TOSHIBA BI-CMOS INTEGRATED CIRCUIT SILICON MONOLITHIC

TB62003PG,TB62003FG,TB62004PG,TB62004FG TB62006PG, TB62006FG,TB62007PG,TB62007FG TB62008PG,TB62008FG, TB62009PG,TB62009FG

8CH DMOS TRANSISTOR ARRAY WITH GATE

TB62003PG, TB62003FG INVERTER & DMOS DRIVER

TB62004PG, TB62004FG THROUGH & DMOS DRIVER

TB62006PG, TB62006FG NAND & DMOS DRIVER

TB62007PG, TB62007FG AND & DMOS DRIVER

TB62008PG, TB62008FG NOR & DMOS DRIVER

TB62009PG, TB62009FG OR & DMOS DRIVER

The TB62003 Series are high-voltage, high-current arrays comprised of eight N-ch DMOS pairs.

This devices are a product for the Pb free(Sn-Ag).

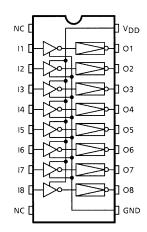
FEATURES

• Package : Type-PG DIP-20 pin

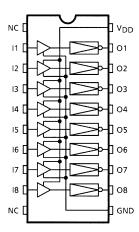
Type-FG SOP-20 pin (200 mil)

• Output rating : 35 V (Min.) / 200 mA (Max.)

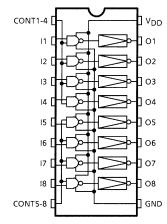
• Low power

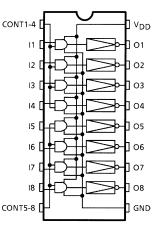


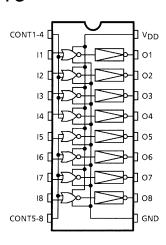
Weight


DIP20-P-300-2.54 A : 2.25 g (Typ.) SOP20-P-300-1.27 : 0.25 g (Typ.)

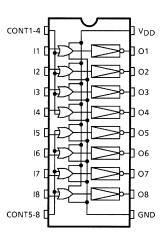
PIN CONNECTION (TOP VIEW)


TB62003PG / FG


TB62004PG / FG


TB62003PG / FG

TB62007PG / FG



TB62008PG / FG

TB62009PG / FG

2

TRUTH TABLE

TB62006PG / FG

	INF	TU		OUT	PUT
I1~4	15~8	CONT1~4	CONT5~8	O3~4	O5~8
Н	Х	Н	X	OFF	NOT FIX
Н	Х	L	Х	ON	NOT FIX
L	Х	Н	Х	ON	NOT FIX
L	Х	L	Х	ON	NOT FIX
Х	Н	Х	Н	NOT FIX	OFF
Х	Н	Х	L	NOT FIX	ON
Х	L	Х	Н	NOT FIX	ON
Х	L	X	L	NOT FIX	ON

X: Don't Care

TB62007PG / FG

	INF	TU		OUTPUT		
I1~4	15~8	CONT1~4	CONT5~8	O3~4	O5~8	
Н	Х	Н	X	ON	NOT FIX	
Н	X	L	X	OFF	NOT FIX	
L	X	Н	X	OFF	NOT FIX	
L	Х	L	Х	OFF	NOT FIX	
Х	Н	Х	Н	NOT FIX	ON	
Х	Н	Х	L	NOT FIX	OFF	
Х	L	Х	Н	NOT FIX	OFF	
Х	L	Х	L	NOT FIX	OFF	

3

X: Don't Care

TB62008PG / FG

	INF	TU		OUTPUT		
I1~4	15~8	CONT1~4	CONT5~8	O3~4	O5~8	
Н	X	Н	X	OFF	NOT FIX	
Н	Х	L	Х	OFF	NOT FIX	
L	Х	Н	Х	OFF	NOT FIX	
L	Х	L	Х	ON	NOT FIX	
Х	Н	X	Н	NOT FIX	OFF	
Х	Н	Х	L	NOT FIX	OFF	
Х	L	X	Н	NOT FIX	OFF	
Х	L	Х	L	NOT FIX	ON	

X: Don't Care

TB62009PG / FG

	INF	PUT		OUT	PUT
11~4	15~8	CONT1~4	CONT5~8	O3~ 4	O5~8
Н	X	Н	X	ON	NOT FIX
Н	Х	L	Х	ON	NOT FIX
L	Х	Н	Х	ON	NOT FIX
L	X	L	X	OFF	NOT FIX
Х	Н	Х	Н	NOT FIX	ON
Х	Н	Х	L	NOT FIX	ON
Х	L	Х	Н	NOT FIX	ON
Х	L	Х	L	NOT FIX	OFF

4

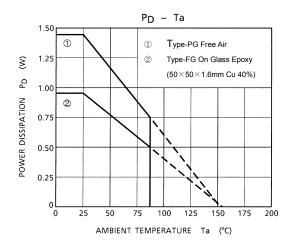
X: Don't Care

MAXIMUM RATINGS (Ta = 25°C)

CHARACTERISTIC		SYMBOL	RATING	UNIT	
Supply Voltage		V_{DD}	7	V	
DC Output Voltage		V _{DS}	-0.5~35	V	
DC Output Current		I _{DS}	200	mA / ch	
DC Input Voltage		V _{IN}	-0.4+V _{DD} +0.4	V	
DC Input Current		I _{IN}	±5	mA	
Input Diode Current		I _{ID}	±5	mA	
Output Diode Current		lok	5	mA	
	PG	D-	1.47		
Power Dissipation	FG	P _D (Note 1)	0.96 (Note 2)	W	
Operating Temperature		T _{opr}	-40~85	°C	
Storage Temperature		T _{stg}	-55~150	°C	

Note 1: On Glass Epoxy PCB (50 \times 50 \times 1.6 mm Cu 40%)

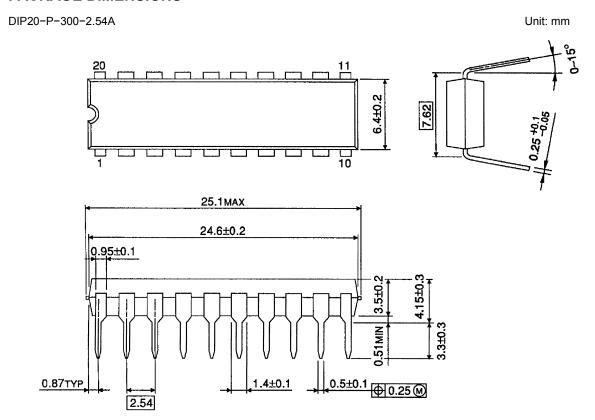
Note 2: Delated above 25°C in the proportion of 7.7 mW / °C (F Type)


RECOMMENDED OPERATING CONDITION (Ta = -40-85°C)

CHARACTERIS	TIC	SYMBOL	CONDITION		MIN	TYP.	MAX	UNIT
Supply Voltage Range		V_{DD}	_		4.5	_	5.5	V
DC Output Voltage		V _{DS}			_	30	V	
	PG			8ch On		_	170	
DC Output Current	FG	1	Duty 80%		_	_	90	mA / ch
DC Output Current	PG	I _{DS}		V _{DD} = 5.0 V	_	_	150	
	FG		Duty 100%		_	_	80	
DC Input Voltage		V _{IN}		_	GND	_	V_{DD}	V

ELECTRICAL CHARACTERISTICS (Ta = 25°C, V_{DD} = 5.0 V)

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
Output Leakage Current	I _{OZ}	_	V _{DS} = 35 V	_	_	50	μΑ
Low-Level Output Voltage	V _{DS}	_	I _{DS} = 150 mA	_	0.70	0.8	V
Low-Level Output Voltage		_	I _{DS} = 200 mA	_	0.94	1.2	v
Output Resistance	R _{ON}	_	I _{DS} = 200 mA	_	4.7	6.0	Ω
DC Input Current	I _{IN}	_	V _{IN} = GND, V _{IN} = V _{DD}	_	_	±1.0	μΑ
High-Level Input Voltage	V _{IN (H)}	_	_	3.5	_	V _{DD} +0.4	V
	V _{IN (L)}	_	_	-0.4	_	1.5	
Operating Supply Current	I _{DDopr}	_	8ch On, Output open f _{IN} = 1MHz	_	2	_	μА
Output Diode Forward Voltage	V _{FK}	_	I _{OK} = 5 mA	_	0.6	_	V
Turn-On Delay	t _{ON}	_	I _{OUT} = 170 mA	_	300	_	no
Turn-Off Delay	t _{OFF}	_	_	_	300	_	ns
Supply Current	I _{DD}	_	_	_	_	10	μΑ
Input Capacitance	C _{IN}	_	_	_	15	_	pF

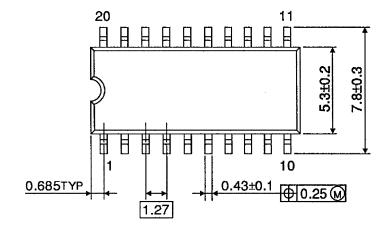

PRECAUTIONS for USING

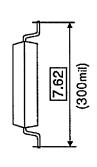
This IC does not integrate protection circuits such as overcurrent and overvoltage protectors.

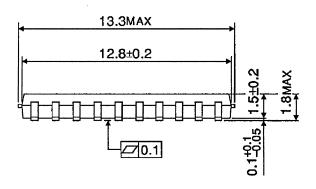
Thus, if excess current or voltage is applied to the IC, the IC may be damaged. Please design the IC so that excess current or voltage will not be applied to the IC.

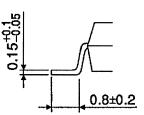
Utmost care is necessary in the design of the output line, V_{CC} (V_{DD}) and GND line since IC may be destroyed due to short-circuit between outputs, air contamination fault, or fault by improper grounding.

PACKAGE DIMENSIONS




Weight: 2.25 g (Typ.)


PACKAGE DIMENSIONS


SOP20-P-300-1.27

Unit: mm

Weight: 0.25 g (Typ.)

About solderability, following conditions were confirmed

- Solderability
 - (1) Use of Sn-63Pb solder Bath
 - · solder bath temperature = 230°C
 - · dipping time = 5 seconds
 - · the number of times = once
 - · use of R-type flux
 - (2) Use of Sn-3.0Ag-0.5Cu solder Bath
 - · solder bath temperature = 245°C
 - · dipping time = 5 seconds
 - · the number of times = once
 - · use of R-type flux

RESTRICTIONS ON PRODUCT USE

030619EBA

- The information contained herein is subject to change without notice.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which
 may result from its use. No license is granted by implication or otherwise under any patent or patent rights of
 TOSHIBA or others.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor
 devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical
 stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of
 safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of
 such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 - In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.