

- Single-Chip Interface Solution for the 9-terminal GeoPort™ Host (DTE)
- Designed to Operate up to 4 Mbit/s Full Duplex
- Single 5-V Supply Operation
- 6-kV ESD Protection on All Terminals
- Backward compatible With AppleTalk™ and LocalTalk™
- Combines Multiple Components into a Single-chip Solution
- Complements the SN75LBC777 9-Terminal GeoPort Peripheral (DCE) Interface Device
- LinBiCMOS™ Process Technology

description

The SN75LBC776 is a low-power LinBiCMOS device that incorporates the drivers and receivers for a 9-pin GeoPort host interface. GeoPort combines hybrid EIA/TIA-422-B and EIA/TIA-423-B drivers and receivers to transmit data up to four megabits per second (Mbit/s) full duplex. GeoPort is a serial communications standard that is intended to replace the RS-232, Appletalk, and LocalTalk printer ports all in one connector in addition to providing real-time data transfer capability. It provides point-to-point connections between GeoPort-compatible devices with data transmission rates up to 4 Mbit/s full duplex and a hot-plug feature. Applications include connection to telephony, integrated services digital network (ISDN), digital sound and imaging, fax-data modems, and other serial and parallel connections. The GeoPort is backwardly compatible to both LocalTalk and AppleTalk.

While the SN75LBC776 is powered-off ($V_{CC} = 0$) the outputs are in a high-impedance state. When the shutdown (SHDN) terminal is high, the charge pump is powered down and the outputs are in a high-impedance state. The driver enable (DEN) terminal sends the outputs of the differential driver into a high-impedance state with a high input signal. All drivers and receivers have fail-safe mechanisms to ensure a high output state when the inputs are left open.

A switched-capacitor voltage converter generates the negative voltage required from a single 5-V supply using four $0.1\text{-}\mu\text{F}$ capacitors, two capacitors between the C+ and C- terminals and two capacitors between VEE and ground.

The SN75LBC776 is characterized for operation over the 0°C to 70°C temperature range.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

GeoPort, LocalTalk, and AppleTalk are trademarks of Apple Computer, Incorporated.
LinBiCMOS is a trademark of Texas Instruments Incorporated.

PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.

Copyright © 2002, Texas Instruments Incorporated

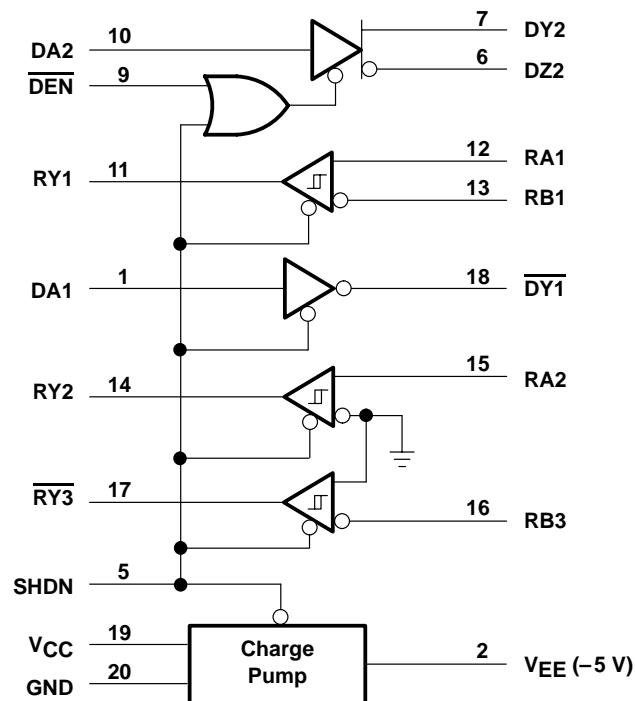
SN75LBC776 SINGLE-CHIP GeoPort™ TRANSCEIVER

SLLS221B – NOVEMBER 1995 – REVISED MARCH 2002

DRIVER FUNCTION TABLE†

INPUT DA1	INPUT DA2	ENABLE SHDN	ENABLE DEN	OUTPUT DY1	OUTPUT DY2	OUTPUT DZ2
H	X	L	X	L	X	X
L	X	L	X	H	X	X
X	H	L	L	X	H	L
X	L	L	L	X	L	H
OPEN	OPEN	L	L	L	H	L
X	X	H	X	Z	Z	Z
X	X	X	H	X	Z	Z
X	X	OPEN	OPEN	Z	Z	Z

† H = high level L = low level X = irrelevant ? = indeterminate Z = high impedance (off)


RECEIVER FUNCTION TABLE†

INPUT RA1 RB1	INPUT RA2 & RB3	ENABLE SHDN	OUTPUT RY1	OUTPUT RY2	OUTPUT RY3
H L	H	L	H	H	L
L H	L	L	L	L	H
OPEN	OPEN	L	H	H	H
SHORT‡	SHORT‡	L	?	?	?
X X	X	H	Z	Z	Z
X X	X	OPEN	Z	Z	Z

† H = high level L = low level X = irrelevant ? = indeterminate Z = high impedance (off)

‡ $-0.2 \text{ V} < \text{VID} < 0.2 \text{ V}$

function logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values are with respect to network ground terminal unless otherwise noted.
2. This parameter is measured in accordance with MIL-STD-883C, Method 3015.7

DISSIPATION RATING TABLE

DISSIPATION RATING TABLE			
PACKAGE	$T_A \leq 25^\circ\text{C}$ POWER RATING	OPERATING FACTOR ABOVE $T_A = 25^\circ\text{C}$	$T_A = 70^\circ\text{C}$ POWER RATING
DB	1035 mW	8.3 mW/ $^\circ\text{C}$	660 mW
DW	1125 mW	9.0 mW/ $^\circ\text{C}$	720 mW

SN75LBC776

SINGLE-CHIP GeoPort™ TRANSCEIVER

SLLS221B – NOVEMBER 1995 – REVISED MARCH 2002

recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage, V_{CC}		4.75	5	5.25	V
High-level input voltage, V_{IH}	DA, SHDN, \overline{DEN}	2		5.25	V
Low-level input voltage, V_{IL}	DA, SHDN, \overline{DEN}			0.8	V
Receiver common-mode input voltage, V_{IC}		-7		7	V
Receiver differential input voltage, V_{ID}		-12		12	V
Voltage-converter filter capacitance		0.2			μ F
Voltage-converter filter-capacitor equivalent series resistance (ESR)			0.2		Ω
Operating free-air temperature, T_A		0	70		$^{\circ}$ C

driver electrical characteristics over operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
V_{OH} High-level output voltage	Single ended, See Figure 1	$R_L = 12 \text{ k}\Omega$	3.6	4.53	V	
V_{OL} Low-level output voltage		$R_L = 120 \Omega$	2	3.63	V	
$ \Delta V_{ODI} $ Magnitude of differential output voltage $ (V_{(DY)} - V_{(DZ)}) $	$R_L = 120 \Omega$, See Figure 2	$R_L = 12 \text{ k}\Omega$	-4.53	-3.6	V	
$\Delta \Delta V_{ODI} $ Change in differential voltage magnitude		$R_L = 120 \Omega$	-2.7	-1.8	V	
V_{OC} Common-mode output voltage	See Figure 3	4			V	
$ \Delta V_{OC(SS)} $ Magnitude of change, common-mode steady state output voltage			250		mV	
$ \Delta V_{OC(PP)} $ Magnitude of change, common-mode peak-to-peak output voltage			700		mV	
I_{CC} Supply current	SHDN = $\overline{DEN} = 0 \text{ V}$, No load	7	15		mA	
	SHDN = $\overline{DEN} = 5 \text{ V}$, No load		100		μ A	
I_{OZ} High-impedance output current	$V_O = -10 \text{ V to } 10 \text{ V}$, $V_{CC} = 0 \text{ or } 5 \text{ V}$			± 100	μ A	
I_{OS} Short-circuit output current (see Note 3)	$V_O = -5 \text{ V to } 5 \text{ V}$			± 170	± 450	mA

NOTE 3: Not more than one output should be shorted at one time.

driver switching characteristics over operating free-air temperature range (unless otherwise noted)

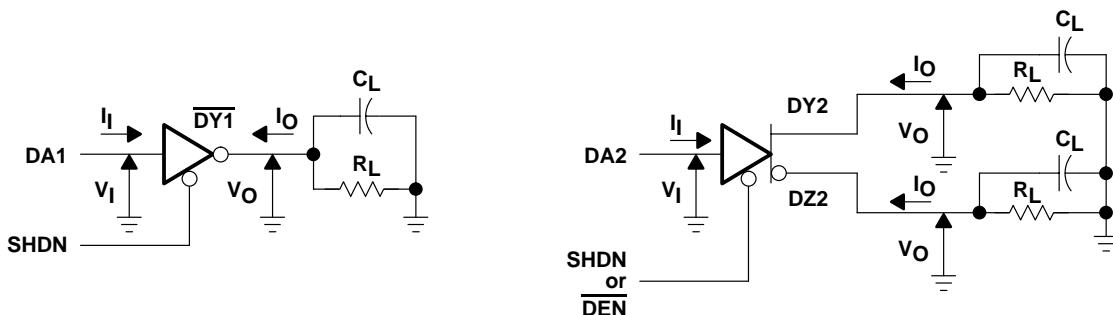
PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PHL}	Propagation delay time, high-to-low level output	Single ended, See Figure 4		42	75	ns
t _{PLH}	Propagation delay time, low-to-high level output			41	75	ns
t _{PZL}	Driver output enable time to low-level output			25	100	μs
t _{PZH}	Driver output enable time to high-level output			25	100	μs
t _{PLZ}	Driver output disable time from low-level output			28	100	ns
t _{PHZ}	Driver output disable time from high-level output			37	100	ns
t _r	Rise time			10	25	75
t _f	Fall time			10	23	75
t _{PHL}	Propagation delay time, high-to-low level output			40	75	ns
t _{PLH}	Propagation delay time, low-to-high level output			42	75	ns
t _{PZL}	Driver output enable time to low-level output	SHDN DEN SHDN DEN SHDN DEN SHDN DEN		25	100	μs
t _{PZH}	Driver output enable time to high-level output			29	150	ns
t _{PLZ}	Driver output disable time from low-level output			25	100	μs
t _{PHZ}	Driver output disable time from high-level output			35	150	ns
t _r	Rise time			28	100	ns
t _f	Fall time			34	100	ns
t _{SK(p)}	Pulse skew, t _{PLH} – t _{PHL}			37	100	ns
				34	100	ns
				10	27	75
				10	26	75
					22	ns

receiver electrical characteristics over operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{IT+}	Positive-going input threshold voltage	See Figure 6			200	mV
V _{IT-}	Negative-going input threshold voltage				-200	
V _{hys}	Differential input voltage hysteresis (V _{IT+} – V _{IT-})				50	
V _{OH}	High-level output voltage (see Note 4)	V _{IC} = 0, I _{OH} = -2 mA, See Figure 6	2	4.9		V
V _{OL}	Low-level output voltage	V _{IC} = 0, I _{OL} = 2 mA, See Figure 6	0.2	0.8		V
I _{OS}	Short-circuit output current	V _O = 0	-85	-45		mA
		V _O = V _{CC}	47	+85		
R _I	Input resistance	V _{CC} = 0 or 5.25 V, V _I = -12 V to 12 V	6	30		kΩ

NOTE 4: When the inputs are left unconnected, receivers one and two interpret these as high-level inputs and receiver three interprets these as low-level inputs so that all outputs are at a high level.

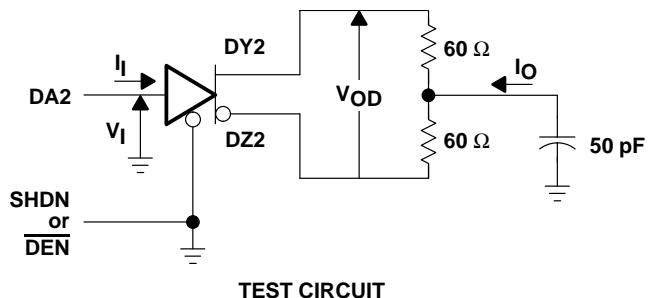
SN75LBC776


SINGLE-CHIP GeoPort™ TRANSCEIVER

SLLS221B – NOVEMBER 1995 – REVISED MARCH 2002

receiver switching characteristics over operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t_{PHL}	$R_L = 2 \text{ k}\Omega$, See Figure 6		31	75	ns
t_{PLH}			30	75	ns
t_r			15	30	ns
t_f			15	30	ns
$t_{SK(P)}$	Pulse skew $ t_{PLH} - t_{PHL} $			20	ns
t_{PZL}	Differential, See Figure 7		35	100	ns
t_{PZH}			32	100	ns
t_{PLZ}			21	100	ns
t_{PHZ}			21	100	ns
t_{PZL}	Single ended, See Figure 7		12	25	μs
t_{PZH}			12	25	μs
t_{PLZ}			25	100	ns
t_{PHZ}			125	400	ns


PARAMETER MEASUREMENT INFORMATION

NOTE A: $C_L = 50 \text{ pF}$

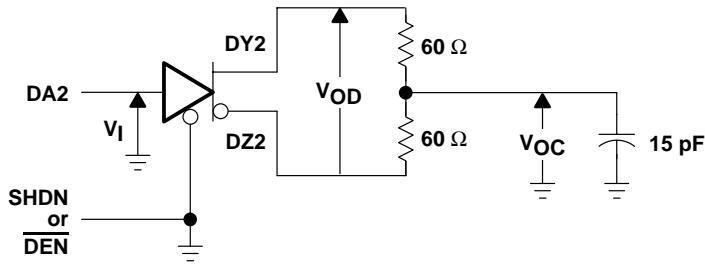
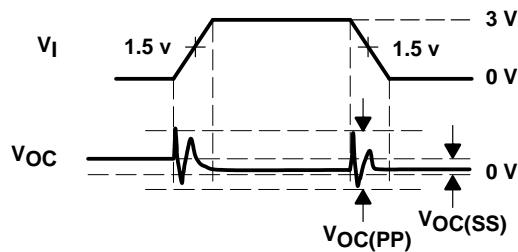

TEST CIRCUIT

Figure 1. Single-Ended Driver DC Parameter Test



TEST CIRCUIT

Figure 2. Differential Driver DC Parameter Test

TEST CIRCUIT (see Note A)

VOLTAGE WAVEFORM

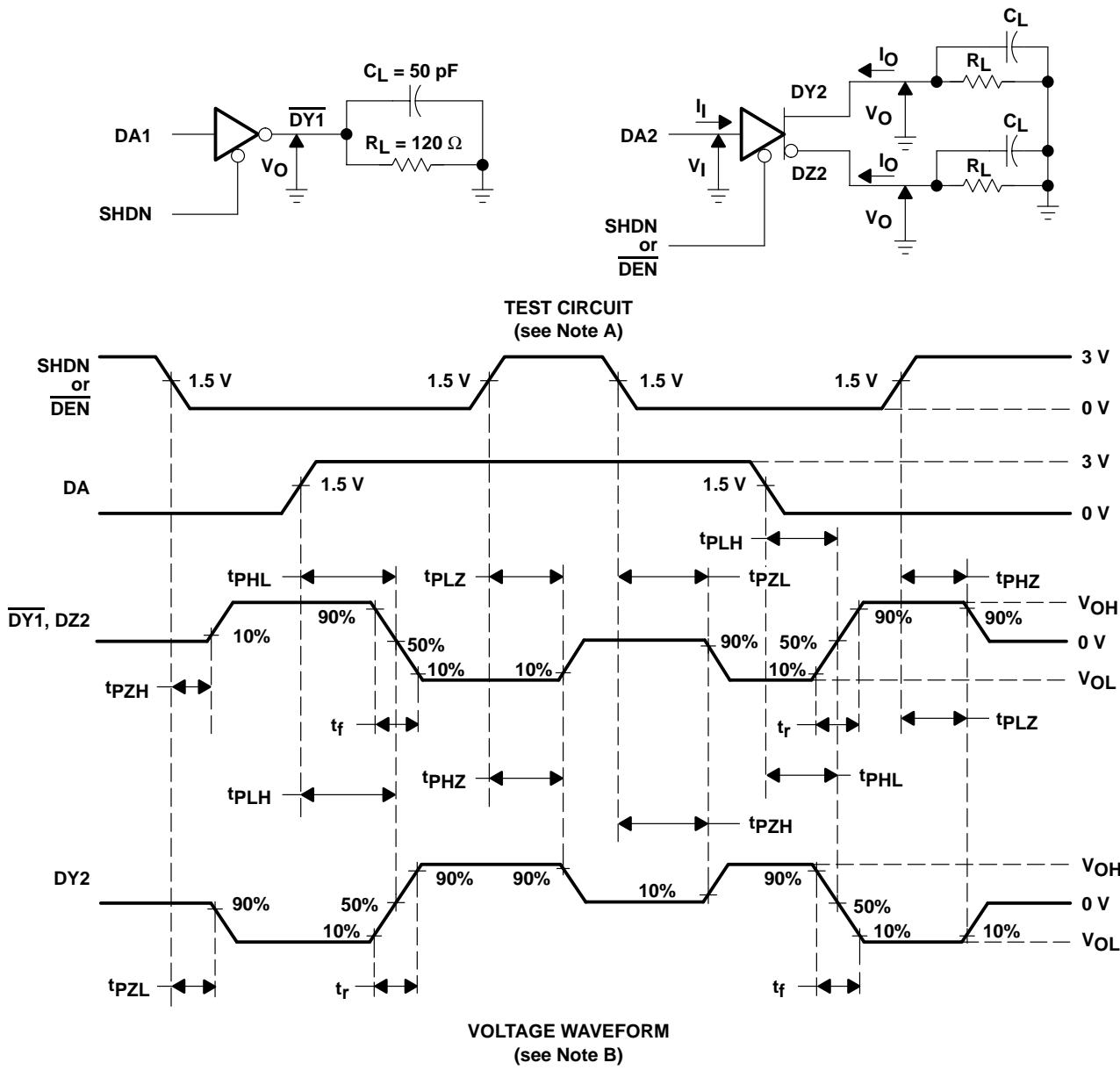

NOTE A: Measured 3dB bandwidth = 300 MHz

Figure 3. Differential-Driver Common-Mode Output Voltage Tests

SN75LBC776 **SINGLE-CHIP GeoPort™ TRANSCEIVER**

SLLS221B – NOVEMBER 1995 – REVISED MARCH 2002

PARAMETER MEASUREMENT INFORMATION

NOTES: A. $C_L = 50 \text{ pF}$, $R_L = 120 \Omega$
 B. The input waveform $t_r, t_f \leq 10 \text{ ns}$.

Figure 4. Single-Ended Driver Propagation and Transition Times

PARAMETER MEASUREMENT INFORMATION

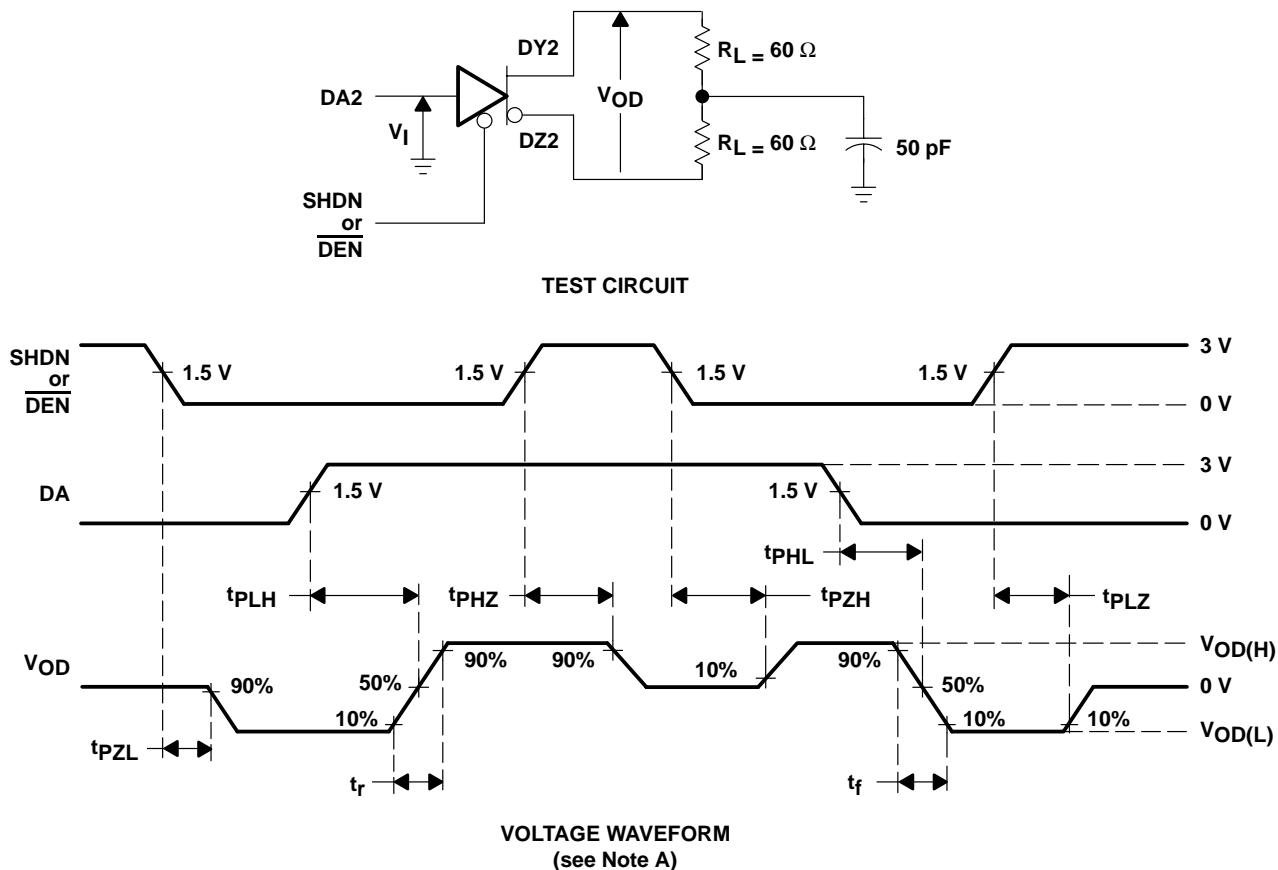
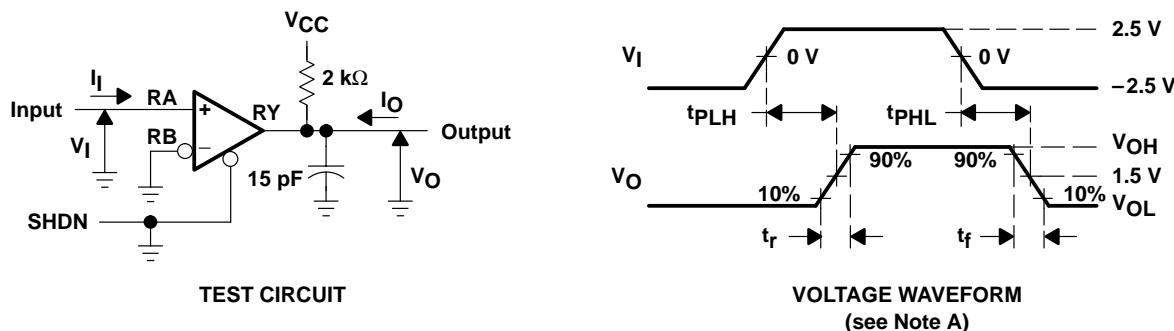
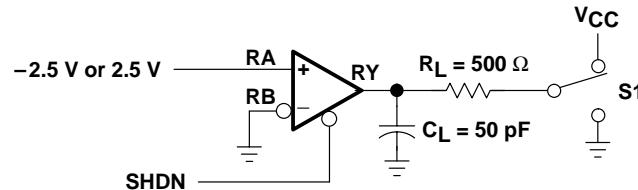
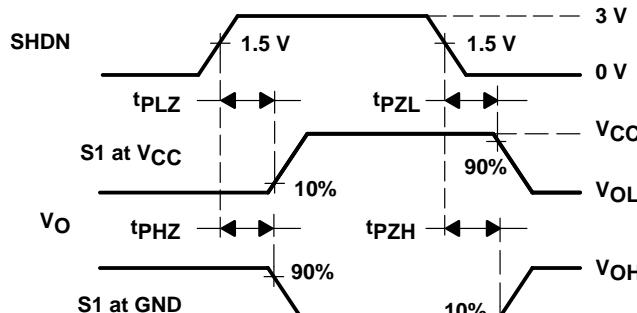


Figure 5. Differential Driver Propagation and Transition Times




Figure 6. Receiver Propagation and Transition Times

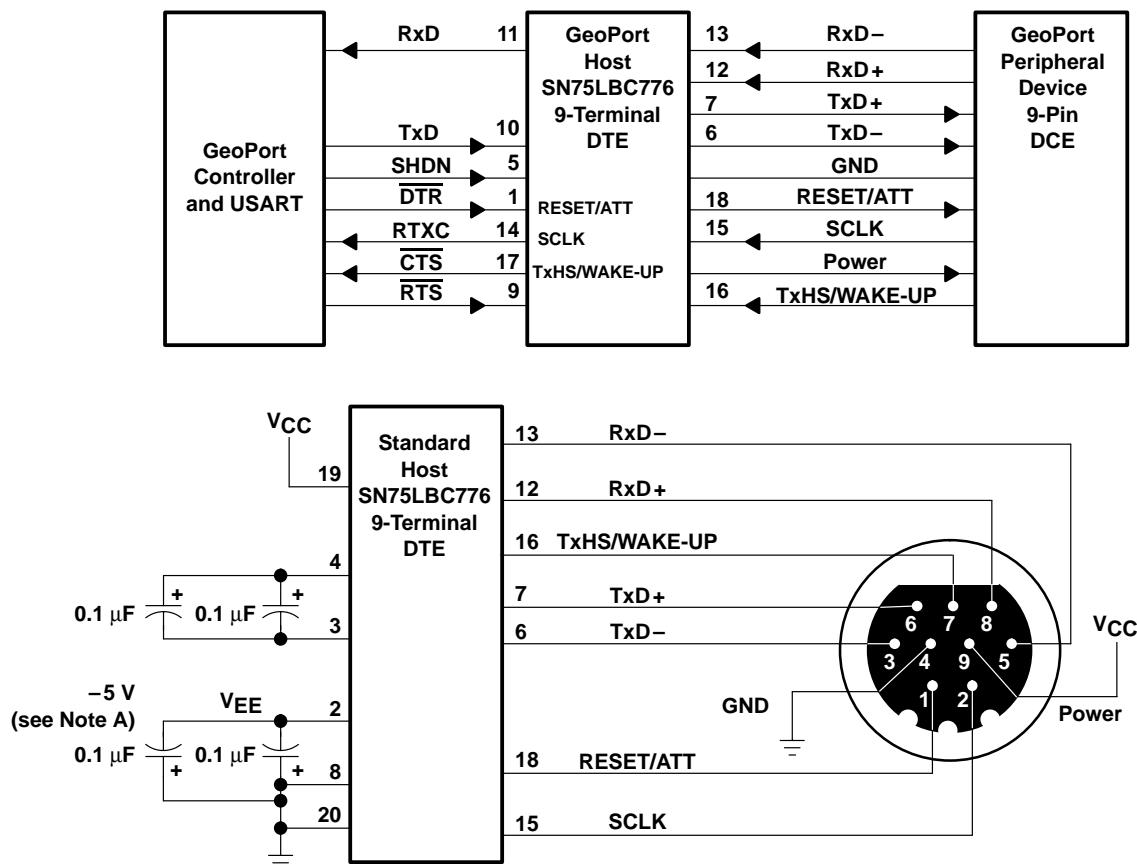
NOTE A: The input waveform $t_r, t_f \leq 10$ ns.


SN75LBC776 SINGLE-CHIP GeoPort™ TRANSCEIVER

SLLS221B – NOVEMBER 1995 – REVISED MARCH 2002

PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT



VOLTAGE WAVEFORM
(see Note A)

NOTE A: The input waveform t_r , $t_f \leq 10$ ns.

Figure 7. Receiver Enable and Disable Test Circuit and Waveforms

APPLICATION INFORMATION

NOTE A: The AVX 0603YC104MATXA or equivalent is one of the possible capacitors that can be used as the charge pump capacitor.

Figure 8. GeoPort 9-Terminal DTE Connection Application

SN75LBC776

SINGLE-CHIP GeoPort™ TRANSCEIVER

SLLS221B – NOVEMBER 1995 – REVISED MARCH 2002

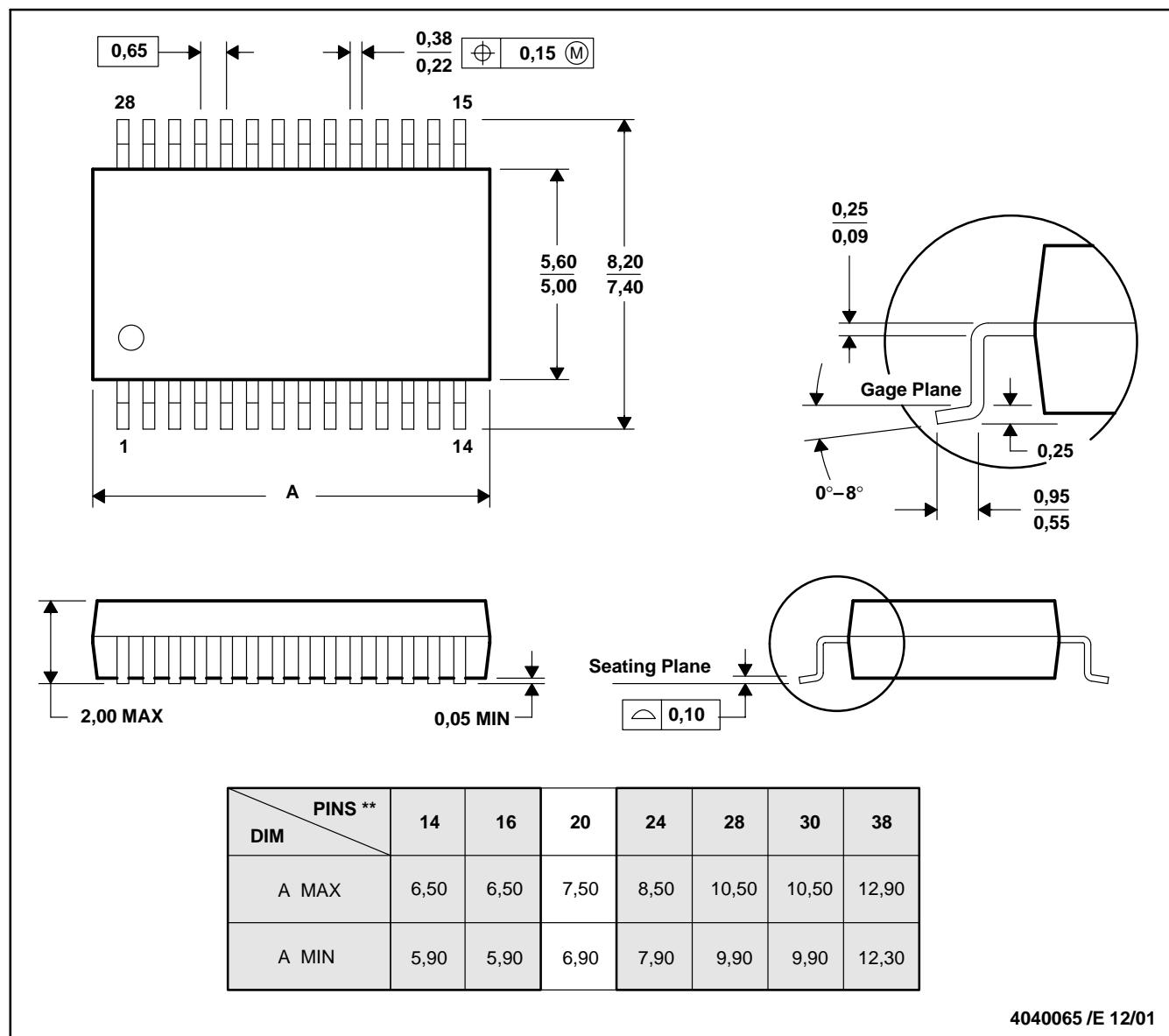
APPLICATION INFORMATION

generator characteristics

PARAMETER	TEST CONDITIONS	EIA/TIA-232/V.28		EIA/TIA-423/V.10		562		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	
V _O	Open circuit		25	4	6		13.2	V
	3 kΩ ≤ R _L ≤ 7 kΩ	5	15	NA		3.7		V
	R _L = 450 Ω	NA		3.6		NA		V
V _{O(RING)}	Output voltage ringing		NA		10%		5%	
I _{OS}	Short-circuit output current	V _O = 0		100		150		mA
I _{O(OFF)}	V _{CC} = 0, V _O < 2 V	300		NA		300		Ω
	V _{CC} = 0, V _O < 6 V	NA		±100		NA		μA
SR	Output voltage slew rate		30	NA		4	30	V/μs
t _t	±3.3 V to ±3.3 V	NA		NA		0.22	2.1	μs
	±3 V to ±3 V	0.04		NA		NA		ui†
	10% to 90%	NA		0.3	NA	NA		ui†

† ui is the unit interval and is the inverse of the signaling rate (bit transmit time).

receiver characteristics


PARAMETER	TEST CONDITIONS	EIA/TIA-232/V.28		EIA/TIA-423/V.10		562		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	
V _I	Input voltage magnitude		25		10		25	V
V _{IT}	V _I < 15 V	-3	3	NA		-3	3	V
	V _I < 10 V	NA		-0.2	0.2	NA		
R _I	3 V < V _I < 15 V	3	7	NA		3	7	kΩ
	V _I < 10 V	NA		4		NA		kΩ

MECHANICAL INFORMATION

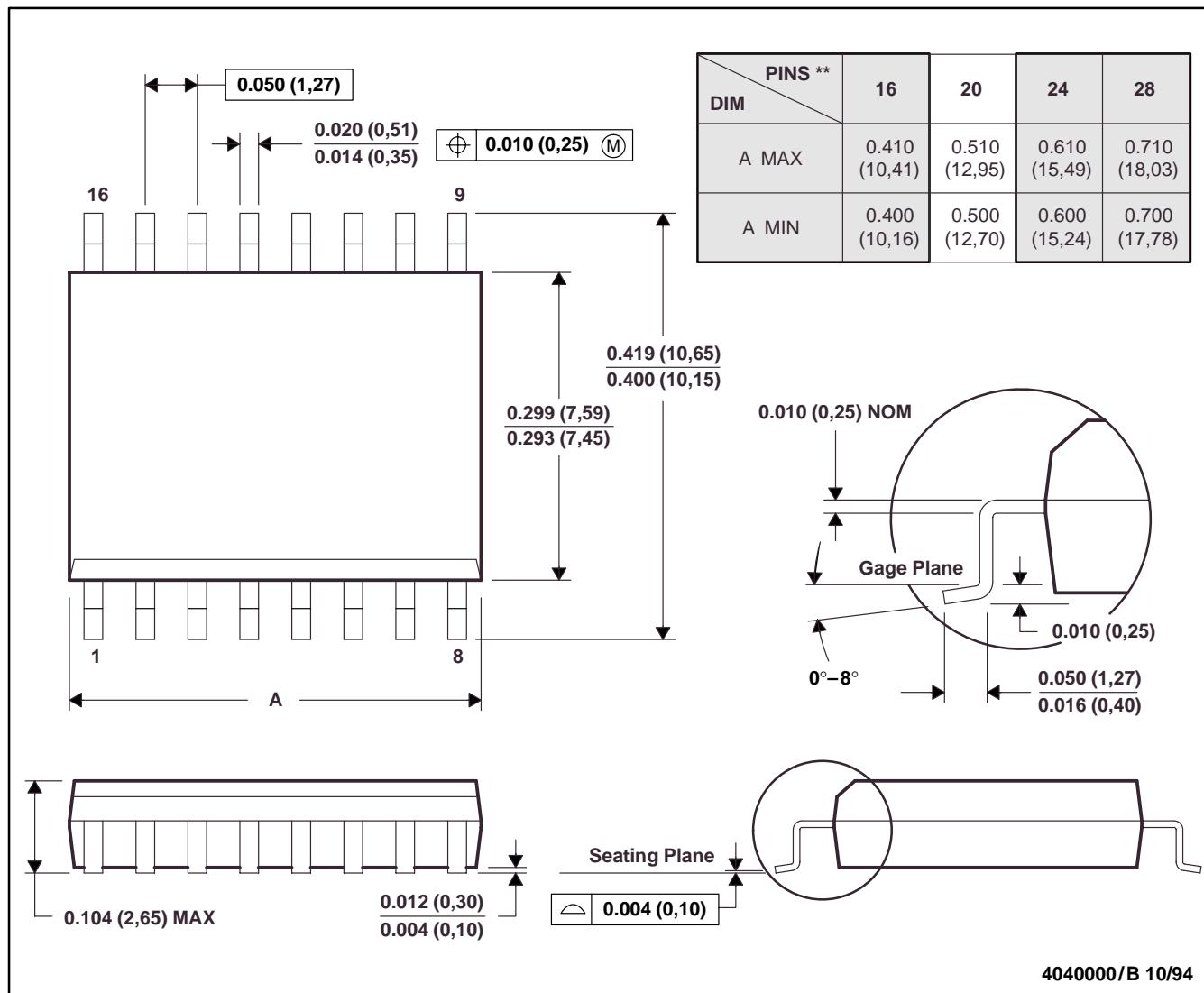
DB (R-PDSO-G**)

28 PINS SHOWN

PLASTIC SMALL-OUTLINE

NOTES: A. All linear dimensions are in millimeters.
 B. This drawing is subject to change without notice.
 C. Body dimensions do not include mold flash or protrusion not to exceed 0.15.
 D. Falls within JEDEC MO-150

MECHANICAL DATA


MSSO002E – JANUARY 1995 – REVISED DECEMBER 2001

MECHANICAL INFORMATION

DW (R-PDSO-G**)

16 PIN SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).
 B. This drawing is subject to change without notice.
 C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
 D. Falls within JEDEC MS-013

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265