

Schottky Barrier Diodes

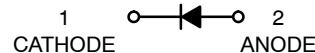
NSR1020MW2

This Schottky Barrier Diode in the SOD-323 package offers extremely low V_f performance. The low forward voltage makes them capable of handling high current in a very small package. The resulting device is ideally suited for application as a blocking diode in charging applications or as part of discrete buck converter or discrete boost converter. As part of a buck conversion circuit, a boost conversion circuit or a charging circuit the low V_f drop of the Schottky improves the efficiency of the overall device by consuming less power in the forward mode.

Features

- Low Forward Voltage - 0.24 Volts (Typ) @ I_F = 10 mAdc
- High Current Capability
- ESD Rating - Human Body Model: CLASS 3B
- Machine Model: C
- NSVR Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS (T_J = 125 °C unless otherwise noted)


Symbol	Rating	Value	Unit
V _R	Reverse Voltage	20	Vdc
V _{RM}	Peak Reverse Voltage	30	V
P _F	Forward Power Dissipation @ T _A = 25 °C Derate above 25 °C	200 2.0	mW mW/°C
I _F	Forward Current (DC) Continuous	1	A
I _F	Forward Current t = 8.3 ms Half Sinewave	5	A
I _{FRM}	Repetitive Forward Current period = 1.5 s, Duty Cycle = 66.7%	2	A
T _J	Junction Temperature	125 Max	°C
T _{stg}	Storage Temperature Range	-55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

HIGH CURRENT SCHOTTKY BARRIER DIODE

SOD-323
CASE 477
STYLE 1

MARKING DIAGRAM

RE = Specific Device Code
M = Date Code
▪ = Pb-Free Package
(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
NSR1020MW2T1G	SOD-323 (Pb-Free)	3,000 / Tape & Reel
NSR1020MW2T3G	SOD-323 (Pb-Free)	10,000 / Tape & Reel
NSVR1020MW2T1G	SOD-323 (Pb-Free)	3,000 / Tape & Reel

[†] For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, [BRD8011/D](#).

NSR1020MW2

ELECTRICAL CHARACTERISTICS ($T_A = 25^\circ\text{C}$ unless otherwise noted)

Symbol	Characteristic	Min	Typ	Max	Unit
C_T	Total Capacitance ($V_R = 5.0\text{ V}$, $f = 1.0\text{ MHz}$)	–	25	29	pF
I_R	Reverse Leakage ($V_R = 15\text{ V}$)	–	–	40	$\mu\text{A}/\text{dC}$
V_F	Forward Voltage ($I_F = 1\text{ mA}/\text{dC}$)	–	–	0.20	Vdc
V_F	Forward Voltage ($I_F = 10\text{ mA}/\text{dC}$)	–	–	0.26	Vdc
V_F	Forward Voltage ($I_F = 100\text{ mA}/\text{dC}$)	–	–	0.33	Vdc
V_F	Forward Voltage ($I_F = 500\text{ mA}/\text{dC}$)	–	–	0.44	Vdc
V_F	Forward Voltage ($I_F = 1000\text{ mA}/\text{dC}$)	–	–	0.54	Vdc

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

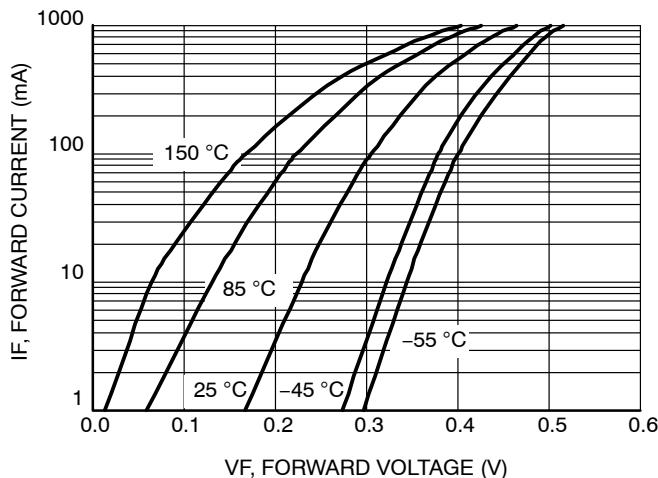


Figure 1. Forward Voltage

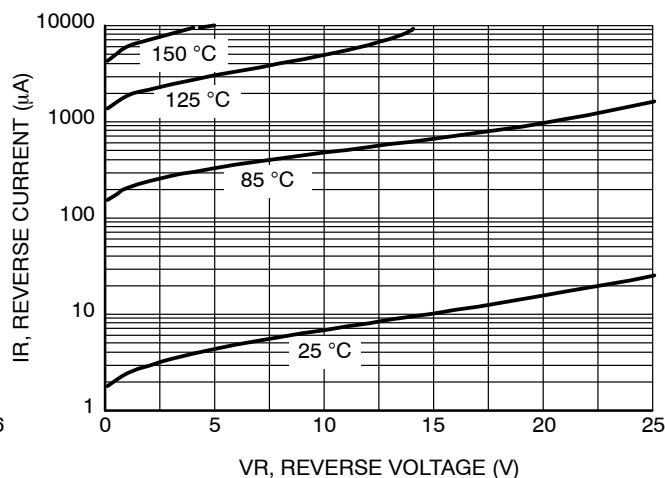


Figure 2. Leakage Current

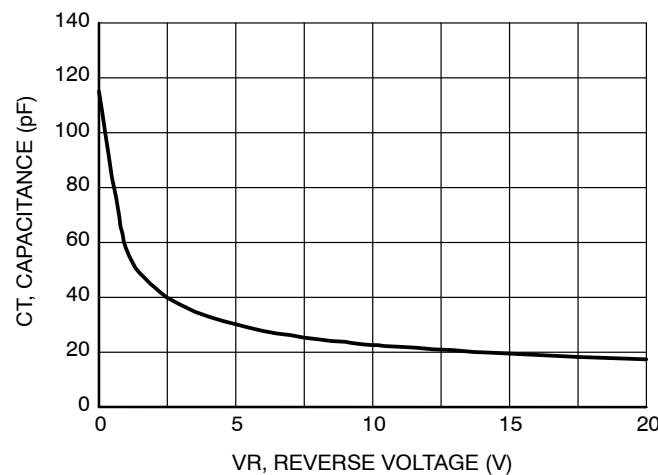
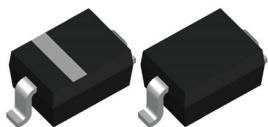
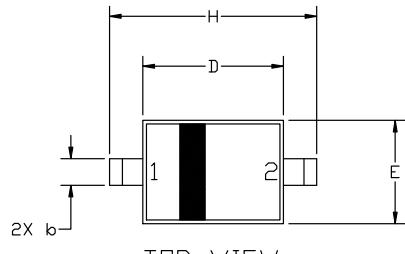
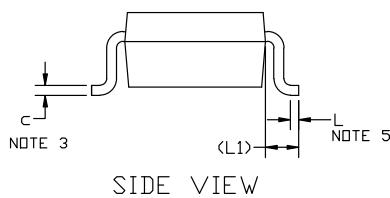



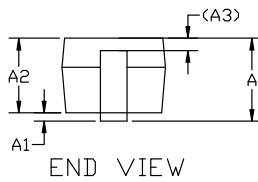
Figure 3. Total Capacitance

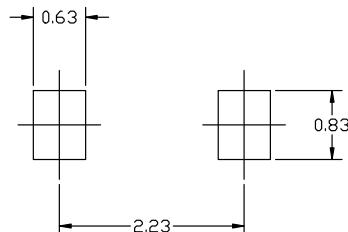

REVISION HISTORY

Revision	Description of Changes	Date
4	Rebranding to onsemi format.	10/08/2025


This document has undergone updates prior to the inclusion of this revision history table. The changes tracked here only reflect updates made on the noted approval dates.

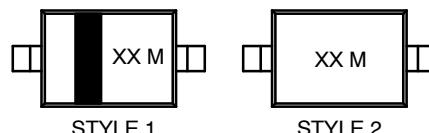
SOD-323 1.70x1.25x0.85
CASE 477
ISSUE K


DATE 11 MAR 2024


TOP VIEW

SIDE VIEW

END VIEW


RECOMMENDED MOUNTING FOOTPRINT

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference manual, S0LDERRM/D.

NOTES:

1. DIMENSIONING AND TOLERANCING AS PER ASME Y14.5M, 2018.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. LEAD THICKNESS SPECIFIED PER L/F DRAWING WITH SOLDER PLATING.
4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.
5. DIMENSION L IS MEASURE FROM END OF RADIUS.

DIM	MILLIMETERS		
	MIN.	NOM.	MAX.
A	0.80	0.90	1.00
A1	0.00	0.05	0.10
A2	0.75	0.85	0.95
A3	0.15 (REF)		
b	0.25	0.32	0.4
c	0.09	0.12	0.18
D	1.60	1.70	1.80
E	1.15	1.25	1.35
H	2.30	2.50	2.70
L	0.08	---	---
L1	0.40 (REF)		

**GENERIC
MARKING DIAGRAM***

XX = Specific Device Code
M = Date Code

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

STYLE 1:
PIN 1. CATHODE (POLARITY BAND)
2. ANODE

STYLE 2:
NO POLARITY

DOCUMENT NUMBER:	98ASB17533C	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.
DESCRIPTION:	SOD-323 1.70x1.25x0.85	PAGE 1 OF 1

onsemi and onSemiconductor are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, **ONSEMI**, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "**onsemi**" or its affiliates and/or subsidiaries in the United States and/or other countries. **onsemi** owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of **onsemi**'s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. **onsemi** reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and **onsemi** makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation
onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at
www.onsemi.com/support/sales

