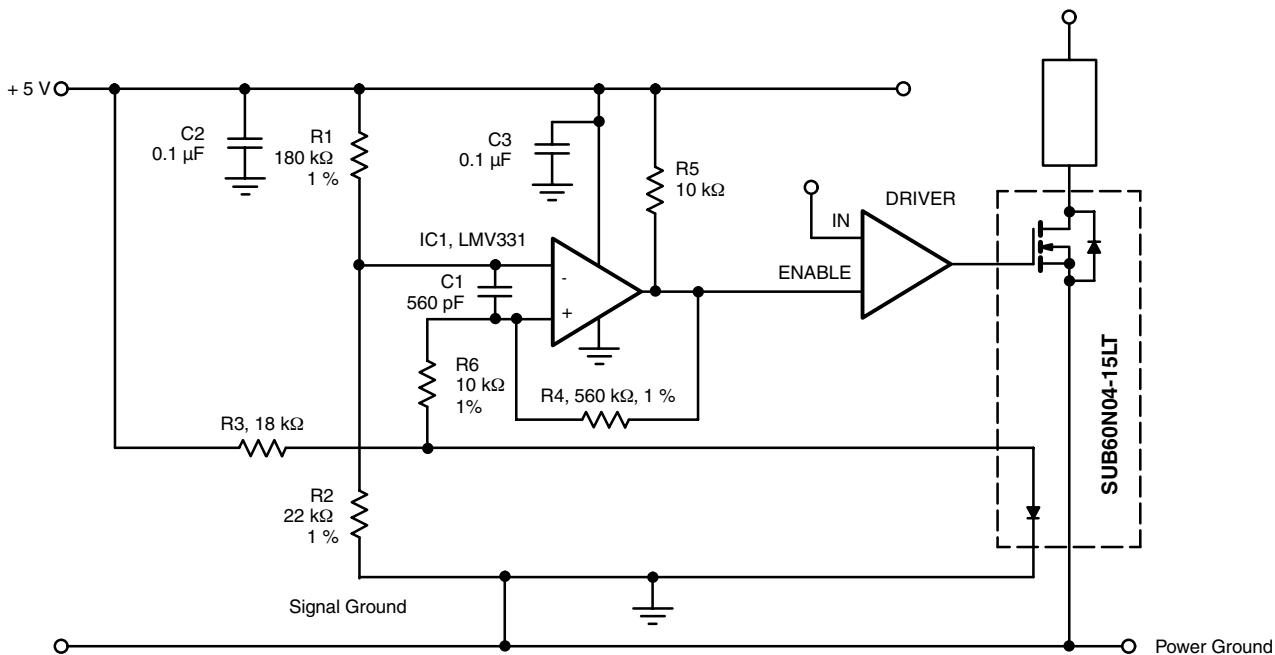
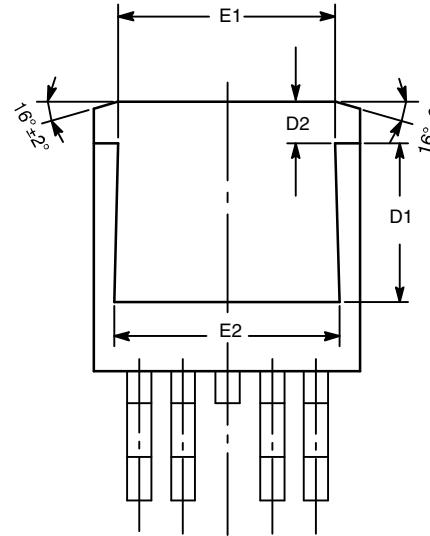
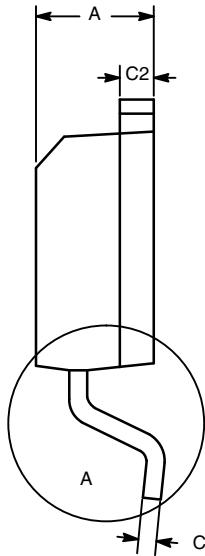
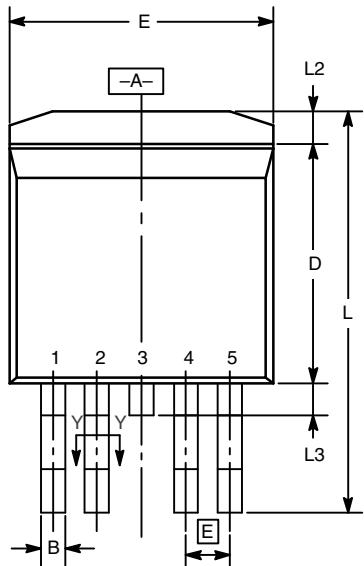
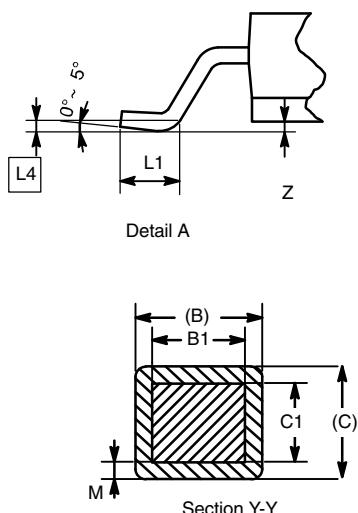





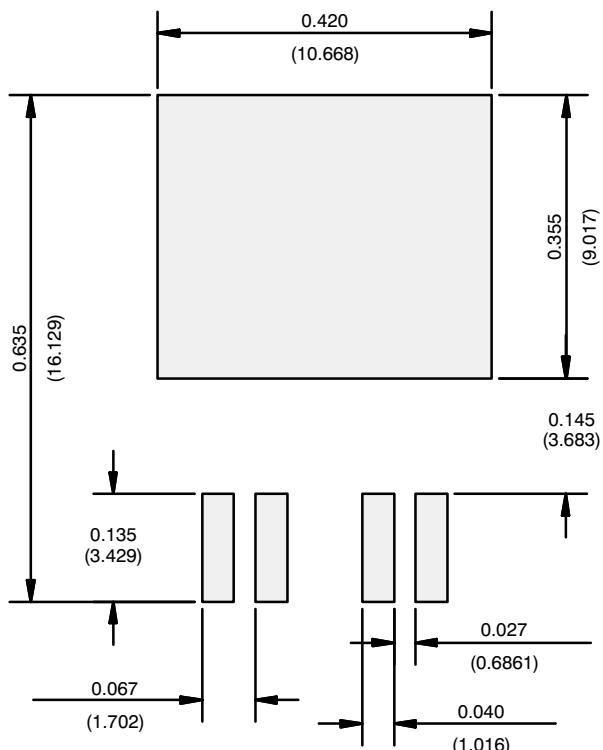
Figure 2.


Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see <http://www.vishay.com/ppg?71620>.

TO-263 (D²PAK): 5 Leads

(for Lead Thickness 25 mil)

⊕ 0.010 M A M


DIM.	MILLIMETERS		INCHES	
	MIN.	MAX.	MIN.	MAX.
A	-	-	0.170	0.185
B	-	-	0.028	0.039
B1	-	-	0.028	0.035
C	-	-	0.018	0.028
C1	-	-	0.018	0.025
C2	-	-	0.045	0.055
D	-	-	0.340	0.380
D1	-	-	0.220	0.255
D2	-	-	0.044	0.052
E	-	-	0.385	0.405
E1	-	-	0.245	-
E2 ⁽¹⁾	-	-	0.355	0.375
E	-		0.067 BSC	
L	-	-	0.575	0.625
L1	-	-	0.090	0.110
L2	-	-	0.040	0.055
L3	-	-	0.050	0.070
L4	-		0.010 BSC	
M	-	-	-	0.002

ECN: T13-0708-Rev. D, 30-Sep-13
DWG: 5864

Note

⁽¹⁾ Dimension E2 is for reference only.

- Plane B includes maximum features of heat sink tab and plastic.
- No more than 25 % of L1 can fall above seating plane by maximum 8 mils.
- Pin-to-pin coplanarity maximum 4 mils. Z not to exceed 10 mils.
- Z not to exceed 10 mils.

RECOMMENDED MINIMUM PADS FOR D²PAK: 5-Lead

Recommended Minimum Pads
Dimensions in Inches/(mm)

[Return to Index](#)

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

[Vishay](#):

[SUM60N04-12LT](#) [SUM60N04-12LT-E3](#)