

HIGH POWER DUAL OPERATIONAL AMPLIFIER 171/172

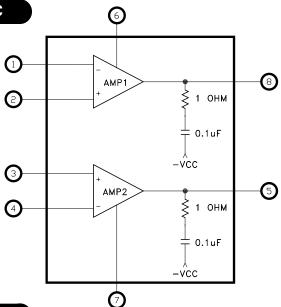
M.S.KENNEDY CORP.

4707 Dey Road Liverpool, N.Y. 13088

(315) 701-6751

FEATURES:

- · Low Cost
- Wide Supply Voltage Range: 5V to 40V
- · High Output Current: 3A Minimum
- High Efficiency: |Vs-2.2V| at 2.5A
- Internal Current Limit
- Wide Common Mode Range (Includes Negative Supply Voltage)
- · Low Distortion
- Internal Output Snubbers for Ultra-Stable Operation


MIL-PRF-38534 QUALIFIED

DESCRIPTION:

The MSK 171/172 is a high power dual operational amplifier. Each amplifier is capable of delivering three amps of current to the load. The MSK 171/172 is an excellent low cost alternative for bridge mode configurations since both amplifiers are packaged together and will track thermally. The wide common mode range includes the negative rail, facilitating single supply applications. It is possible to have a "ground based" input driving a single supply amplifier with ground acting as the second or "bottom" supply of the amplifier. To maintain stability, output snubber networks have been internally connected to each op amp output (see "amplifier stability" in the attached application notes). The output stage is also current limit protected to approximately 3.0 amps. The MSK 171 is packaged in a space efficient 8-pin power dip while the MSK 172 is packaged in an 8-pin z-pack power dip with heat sink attach tabs. Consult factory for other packaging options if desired.

EQUIVALENT SCHEMATIC

TYPICAL APPLICATIONS

- · Half and Full Bridge Motor Drives
- Audio Power Amplifiers

Bridge - 60W RMS Per Package Stereo - 30W RMS Per Channel

· Ideal for Single Supply Systems

5V - Peripheral

12V - Automotive

28V - Avionic

PIN-OUT INFORMATION

-Input 1

+Input 1 2

+Input 2

-Input 2

1

7 -Vcc

+Vcc

Output 2

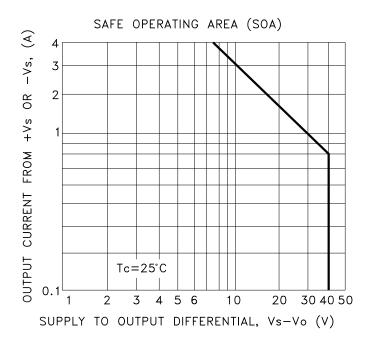
8 Output 1

ABSOLUTE MAXIMUM RATINGS

Vcc	Total Supply Voltage 40V	Tst Storage Temperature65°C to +150°C
± І оит	Output Current (within S.O.A.) 4A	T _{LD} Lead Temperature
V_{IND}	Input Voltage (Differential) ± Vcc	Tc Case Operating Temperature
V_{IN}	Input Voltage	(MSK171B/172B)55°C to +125°C
	(Common Mode) + Vcc, -Vcc-0.5V	(MSK171/172)40°C to +85°C
T J	Junction Temperature 150°C	RTH Thermal Resistance (DC)
		Junction to Case 4.0°C/W

ELECTRICAL SPECIFICATIONS

Parameter	Test Conditions ①	Group A	MSK171B/172B		MSK171/172				
Parameter		Subgroup	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
STATIC									
Supply Voltage Range ②	(Split Supply)	-	±2.5	± 15	± 20	±2.5	± 15	± 20	V
		1	-	±35	± 75	-	±35	± 75	mA
Quiescent Current	Total; VIN = 0V	2	-	± 75	±105	-	-	-	mA
		3	-	±45	± 75	-	-	-	mA
INPUT									
Offset Voltage	VIN = OV	1	-	±0.5	±10	-	± 2	±10	mV
Offset Voltage Drift ②	VIN = OV	-	-	± 20	±50	-	± 20	-	μV/°C
Input Bias Current (2)	VcM = 0V	-	-	±35	±500	-	±35	±1000	nA
input bias current	Full Temp.	-	-	± 75	±1000	-	± 75	-	nA
Power Supply Rejection ②	$\Delta Vcc = \pm 15V$	-	60	80	-	60	80	-	dB
Common Mode Rejection ②	$Vcm = \pm 10VDC$	-	60	85	-	60	85	-	dB
Total Noise $RL = 500\Omega$ Av = 1 $CL = 1500pF$		-	-	0.1	1.0	-	0.1	1.0	mV
OUTPUT									
Output Voltage Swing	$(IOUT = \pm 0.5A)$	4	±14	±14.2	-	±14	±14.2	-	V
Output Current	Vout = MAX	4	±3.0	±4.0	-	±3.0	±4.0	-	Α
Current Limit ②		-	-	±4.0	-	-	±4.0	-	Α
Power Bandwidth ② Vout = 28VPP		-	-	13.6	-	-	13.6	-	KHz
Crosstalk	Iout = 1A f = 1KHz	-	60	68	-	-	68	-	dB
Capacitive Load ② $Av = + 1V/V$		-	-	0.22	-	-	0.22	-	μF
TRANSFER CHARACTERISTICS									
Slew Rate		4	0.5	1.2	-	0.5	1.2	-	V/μS
Open Loop Voltage Gain ② $F = 10$ Hz $RL = 500\Omega$		-	80	100	-	80	100	-	dB


2

NOTES:

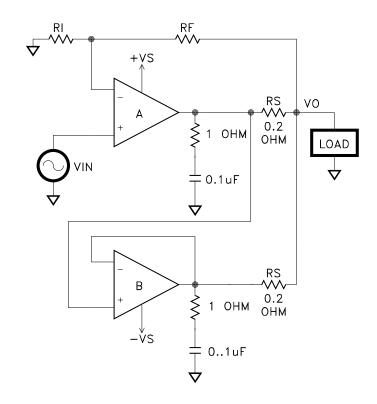
Unless otherwise noted ±Vcc = ±15VDC.
 Devices shall be capable of meeting the parameter, but need not be tested. Typical parameters are for reference only.
 Industrial grade devices shall be tested to subgroups 1 and 4 unless otherwise requested.
 Military grade devices ('B' suffix) shall be 100% tested to subgroups 1,2,3 and 4.

⁽a) Subgroup 5 and 6 testing available upon request.
(b) Subgroup 1,4 Tc = +25°C
Subgroup 2,5 Tc = +125°C
Subgroup 3,6 Ta = -55°C

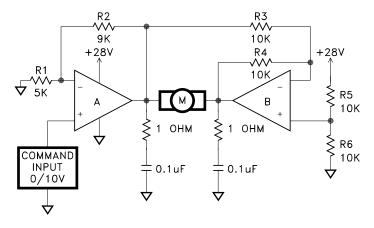
SAFE OPERATING AREA (SOA)

Safe operating area curves are a graphical representation of all of the power limiting factors involved in the output stage of an operational amplifier. Three major power limiting factors are; output transistor wire bond carrying capability, output transistor junction temperature and secondary breakdown effects. To see if your application is meeting or exceeding the limitations of the safe operating area curves, perform the following steps:

- 1.) Find the worst case output power dissipation. For a split supply, purely resistive load application, this occurs when $Vout = 1/2 \ Vcc$.
- 2.) Take the values of (Vcc-Vout) and the corresponding output current and find their intersection on the safe operating area curves.
- 3.) Verify this point is below the safe operating area curves.


This is a simple task for purely resistive loads, for reactive loads the following table will save extensive analysis. Under transient conditions, capacitive and inductive loads up to the following maximum are safe.

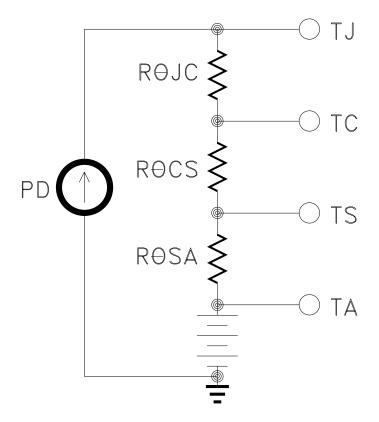
± Vcc	Capacitive Load	Inductive Load
20V	200uF	7.5mH
15V	500uF	25mH
10V	5mF	35mH
5V	50mF	150mH


If the inductive load is driven near steady state conditions allowing the output to drop more than 6V below the supply rail while the amplifier is current limiting, the inductor should be capacitively coupled or the supply voltage must be lowered to meet the SOA criteria. It is a good practive to also connect reverse biased fast recovery diodes to the output for protection against sustained high energy flyback.

AMPLIFIER STABILITY

Since both output transistors in this amplifier are NPN, consideration must be taken when stabilizing the output. A one ohm resistor, 0.1uF capacitor snubber network has been added internally from the output to -Vcc on each amplifier. This configuration minimizes local output stage oscillations. As always, adequate power supply bypassing is a necessity for amplifier stability. A parallel combination of a 4.7uF electrolytic (for every amp of output current) and a 0.01uF ceramic disc capacitor should be connected as close as possible to the package power supply pins to ground. The R-C snubber networks shown on the outputs of the amplifiers in the typical circuits are internal and should not be added externally.

PARALLEL CONNECTION (yields single 6A amplifier)


BIDIRECTIONAL MOTOR DRIVE

APPLICATION NOTES CONTINUED

HEAT SINKING

To determine if a heat sink is necessary for your application and if so, what type, refer to the thermal model and governing equation below.

Thermal Model:

Governing Equation:

 $TJ = PD x (R\theta JC + R\theta CS + R\theta SA) + TA$

Where

T_J = Junction Temperature

PD = Total Power Dissipation

 $R\theta JC \,=\, Junction \; to \; Case \; Thermal \; Resistance$

Recs = Case to Heat Sink Thermal Resistance

 $R\theta SA = Heat Sink to Ambient Thermal Resistance$

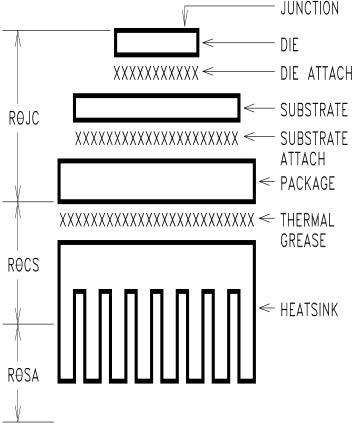
Tc = Case Temperature

TA = Ambient Temperature

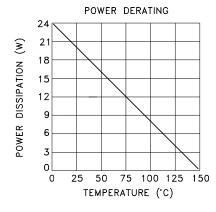
Ts = Sink Temperature

Example:

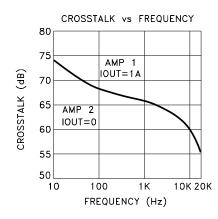
In our example the amplifier application requires each output to drive a 10 volt peak sine wave across a 20 ohm load for 0.5 amp of output current. For a worst case analysis we will treat the 0.5 amp peak output current as a D.C. output current. The power supplies are $\pm 20 \text{VDC}$.

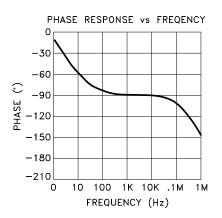

1.) Find Driver Power Dissipation

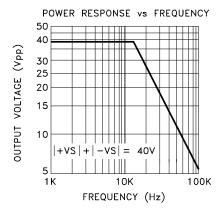
- 2.) For conservative design, set $T_J = +150$ °C.
- 3.) For this example, worst case TA = +25 °C
- 4.) ReJC = 4.0° C/W typically
- 5.) Recs = 0.15 °C/W for most thermal greases
- 6.) Rearrange governing equation to solve for Resa

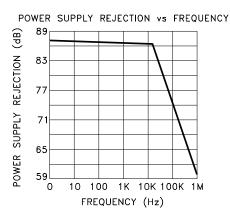

Resa =
$$((T_J - T_A)/P_D) - (R_{\theta}J_C) - (R_{\theta}C_S)$$

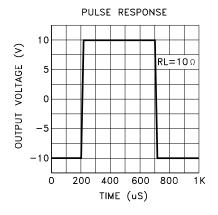
= $((150^{\circ}C - 25^{\circ}C) / 13W) - (4^{\circ}C/W) - (.15^{\circ}C/W)$
 $\cong 5.5^{\circ}C/W$

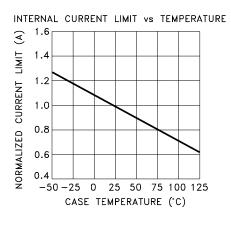

The heat sink in this example must have a thermal resistance of no more than $5.5\,^{\circ}\text{C/W}$ to maintain a junction temperature of no more than $+150\,^{\circ}\text{C}$.

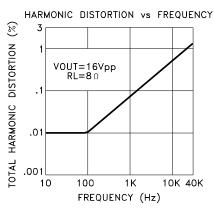

Thermal Path:

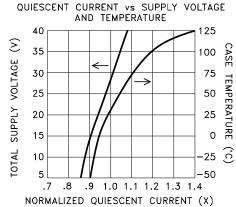


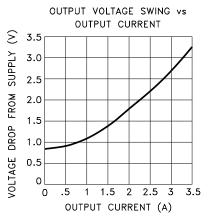

TYPICAL PERFORMANCE CURVES

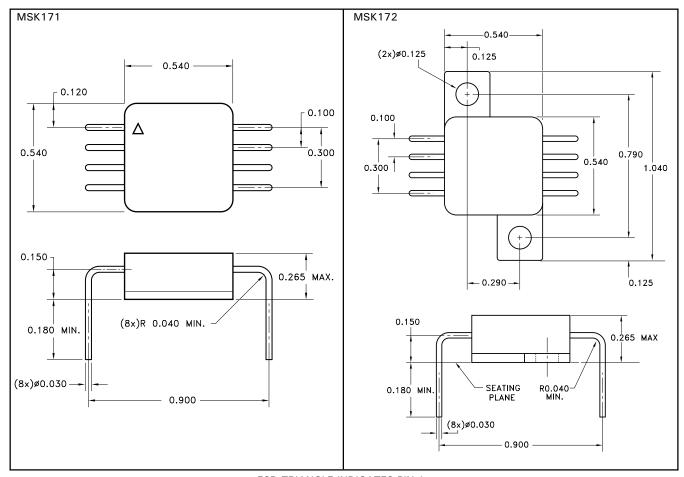












ESD TRIANGLE INDICATES PIN 1. ALL DIMENSIONS ARE $\pm\,0.010$ INCHES UNLESS OTHERWISE LABELED.

ORDERING INFORMATION

Part Number	Screening Level
MSK171	Industrial
MSK171B	Military-Mil-PRF-38534
MSK172	Industrial
MSK172B	Military-Mil-PRF-38534

M.S. Kennedy Corp.
4707 Dey Road, Liverpool, New York 13088
Phone (315) 701-6751
FAX (315) 701-6752
www.mskennedy.com

The information contained herein is believed to be accurate at the time of printing. MSK reserves the right to make changes to its products or specifications without notice, however, and assumes no liability for the use of its products.