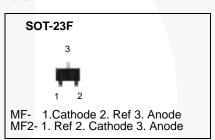
July 2013


## KA431S / KA431SA / KA431SL Programmable Shunt Regulator

#### **Features**

- Programmable Output Voltage to 36 V
- Low Dynamic Output Impedance 0.2 Ω (Typical)
- Sink Current Capability: 1.0 to 100 mA
- Equivalent Full-Range Temperature Coefficient of 50 ppm/°C (Typical)
- Temperature Compensated for Operation Over Full Rated Operating Temperature Range
- · Low Output Noise Voltage
- · Fast Turn-on Response

#### **Description**

The KA431S / KA431SA / KA431SL are three-terminal adjustable regulator series with a guaranteed thermal stability over the operating temperature range. The output voltage can be set to any value between  $V_{\mbox{\scriptsize REF}}$  (approximately 2.5 V) and 36 V with two external resistors. These devices have a typical dynamic output impedance of  $0.2~\Omega.$  Active output circuitry provides a sharp turn-on characteristic, making these devices excellent replacement for Zener diodes in many applications.



## **Ordering Information**

| Part Number  | Operating<br>Temperature<br>Range | Output Voltage<br>Tolerance | Top Mark | Package    | Packing Method |  |  |  |
|--------------|-----------------------------------|-----------------------------|----------|------------|----------------|--|--|--|
| KA431SMFTF   |                                   | 2%                          | 43A      |            |                |  |  |  |
| KA431SMF2TF  |                                   | 270                         | 43D      |            |                |  |  |  |
| KA431SAMFTF  | -25 to +85°C                      | 1%                          | 43B      | SOT-23F 3L | Tone and Deal  |  |  |  |
| KA431SAMF2TF | -25 to +65 C                      | 1%                          | 43E      |            | Tape and Reel  |  |  |  |
| KA431SLMFTF  |                                   | 0.5%                        | 43C      |            |                |  |  |  |
| KA431SLMF2TF |                                   | 0.5%                        | 43F      |            |                |  |  |  |

1

## **Block Diagram**

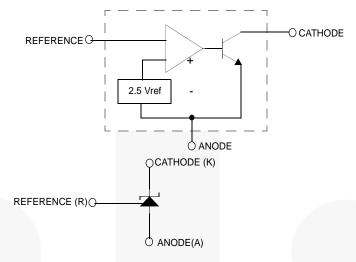



Figure 1. Block Diagram

# Marking Information 43A 43B

2% tolerance

43D

2% tolerance

43E 1% tolerance

1% tolerance



0.5% tolerance

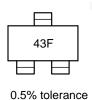



Figure 2. Top Mark (per package)

MF2-

## **Absolute Maximum Ratings**

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Values are at  $T_A = 25^{\circ}\text{C}$  unless otherwise noted.

| Symbol           | Parameter                                                          | Value       | Unit |
|------------------|--------------------------------------------------------------------|-------------|------|
| V <sub>KA</sub>  | Cathode Voltage                                                    | 37          | V    |
| I <sub>KA</sub>  | Cathode Current Range (Continuous)                                 | -100 ~ +150 | mA   |
| I <sub>REF</sub> | Reference Input Current Range                                      | -0.05 ~ +10 | mA   |
| $R_{\theta JA}$  | Thermal Resistance Junction-Air <sup>(1,2)</sup> MF Suffix Package | 350         | °C/W |
| P <sub>D</sub>   | Power Dissipation <sup>(3,4)</sup> MF Suffix Package               | 350         | mW   |
| TJ               | Junction Temperature                                               | 150         | °C   |
| T <sub>OPR</sub> | Operating Temperature Range                                        | -25 ~ +85   | °C   |
| T <sub>STG</sub> | Storage Temperature Range                                          | -65 ~ +150  | °C   |

#### Notes:

1. Thermal resistance test board

Size: 1.6mm x 76.2mm x 114.3mm (1S0P) JEDEC Standard: JESD51-3, JESD51-7.

- 2. Assume no ambient airflow.
- 3.  $T_{JMAX} = 150^{\circ}C$ ; Ratings apply to ambient temperature at  $25^{\circ}C$ .
- 4. Power dissipation calculation:  $P_D = (T_J T_A) / R_{\theta JA}$

## **Recommended Operating Conditions**

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

| Symbol          | Parameter       | Min.      | Max. | Unit |
|-----------------|-----------------|-----------|------|------|
| $V_{KA}$        | Cathode Voltage | $V_{REF}$ | 36   | V    |
| I <sub>KA</sub> | Cathode Current | 1         | 100  | mA   |

#### **Electrical Characteristics**(5)

Values are at  $T_A = 25^{\circ}C$  unless otherwise noted.

| Cumbal                                | Dorometer                                                                       | Conditions                                                                  |                                       | KA431S |       |       | KA431SA |       |       | KA431SL |       |       | Unit |
|---------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------|--------|-------|-------|---------|-------|-------|---------|-------|-------|------|
| Symbol                                | Parameter                                                                       |                                                                             |                                       | Min.   | Тур.  | Max.  | Min.    | Тур.  | Max.  | Min.    | Тур.  | Max.  | Unit |
| V <sub>REF</sub>                      | Reference Input<br>Voltage                                                      | $V_{KA} = V_{REF},$ $I_{KA} = 10 \text{ mA}$                                |                                       | 2.450  | 2.500 | 2.550 | 2.470   | 2.495 | 2.520 | 2.482   | 2.495 | 2.508 | V    |
| ΔV <sub>REF</sub> /ΔT                 | Deviation of<br>Reference<br>Input Voltage<br>Over-<br>Temperature              | $V_{KA} = V_{REF},$ $I_{KA} = 10 \text{ mA},$ $T_{MIN} \le T_A \le T_{MAX}$ |                                       |        | 4.5   | 17.0  |         | 4.5   | 17.0  |         | 4.5   | 17.0  | mV   |
| Ratio of Change in<br>Reference Input |                                                                                 | I <sub>KA</sub> =                                                           | $\Delta V_{KA} = 10$<br>V - $V_{REF}$ |        | -1.0  | -2.7  |         | -1.0  | -2.7  |         | -1.0  | -2.7  |      |
| $\Delta V_{REF}/\Delta V_{KA}$        | Voltage<br>to the Change in<br>Cathode Voltage                                  | 10 mA                                                                       | ΔV <sub>KA</sub> = 36<br>V - 10 V     |        | -0.5  | -2.0  |         | -0.5  | -2.0  |         | -0.5  | -2.0  | mV/V |
| I <sub>REF</sub>                      | Reference Input<br>Current                                                      | $I_{KA}$ = 10 mA,<br>R1 = 10 kΩ, R2 = ∞                                     |                                       |        | 1.5   | 4.0   |         | 1.5   | 4.0   |         | 1.5   | 4.0   | μА   |
| $\Delta I_{REF}/\Delta T$             | Deviation of<br>Reference<br>Input Current<br>Over Full<br>Temperature<br>Range | $I_{KA}$ = 10 mA,<br>R1 = 10 kΩ, R2 = ∞<br>$T_A$ = Full Range               |                                       |        | 0.4   | 1.2   |         | 0.4   | 1.2   |         | 0.4   | 1.2   | μА   |
| I <sub>KA(MIN)</sub>                  | Minimum Cathode<br>Cur-<br>rent for Regulation                                  | V <sub>KA</sub> = V <sub>REF</sub>                                          |                                       |        | 0.45  | 1.00  |         | 0.45  | 1.00  |         | 0.45  | 1.00  | mA   |
| I <sub>KA(OFF)</sub>                  | Off - Stage<br>Cathode<br>Current                                               | V <sub>KA</sub> = 36 V,<br>V <sub>REF</sub> = 0                             |                                       |        | 0.05  | 1.00  |         | 0.05  | 1.00  |         | 0.05  | 1.00  | μА   |
| Z <sub>KA</sub>                       | Dynamic<br>Impedance                                                            | $V_{KA} = V_{REF}$ ,<br>$I_{KA} = 1$ to 100 mA,<br>$f \ge 1.0$ kHz          |                                       |        | 0.15  | 0.50  |         | 0.15  | 0.50  |         | 0.15  | 0.50  | Ω    |

#### Note:

5.  $T_{MIN} = -40^{\circ}C$ ,  $T_{MAX} = +85^{\circ}C$ 

#### **Test Circuits**

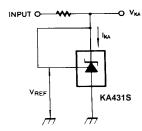



Figure 3. Test Circuit for  $V_{KA} = V_{REF}$ 

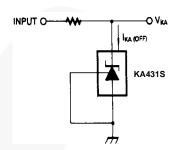



Figure 5. Test Circuit for I<sub>KA(OFF)</sub>

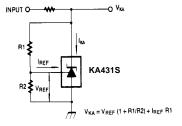



Figure 4. Test Circuit for  $V_{KA} \ge V_{REF}$ 

## **Typical Performance Characteristics**

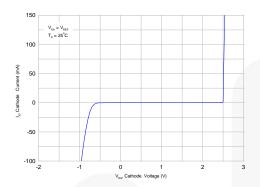



Figure 6. Cathode Current vs. Cathode Voltage

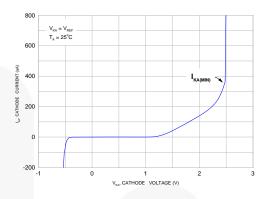



Figure 7. Cathode Current vs. Cathode Voltage

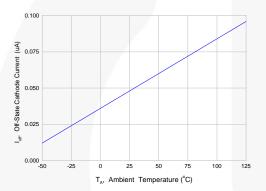



Figure 8. Reference Input Voltage vs. Ambient Temperature

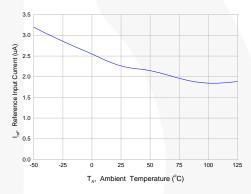



Figure 9. Reference Input Voltage vs. Ambient Temperature

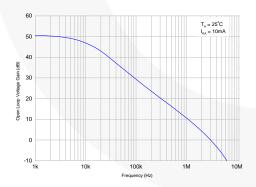



Figure 10. Frequency vs. Small Signal Voltage Amplification

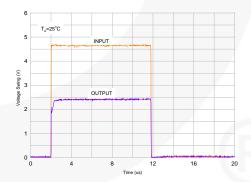



Figure 11. Pulse Response

## **Typical Performance Characteristics** (Continued)

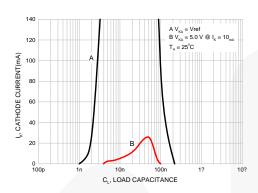



Figure 12. Stability Boundary Conditions

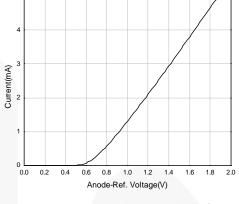



Figure 13. Anode-Reference Diode Curve

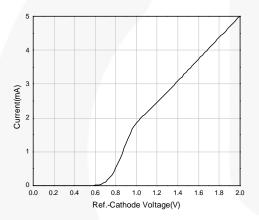
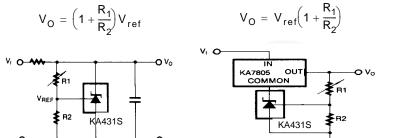




Figure 14. Reference-Cathode Diode Curve

## **Typical Application**



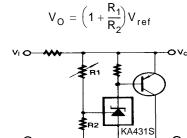



Figure 15. Shunt Regulator

Figure 16. Output Control for Three- Figure 17. High Current Shunt Regu-Terminal Fixed Regulator lator

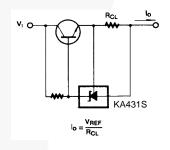



Figure 18. Current Limit or Current Source

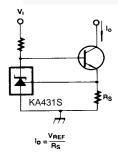



Figure 19. Constant-Current Sink

#### **Physical Dimensions**

## SOT-23F

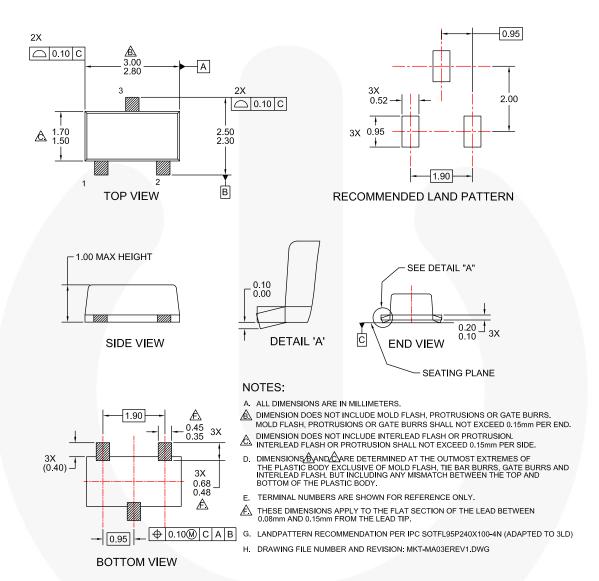



Figure 20. 3-LEAD, SOT23, FLAT LEAD, LOW PROFILE (ACTIVE)

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: <a href="http://www.fairchildsemi.com/dwg/MA/MA03E.pdf">http://www.fairchildsemi.com/dwg/MA/MA03E.pdf</a>.

For current tape and reel specifications, visit Fairchild Semiconductor's online packaging area: <a href="http://www.fairchildsemi.com/packing\_dwg/PKG-MA03E.pdf">http://www.fairchildsemi.com/packing\_dwg/PKG-MA03E.pdf</a>.





#### TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

FPS™ AccuPower™ F-PFS™ AX-CAP®, **FRFET®** BitSiC™ Global Power Resource<sup>SM</sup> GreenBridge™ Build it Now™ CorePLUS™ Green FPS™ CorePOWER™ Green FPS™ e-Series™

Gmax™ CROSSVOLT™  $\mathsf{CTL}^\mathsf{TM}$ GTO™ Current Transfer Logic™ IntelliMAX™ ISOPLANAR™ **DEUXPEED®** 

Making Small Speakers Sound Louder Dual Cool™

MillerDrive™

MotionMax™

EcoSPARK® and Better™ EfficientMax™ MegaBuck™  $\mathsf{ESBC}^{\mathsf{TM}}$ MICROCOUPLER™ ® MicroFET™ MicroPak™ MicroPak2™

Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT' FAST®

mWSaver™ OptoHiT™ FastvCore™ OPTOLOGIC® FETBench™ OPTOPLANAR® PowerTrench® PowerXS™

Programmable Active Droop™

OFET' QS™ Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™

SignalWise™ SmartMax™ SMART START™

Solutions for Your Success™

SPM® STEAL TH™ SuperFET SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS® SyncFET™

SYSTEM GENERAL®\*

TinyBoost™ TinyBuck™ TinyCalc™ TinyLogic<sup>®</sup> TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC™ TriFault Detect™

TRUECURRENT®\* uSerDes™

UHC Ultra FRFET™ UniFFT™ **VCX™** VisualMax™ VoltagePlus™

#### DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

#### LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

#### **ANTI-COUNTERFEITING POLICY**

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com,

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors

#### PRODUCT STATUS DEFINITIONS

| Definition of Terms      |                       |                                                                                                                                                                                                     |
|--------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Datasheet Identification | Product Status        | Definition                                                                                                                                                                                          |
| Advance Information      | Formative / In Design | Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.                                                                       |
| Preliminary              | First Production      | Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. |
| No Identification Needed | Full Production       | Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.                                               |
| Obsolete                 | Not In Production     | Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.                                                    |

Rev. 164

<sup>\*</sup> Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

# **Mouser Electronics**

**Authorized Distributor** 

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: KA431SMF2TF KA431SMFTF